
Astrophysics and Space Science
 

Computation of Families of Periodic Orbits and Bifurcations around a Massive Annulus
--Manuscript Draft--

 
Manuscript Number: ASTR3051R1

Full Title: Computation of Families of Periodic Orbits and Bifurcations around a Massive Annulus

Article Type: Original research

Keywords: periodic orbits;  bifurcation of families;  solid annulus disk potential

Corresponding Author: Eva Tresaco
Centro Universitario de la Defensa - AGM
Zaragoza, Zaragoza SPAIN

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Centro Universitario de la Defensa - AGM

Corresponding Author's Secondary
Institution:

First Author: Eva Tresaco

First Author Secondary Information:

All Authors: Eva Tresaco

Antonio Elipe

Andrés Riaguas

All Authors Secondary Information:

Manuscript Region of Origin:

Abstract: This paper studies the main features of the dynamics around a planar annular disk. It is
addressed an appropriated closed expression of the gravitational potential of a
massive disk, which overcomes the difficulties found in previous works in this matter
concerning its numerical treatment. This allows us to define the differential equations of
motion that describes the motion of a massless particle orbiting the annulus. We
describe the computation methods proposed for the continuation of uni-parametric
families of periodic orbits, these algorithms have been applied to analyze the dynamics
around a massive annulus by means of a description of the main families of periodic
orbits found, their bifurcations and linear stability.

Response to Reviewers: All the reviewer's comments have been taken into consideration. The response to
specific comments follows the order listed by the reviewer.

1.-Related to the motivation of our work we have added references to other
astrophysical rings systems,  from disks around supermassive black holes to
protoplanetary disks;  and we have clarified that we follow the procedure for the
computation of the potential of a circular wire proposed in literature (Scheeres 1992;
Breiter, Dybczynski, Elipe 1996; Kalvouridis 1999; Arribas & Elipe 2005; Arribas, Elipe
& Kalvouridis 2007; Alberti & Vidal 2007; Elipe, Arribas &
Kalvouridis 2007). We have also added references to Breiter (1996) & Arribas (2007).
Page 1, Section: Introduction.

2.- We have removed the sentence: like Asteroid Belts or flight formation. Page 1,
Section: Introduction.

3.- It has been added some explanation related to the motion geometry. Page 3-4,
Section 1: The annular disk and its potential function.
  a) Explanation about the integrals of motion “Prior to computing families of periodic
[…] “. End of Page 3 and first paragraph of Page 4.

  b) Explanation about equilibria computation . We have added the motion equations

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation



that govern the movement when the particle is restricted to the equatorial plane or the
polar axis. Concerning the equilibria in the polar axis, it is explained that the only
equilibrium point is the origin of the system and, as it is analyzed in (Tresaco, Elipe &
Riaguas, 2011) it is a stable critical point. Page 4, first column.
  c) We have clarified the meaning of Polar plane, which refers to any plane
perpendicular to the Equatorial plane and containing the origin, thanks to the symmetry
of the force field. Page 4, First paragraph of second column.

4.- A discussion about the equivalence of relative equilibria and Equatorial circular
orbits has been added in Page 4 (first column): “Concerning the movement on the
Equatorial plane […] and therefore, stationary points are circular solutions of the
complete problem (r,\lambda,z) i.e. critical points of the effective potential, named
$r_0$, for values of the angular momentum $\Lambda\neq 0$, will correspond to
circular orbits on the plane Oxy:  (r_0\cos(\Lambda t/{r_0}^2),r_0\sin(\Lambda
t/{r_0}^2),0) of period T=2\pi{r_0}^2/\Lambda.  Page 4, Section 1: The annular disk and
its potential function.

5.- It was incorrectly written “Family 1 orbits are stated to start with an infinitesimal
radius…”, it has been changed to Family 1 orbits are stated to start with an infinite
radius…”. Page 7, Section 4: Dynamics on the polar plane.

7.- English mistakes have been corrected.

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation



Computation of Families of
Periodic Orbits and
Bifurcations around
a Massive Annulus

E. Tresaco1
• A. Elipe1

• A. Riaguas

Abstract This paper studies the main features of the dy-
namics around a planar annular disk. It is addressed an ap-
propriated closed expression of the gravitational potential of
a massive disk, which overcomes the difficulties found in
previous works in this matter concerning its numerical treat-
ment. This allows us to define the differential equations of
motion that describes the motion of a massless particle or-
biting the annulus. We describe the computation methods
proposed for the continuation of uni-parametric families of
periodic orbits, these algorithms have been applied to ana-
lyze the dynamics around a massive annulus by means of
a description of the main families of periodic orbits found,
their bifurcations and linear stability.

Keywords periodic orbits; bifurcation of families; solid an-
nulus disk potential

Introduction

Outer planets of the Solar System and probably many of
the Extrasolar ones have rings. Scientific exploration mis-
sions aimed to study the boundaries of the solar System,
such as the space probes Pioner11 (1979), Voyager1 (1980),
Voyager2 (1981) or the most recent and relevant program
of planetary exploration Cassini-Huygens (2004), have pro-
vided an in-depth knowledge of the planetary ring systems,
determining the structure, composition and dynamical be-
havior of the planet, rings and moons. Planetary rings are

E. Tresaco

A. Elipe

Centro Universitario de la Defensa, 50090 Zaragoza, Spain.

A. Riaguas
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made of millions of rocky and icy particles, each maintain-
ing their own orbit around the planet inside its Roche limit;
these small orbiting particles can be considered, from a dis-
tance, as a continuous solid annular ring. Ring systems can
be also found from disks around supermassive black holes to
protoplanetary disks that give rise to planets, the Kuiper belt
for example is the remnant of the disk that rotated around
the Sun.

Many authors studied the dynamics of planetary ring sys-
tems. One of the pioneers, Maxwell (1859) proposed a
model for the motion of the particles surrounding Saturn
considering a polygonal configuration for the planar(n+1)
body problem, in such a way thatn bodies of equal mass
are located at the vertices of a regularn-gon centered at
the remaining body. This model attracted the interest of re-
searchers (Scheeres 1992; Breiter, Dybczynski, Elipe 1996;
Kalvouridis 1999; Arribas & Elipe 2005; Arribas, Elipe &
Kalvouridis 2007; Alberti & Vidal 2007; Elipe, Arribas &
Kalvouridis 2007) in the last years because of the possibil-
ity of considering this type of configuration for different dy-
namical systems. The dynamical models proposed consider
a gravitation potential created by a ring, where the ring is
described as a finite number of particles placed in a ring con-
figuration, or a solid circular wire.

On the other hand we find authors, such as Stone (1996)
or Tiscareno (2007) working on the dynamics of disk for-
mation, angular momentum transport, density waves or disk
instability and mass transfer; or such as Longaretti (1989),
Sicardy (1991) or Benet & Merlo (2009) that carried out dif-
ferent studies based on the data observed by spacecraft mis-
sions to planetary rings, aimed to analyze the physical prop-
erties of the rings: composition, distribution of the masses
or the relation between planet resonance relationship and the
stability of the rings and incomplete arcs.

These are some examples of problems that motivated
previous works about the dynamics around a circular ring.
We focus our research on the models proposed by Scheeres
(1992); Kalvouridis (1999); Arribas & Elipe (2005); Alberti
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& Vidal (2007), with the aim of extend the dynamical sys-
tems proposed in their works to a planetary ring. Work is
currently underway to analyze the dynamics when a central
elliptical body is introduced into the model.

The aim of the present study is to consider a massive bidi-
mensional annular disk as a first approach, which provides
a more precise approximation of the rings that can be found
in the planets of our Solar System like Saturn for example,
that is surrounded by a thin, flat ring that extends over hun-
dreds of kilometers around it; or also considered a dynami-
cal model of astrophysical disks that exists during the early
stage of stellar system formation.
The extension to this new model, while fairly simple in
its approach, entails many difficulties concerning the an-
alytic treatment of the potential function due to the ellip-
tic integrals involved. Some works in literature deal with
the computation of the gravitational potential of a massive
disk, like Krough, Ng & Snyder (1982) or Lass & Blitzer
(1983). They provide expressions that are mathematically
correct, but not appropriated for numeric evaluation and
do not cover the whole space. Works by Alberti & Vi-
dal (2007) or Fukushima (2010) deal with the dynamics
of the problem but makes use of integral form for the po-
tential and no numerical computation of orbits are made.
This paper investigates the dynamics of a particle orbiting
the annulus through the search of periodic orbits. Periodic
orbits have been widely studied over the last century and are
still a topic of great interest for understanding the dynamics
of non-integrable Hamiltonian systems. For this purpose a
first analysis of the equilibrium points of the system is per-
formed, followed by the computation of initial periodic or-
bits needed for the continuation of their families.

Some software packages have been derived in order to
perform these numeric computations. For the calculation
of the initial conditions we have used the representation of
Poincaré Sections, together with programZeros (Abad &
Elipe 2011) based on evolution strategies to detect periodic
orbits in dynamical problems. The continuation of the fa-
milies of periodic orbits has been carried out through two
methods derived following lines of the algorithm of Deprit
& Henrard (1967) and the algorithm based on the compu-
tation of Poincaré maps (Scheeres 1999). The continuation
methods proposed are not restricted to symmetric problems
and, since the procedure involves the computation of the
variational equations, a side effect is the trivial computa-
tion of the linear stability of the periodic orbits. Thus, the
evolution of a wide number of periodic orbits is described,
allowing to illustrate relevant structures of the phase space
and their implications.

The paper is organized as follows. In Section 1 we for-
mulate the problem and derive a proper mathematical ex-
pression of the potential function. Next, Section 2 presents
the methods we used for both detecting periodic orbits and

continuing the families. The analysis of periodic orbits on
the plane which contains the annulus is given in Section 3
and the polar orbits are studied in Section 4.

1 The annular disk and its potential function

We address the study of the dynamics of an infinitesimal
particle moving under the gravitational field of a massive
bi-dimensional annular disk. There are several possibilities
in obtaining the potential and the force of such planar body.
Broucke & Elipe (2005) obtained both for a solid circular
ring in closed form in terms of a complete elliptic integral
of the first kind, thus the gravitational potential of the disk
simply is the definite integral with the limits of the integral
the radii of the annulus.

Let us now consider a homogeneous annulus of radii
b < a placed on theOxy-plane of a Cartesian coordinate
system of total massM and surface densityσ ,(see Fig. 1).
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Fig. 1 Bidimensional annulus of radiib < a.

The potential created by an annulus of radiia andb is
computed from the disk potential by subtracting two con-
centric disks of radiusa andb, respectively. According to
Kellogg (1929) this potential is asingle layer potentialwith
essential discontinuities at the boundary of the annulus but,
otherwise, it is a continuous function. Its gradient is a con-
tinuous function everywhere except at points in the circular
annulus. It is not defined for points at the boundary and it
has a step discontinuity at points in the annulus but outside
its boundary.

This potential has been already derived by Krough, Ng
& Snyder (1982) and by Lass & Blitzer (1983). Nonethe-
less, the formula given there does not represent the potential
function at every point in the space for which the potential
function has a real finite value. It cannot be evaluated at
significant regions of the space where the potential is a well
defined function, or in such a way that produces wrong eva-
luations when numerically computed.
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In order to circumvent the problems arisen in the numeri-
cal treatment of the potential expression, we use several for-
mulas from the textbook Byrd & Friedman (1945), and the
computational approach by Bulirsch (1971), Carlson (1979)
and Fukushima (2009, 2010) to overcome difficulties in
evaluating the Elliptic Integrals; details of it can be found
in Tresaco, Elipe & Riaguas (2011).
The potential function is depicted in Eq. (1),

U =
2µ

π(a2− b2)

[

−paE(ka)−
a2− r2

pa
K(ka)+

|z|
(π

2
+

π
2

sign(a− r)
)

−|z|sign(a− r)

[E(ka)F(φa,k′a)+K(ka)E(φa,k′a)−K(ka)F(φa,k′a)]

+pbE(kb)+
b2− r2

pb
K(kb)−|z|

(π
2
+

π
2

sign(b− r)
)

+|z|sign(b− r)
[

E(kb)F(φb,k′b)+K(kb)E(φb,k′b)

−K(kb)F(φb,k′b)
]]

,

(1)

where we introduced the following auxiliaries quantities

r2 = x2+ y2, R2 = x2+ y2+ z2,

p2
a = (a+ r)2+ z2, q2

a = (a− r)2+ z2,

k2
a = 4ar/p2

a, k′2a = 1− k2
a, φa = arcsin

|z|
qa

,

p2
b = (b+ r)2+ z2, q2

b = (b− r)2+ z2,

k2
b = 4br/p2

b, k′2b = 1− k2
b, φb = arcsin

|z|
qb

.

The gradient of this function is given by

∂U
∂x

=
2µ

π(a2− b2)

x
r2

(

√

R2+ a2+2ar

[

(1− 1
2

k2
a)K(ka)

−E(ka)
]

−
√

R2+ b2+2br[(1− 1
2

k2
b)K(kb)−E(kb)]

)

∂U
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=
2µ

π(a2− b2)

y
r2

(

√

R2+ a2+2ar

[

(1− 1
2

k2
a)K(ka)

−E(ka)
]

−
√

R2+ b2+2br[(1− 1
2

k2
b)K(kb)−E(kb)]

)

(2)

∂U
∂ z

=− µ
π(a2− b2)

(

2z
√

R2+ a2+2ar
K(ka)−2sign(z)

(π
2
+

π
2

sign(a− r)− sign(a− r)
[

(E(ka)−K(ka))

F(φ ,k′a)+K(ka)E(φ ,k′a)
])

− 2z
√

R2+ b2+2br
K(kb)

+2sign(z)
(π

2
+

π
2

sign(b− r)− sign(b− r)
[

(E(kb)−K(kb))F(φb,k′b)+K(kb)E(φb,k′b)
]))

.

Under this form, the potential function and the force
function derived from it can be properly evaluated at any
point in the space where they are defined.

In next section we analyze the dynamics of an infinitesimal
particle under the attraction of a planar annulus; in order to
do this, it is necessary to fix values of the physical parame-
ters of the problem. We can assume without loss of gener-
ality that the outer radius of the annulusa, and the gravita-
tional constantµ are equal to one. We will take the value
b = 0.75 for the inner radius of the annulus (0< b < a).
Different values ofb do not modify qualitatively the na-
ture of the results, only quantitative variations in the orbital
elements of the periodic orbits and families are obtained.
Therefore, all the following computations of periodic orbits
have been done taking the parameters valuesµ = GM = 1,
a = 1 andb = 0.75.

Once we have a convenient expression of the potential,
it is time to study the dynamics of an infinitesimal parti-
cle moving under the gravitational field of a massive bi-
dimensional circular annulus.
The Lagrangian function is

L = T −U =
1
2
(ẋ2+ ẏ2+ ż2)−U(x,y,z),

whereU(x,y,z) is the potential function (1), andT the ki-
netic energy. We are in presence of an autonomous problem,
and hence, the energy is an integral of this dynamical system

E =
1
2
(ẋ2+ ẏ2+ ż2)+U(x,y,z).

The equations of motion are

ẍ =−Ux, ÿ =−Uy, z̈ =−Uz, (3)

whereUx,Uy,Uz denote the partial derivatives.

Equilibrium points are the simplest invariant objects along
with periodic orbits; they are important not only for their e-
xistence, also because they structure the global dynamics of
the system. Prior to computing families of periodic orbits,
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we focus on the calculation of some particular stationary so-
lutions analyzing the critical points of the system (Tresaco,
Elipe & Riaguas 2011). Since the annulus model has axial
symmetry, it is natural to use cylindrical coordinates(r,λ ,z)
to have the Lagrangian

L =
1
2
(ṙ2+ r2λ̇ 2+ ż2)−U(r,z);

due to the fact that the angleλ is a cyclic variable, its conju-
gate momentΛ = ∂L /∂ λ̇ = r2λ̇ is constant and the equa-
tions of motion in cylindric coordinates are

r̈ =−∂U/∂ r+Λ2/r3,

z̈ =−∂U/∂ z.
(4)

In order to find the stationary solutions we had to ana-
lyze the equations of motion; due to the complexity of the
expressions containing elliptic Integrals, analytic solutions
are not feasible in general. This is the reason why we only
studied the equilibria when the motion is reduced either to
thexy-plane, or when it is confined to theOz axis.
The movement on theOz-axis is determined by the follow-
ing differential equation

z̈ =
µz

π(a2− b2)

(

1√
z2+ a2

− 1√
z2+ b2

)

,

the only equilibrium point isz = 0. Considering that the mo-
tion is confined to the 0z-axis, this point corresponds to the
origin. Concerning the movement on the Equatorial plane,
since the system is conservative, the energy is

E = T +U(r) =
1
2

(

ṙ2+
Λ2

r2

)

+U(r) =
1
2
(ṙ2+W(r)),

whereW (r) = Λ2/r2+U(r) is the so-called effective poten-
tial, thus

ṙ =
√

2(E −W(r)),

and therefore, stationary points are circular solutions ofthe
complete problem(r,λ ,z) i.e. critical points of the effective
potential, namedr0, for values of the angular momentum
Λ 6= 0, will correspond to circular orbits on the planeOxy:
(

r0 cos(Λt/r0
2),r0sin(Λt/r0

2),0
)

of periodT = 2πr0
2/Λ.

It has been proved that the there is a in-plane stable equi-
librium inside the annulus(b < r < a), and the origin is also
a stationary point, it is linearly unstable for small displace-
ments along the Equatorial plane of the annulus, while it is a
stable position for perturbations along the polar axisOz, and
only for Energy values greater than the Energy at the origin
we will obtain periodic orbits, see details in Tresaco, Elipe
& Riaguas (2011). We also determined the existence of two
critical points in the exterior of the annulus corresponding

to one stable and one unstable circular equatorial orbits. We
observed that as we increase the angular momentum, one
of the equatorial orbits tends to the annulus while the other
goes to orbits of increasing radius.
In order to study the evolution of the orbits we carry out the
numerical computation of families of periodic orbits on the
fundamental planes: we named the Equatorial plane and the
Polar plane. The Equatorial plane is the one containing the
disk, whereas the Polar plane refers to any plane perpendic-
ular to the Equatorial plane and containing the origin, thanks
to the symmetry of the force field. We address the analysis
of the families of periodic orbits found joined with their sta-
bility computation.

2 Computation tools of Periodic Orbits

Some software tools have been developed in order to per-
form the numeric computation of families of periodic orbits.
Usually, algorithms for continuing families of periodic or-
bits need as starter a periodic orbit. To find such initial orbit
we use two different ways, on the one hand the classical way
of the Poincaré Sections, and on the other, the programZe-
ros (Abad & Elipe 2011) based on evolution strategies to
detect periodic orbits in dynamical systems.

Poincaré Surface of Section is a well-known tool to re-
present the intersection of an orbit in the phase space of a
continuous dynamical system with a certain lower dimen-
sional manifold, usually one of the coordinate planes. An
autonomous dynamical system provides a reduction of the
degrees of freedom of the system thanks to the Energy in-
tegral. The Poincaré section is a map obtained though the
numeric integration of two conjugated variables, when in-
tersect a fundamental plane for a given Energy level. These
plots allow us to distinguish between the quasi-periodic re-
gions from unstable chaotic motion. Concentric lines (is-
lands) identify quasi-periodic orbits while unstable periodic
orbits corresponds to hyperbolic points on these plots and
are usually more difficult to spot.

The computation of Poincaré sections requires a high
computational cost, and besides, highly unstable orbits are
difficult to identify. In these cases the application of the pro-
gram Zeros is very useful. Zeros is an evolution strategy
algorithm belonging to the general class of Genetic Algo-
rithms. It converts the problem of finding periodic orbits
into a problem of finding minima of a certain function. To
solve this problem an adapted evolution strategy algorithm
is applied. Since the problem of finding periodic orbits has
no unique solution, but is dense in the phase space, in order
to avoid accumulation of solutions around a particular point
while abandoning other regions with solutions, some modi-
fications are applied to the algorithm to adapt it to particular
functions which has lines of zeros. By using the dynam-
ics of the problem, it is possible to reduce the number of
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variables to be used, which dramatically reduces the time of
computation of a wide set of exact periodic orbits.

The numerical continuation of one-parameter families of
periodic orbits has been carried out through two methods,
developed following lines of the algorithm based on the
computation of Poincaré Maps (Scheeres 1999) and the al-
gorithm of Deprit & Henrard (1967). These continuation
methods follow periodic orbits along paths in the param-
eter plane showing the evolution of the family and its bi-
furcations. Both methods consist of general algorithms of
computing periodic orbits, but they take advantage of the
simplifications due to the nature of the problems treated,
namely autonomous Hamiltonian systems. We developed
both continuation methodsad-hoc and applied to different
problems, see (Abad, Elipe & Tresaco 2009; Lara, Deprit &
Elipe 1995; Riaguas, Elipe & Lara 1999; Elipe & Lara 2003;
Tresaco & Ferrer 2010), with the purpose of computing uni-
parametric families of periodic orbits.

The Deprit and Henrard continuation algorithm addresses
a boundary value problem for the variational equations rela-
tive to a conservative dynamical system. It consists on sep-
arating the normal displacements along an orbit from the
tangential ones. This decomposition is meant to separate
purely periodic contribution from the secular effects, thelat-
ter in the tangential displacements. Thus, the formulationof
the variational equations in the Frenet frame directly reduces
the dimension of the state transition matrix to compute, and
eliminates the trivial eigenvalues that exist for any closed
trajectory in a time invariant system. Of course, this algo-
rithm is not restricted to symmetric problems, and is valid
for the computation of families of periodic orbits for varia-
tions of any parameter or integral for a conservative dynam-
ical system with two or three degrees of freedom.

The second method we used is based on the computa-
tion of Poincaré Maps, with the surface of section chosen
to be normal to a convenient surface in the phase space (see
Scheeres (1999) for details). The Poincaré map is defined as
the map from one transversal crossing of the surface to the
next. This transversal condition together with the conserva-
tion of the Energy integral, make possible to remove the two
variables from consideration, creating a four-dimensional
map from the Poincaré surface to itself. The reduced mono-
dromy matrix has its unity eigenvalues removed; this allows
the reduced map to be used to iteratively solve for the fixed
points of the map that correspond to the closed periodic or-
bits.

Continuing families of periodic orbits is reduced to find
the displacements to the orbit, which are the solutions of
the variational equations described. A side effect is then the
computation of the linear stability with no additional effort.
Linear stability of periodic orbits depends on the eigenvalues
of the resolvent of the variational equations associated with
the fundamental period of the periodic orbit, the monodromy

matrix. When the trace of that matrix,Tr, satisfies|Tr|< 2,
it applies for linearly stable.

We will continue periodic orbits through their family
which depends on a certain parameterσ , so its eigenvalues
also vary continuously withσ . It follows that a periodic
orbit can lose its linear stability when a pair of nontrivial
eigenvalues having modulus 1 (i.e.,Tr = 2) that is a singu-
larity of both algorithms, leading to possible bifurcations de-
riving to a possible bifurcation with another family, or when
a pair of eigenvalues take the value−1 through a period-
doubling phenomena (Tr =−2).

In the event of dealing with 3-D Hamiltonian systems,
taking into account that the eigenvalues appear in reciprocal
pairs(λi,1/λi), (i = 1,2,3), and that one eigenvalue takes
the value 1 with multiplicity 2, linear stability is determined
by two stability indexes,k1 = λ1+1/λ1 andk2 = λ2+1/λ2,
whereλ1 andλ2 are the nontrivial eigenvalues. The con-
dition |ki| < 2, (i = 1,2) implies linear stability while any
other possibility means instability. Finally, in reference to
planar solutions, these two stability indexes correspond to
the in-plane stability and to the out-of-plane stability, and
are denoted in the literature bykn andkb, respectively.

Hénon (1965), pointed out six important types of critical
orbits according to the structure of the monodromy matrix:

1. There is an extremum of the Energy and no bifurcation
with another family of symmetric periodic orbits.

2. There is a bifurcation with a symmetric family of the
same period.

3. There is an extremum of the Energy and also a bifurca-
tion with another family of symmetric periodic orbits.

4. There is a bifurcation with a non-symmetric family of the
same period.

5. There is a bifurcation with another family of symmetric
periodic orbits with double period.

6. There is a bifurcation with another family of non-
symmetric periodic orbits with double period.

In the above mentioned cases, the corresponding mon-
odromy matrix is of the type

T1 = T2 = T3 :=

(

1 b
0 1

)

, T4 :=

(

1 0
c 1

)

,

T5 :=

(

−1 b
0 −1

)

, T6 :=

(

−1 0
c −1

)

.

Therefore, the different types of bifurcations may be re-
cognized by the structure of the Hénon matrix. In what fol-
lows we compute the Hénon matrix for all periodic orbits
analyzed, and we also check that their determinant that is
the unity.

Let us now show some of the most relevant families we
found. For each family we compute the stability index along
the variation of the parameter. The parameter selected for
continuation has been thex-coordinate of the state vector,
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which allows the computation of the family for different en-
ergy levels and also provides an evolution of the size of the
orbit to detect possible collision with the annulus.

3 Dynamics on the equatorial plane

In this case the motion is restricted to thexy-plane contai-
ning the annulus.

We make the analysis in the 3-D space, thus, we are able
to detect two types of possible bifurcations, orbits on the
equatorial plane (determined by thekn index) and out of the
equatorial plane (given bykb). Figure 2 presents the evo-
lution of the stability indexes in-planekn and out-of-plane
kb when the family of equatorial orbits in the exterior of the
annulus is continued.
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Fig. 2 Evolution of the stability indexes of the family of equatorial
orbits exterior to the annulus(r > a)

It is immediately detected a family of trivial circular pe-
riodic orbits outside the annulus. This is a stable family that
shows a transition to instability when the orbital radius ap-
proaches the annulus; this transition is consequence of the
coexistence of the two critical points of the effective poten-
tial, one stable exterior to the annulus, and the other unstable
but closer to it (Tresaco, Elipe & Riaguas 2011).

The evolution of the stability indexkn for this family
shows that when the radius of the orbit goes towards infin-
ity, the index tends asymptotically to 2, whereas the family
ends into a collision with the annulus when its orbital en-
ergy decreases. This family of circular orbits also shows
a critical value (kn = −2) at x0 = 1.55; this critical point
indicates an in-plane bifurcation with a family of doubling
period (Type 5). This new double-period family of orbits on
the equatorial plane has been also continued leading again
to another doubling bifurcation. Repeating the same pro-
cedure we find successive doubling period families whose
trace patterns can be seen in Fig. 3.

It is worth to notice that the traceTr(m) of an orbit with
multiple periodm is related with the traceTr of the single
period orbit by the formula

Tr(m) = 2cos(marccos(Tr/2)), |Tr| ≤ 2,

wherek denotes the trace.
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Fig. 3 Orbit resulting from the period-doubling bifurcation, and
Trace evolution for the doubling period families

Further, we also analyzed the dynamics of equatorial or-
bits inside the annulus(b < r < a). Although it may have
no physical sense, it is mathematically possible since the po-
tential presents essential discontinuities on the boundary of
the annulus but, over it, it is well defined. The family is sta-
ble with big oscillations between the limit values, and when
the radius of these orbits approaches the outer edge of the
annulus, both stability indexes grow rapidly in magnitude
preventing its continuation (See Fig. 4).

Finally, we show the behavior of the orbits in the interior
of the annulus,r < b. It is observed that when the orbital
radius approaches the annulus, the orbits become highly un-
stable, whereas when the radius of the orbits decreases, they
remain stable but tends toTr = 2 and when they get close to
the origin they change to instability (see Fig. 5). This is due
to the existence of an unstable equilibrium at the origin.

To conclude, we find that the annulus is surrounded by an
in-plane instability regions when the orbits are close to the
annulus from the interior and exterior of the annulus, this
joined with the existence of a stable equilibrium inside the
annulus may explain how it is organized the dynamics of
particles of the annulus and around it.
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Fig. 4 Evolution of the stability indexes of the family of equatorial
orbits inside the annulus(b < r < a)
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Fig. 5 Evolution of the stability indexes of the family of equatorial
orbits in the interior the annulus(0< r < b)

4 Dynamics on the polar plane

Hereafter, we address the search of periodic orbits perpen-
dicular to the plane containing the annulus. This is a more
difficult and interesting problem as it is a non-integrable sys-
tem. Let us remind that the equatorial case is an integrable
problem since it has two first integrals. We start by plotting
some Poincaré sections in order to get a preliminary infor-
mation of the dynamics of the system (Fig. 6).

From this plot we identify a set of approximated periodic
orbits, whose family evolution is detailed next. In Fig. 7
we plot 20 of the most remarkable orbits we find. In each
plot is represented the annulus (black segments) in polar
projection. Their initial conditions, periodT and traceTr
are listed in Table 1. Note that the family’s number in that
table runs from 1 to 20 and corresponds to Fig. 7 numbering.

We present now the complete evolution and stability com-
putation of each of these families.
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Fig. 6 Poincaré Surface of Section forE =−0.5

Family 1 is composed of stable circular orbits exterior to
the annulus, which begins with orbits of infinite radius and
ends with collision orbits on the annulus. The trace tends
asymptotically to the critical valueTr = 2 as the radius of
the orbit increases.

Families 2, 3, 4, 5 are made of 8-shape orbits that consist
of 2-arc periodic orbits.
Let us consider an orbit of Family 2. Its stability evo-
lution (see Fig. 8) shows that when the orbit radius in-
creases the family becomes unstable, whereas when the ra-
dius decreases, the family stays within a stable region until
it crosses the boundary value, leading to bifurcations with
new families of periodic orbits.
The monodromy matrix at the bifurcation point (Tr = 2 at
x0 ≃ 2.75) is

M =

(

0.99837 0.00064
−3.08100 0.99963

)

, (5)

of Hénon’s Type 4, leading to a bifurcation with a non-
symmetric family of the same period, namely, Family 3.
The critical point closer to the annulus (Tr = 2), presents a
Pitchfork bifurcation where the stable family moves to an
unstable region while two new families of stable orbits ap-
pear, Families 4 and 5 , which evolve to collision orbits with
the annulus (see Fig. 8).
The monodromy matrix at this bifurcation point is

M =

(

0.99999 0.11089
−0.00013 0.99999

)

(6)

which corresponds to a Hénon’s Type 3.

Family 6 is made ofpretzel-like orbits. Their evolution
shows that for both big and small radius, the orbits collide
with the annulus.
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Fig. 7 Representation of the 20 polar orbits described along the
paper

Fig. 8 Stability index evolution for Family 2, and the two bifur-
cated Families 4 and 5 which spring from a pitchfork bifurcation

The trace (see Fig. 9) passes through the value−2, which
means a bifurcation with a non-symmetric family with dou-
ble period, corresponding to Type 6 in Hénon classification.
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Fig. 9 Trace evolution of Family 6, made ofpretzel-like orbits

Family 7 consists of one-dimensional vertical oscillations
on thez-axis. The stability curve of the rectilinear orbits ty-
pically oscillates and crosses the critical valuesTr =±2 se-
veral times, leading to new families of periodic orbits. This
is a well know phenomena observed in different dynamical
systems such as the Sitnikov problem or the Hénon-Heiles
problem Belbruno, Llibre & Olle (1994); Brack (2001);
MaoDelos (1992).

Family 8 is an unstable family originated from a bifurca-
tion of the previous family of vertical oscillations on thez-
axis at the stability index value of 2. Its trace increases very
fast as the orbit size grows until it terminates with a collision
on the annulus.

Families 9, 10, 11 Family 9 is a stable family that origi-
nates out a pitchfork bifurcation with vertical oscillations,
and ends up with a collision orbit with the annulus.
Its trace evolution shows a behavior similar to the stability
graph of Family 6 (Fig. 9). As pointed out before, there
is a bifurcation with a doubling-period family (let us recall
that this doubling family at the bifurcation point have all
unit eigenvalues), and thus its trace isTr = 2, giving birth
to new families. Plotting a Poincaré section at this critical
value (see Fig. 10), the bifurcation can be easily identified.
Indeed, we can see a central point that corresponds to the
single-arc orbit, surrounded by four islands which belongsto
a new bifurcated stable family, namely Family 11, whereas
the other four hyperbolic points are related to a new unstable
family, the Family 10.

The evolution of those bifurcated families and the dou-
bling family is represented in Fig. 11.
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Fig. 11 Stability evolution of Family of 9 and its bifurcated Fam-
ilies 10 and 11

Families 12, 13 and their symmetric ones with respect to
theOx-axis come from a bifurcation of the vertical oscilla-
tions on thez-axis at the stability indexTr = 2; they end
up with a collision orbit with the annulus. Their stability
behavior is analogous to Family 6.

Families 14, 15, 16 Family 14 and its symmetric one with
respect toOx-axis is easily identified in a ring of islands
surrounding the vertical orbit plotted in the corresponding
Poincaré section. The evolution of the stability index in-
tersects again the valueTr = −2, originating new fami-
lies, through the doubling-period phenomena. Repeating the
same procedure followed for Family 9, we continue dou-
bling the family that bifurcates in two new families, one sta-
ble, Family 15, and another unstable, Family 16.

Families 17, 18 also originate from a bifurcation of the
vertical orbit, and end up in a collision with the orbit as their
radius grow. Their stability evolution begins at the trace
valueTr = 2 and decreases its value until their end.

Families 19, 20 Family 19 shows the same behavior as
Family 14, but it is made of highly unstable orbits that end
up colliding with the annulus at a valueTr ≈ 37. Finally,
Family 20 corresponds to the double period bifurcated fam-
ily from Family 19.

5 Conclusions

This paper analyzes the motion of an infinitesimal particle
under the attraction of a planar annulus. We perform a sys-
tematic search of the most relevant solutions: periodic or-
bits. The evolution of a wide number of these periodic or-
bits globally describes how the dynamic around the annulus
is organized.

This mathematical model is considered as a first approach
for further studies of more complex dynamical systems. We
should point out that the conclusions we can draw from the
phase-space structure are generic and therefore of interest
in the context of more realistic models, thus, an extension
of the results obtained about the dynamics around a circu-
lar annulus is posed. Work is currently underway to analyze
the dynamical changes when a central body is introduced
into the model, studying how will affect a flatness coeffi-
cient of that planet and also a composition of annulus like
the ring system of planet Saturn. Such a modification of our
model should have applications to the study of the structure
of planetary rings and, also, to determine locations that are
more stable and suitable to place a spacecraft in scientific
exploration mission around that body.

Acknowledgements This paper has been supported by the
Spanish Ministry of Science and Innovation and Science,
Project # AYA2008-05572.
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Table 1 State vector, period and stability index of the 20 orbits presented in Fig. 7

x z ẋ ż T Tr

1 1.14498558 0.00000000 0.00000000 1.08570023 8.2283 -0.3716
2 1.93191413 0.00005241 -0.00005393 0.31172844 13.3033 1.9627
3 0.61431996 0.74536418 0.81006851 0.78959165 50.2524 -0.0072
4 1.73809965 -0.00000046 0.00000097 0.19712184 10.3537 1.5428
5 1.42672039 0.00005097 -0.00005961 0.61536913 10.3556 1.5436
6 -0.60617609 -0.00231883 0.62563965 1.19156741 46.8767 1.7487
7 0.00000000 0.00175956 0.00000000 1.27311072 25.0000 2.0000
8 0.38899022 0.00000771 0.00000213 1.39390805 39.9107 2.4758
9 0.45581169 -0.00030177 -0.00015502 0.98791160 7.6428 -1.4308
10 0.52211293 0.00759401 -0.11630520 0.95542967 12.8028 1.0986
11 0.47123829 0.00552701 -0.05452622 0.92828539 12.6087 2.3750
12 -0.00281186 -1.63333399 0.13129963 -0.00547436 25.5104 1.7511
13 0.44689964 -0.00069537 -0.04625679 1.03202274 44.09451.7951
14 -0.00001481 0.00006441 -0.21096655 0.91717358 24.7412-0.9258
15 0.12994765 -0.29903286 -0.22850822 0.80424227 44.94773.2061
16 0.15868044 -0.26844813 -0.24850226 0.81956673 45.42111.2182
17 0.40325558 -0.00000000 0.00000185 1.27599360 57.1274 1.9978
18 0.47472898 -0.00000005 0.00000000 1.13845831 54.0839 1.9871
19 0.51239367 0.00820320 -0.07699219 1.06502319 34.5377 1.1231
20 0.23290426 -0.00000001 -0.00000004 1.01432950 40.13992.0005
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Poincaré maps for the general case. NATO Adv. Sci. Inst. Ser.
C Math. Phys. Sci.533, pp. 554–557 (1999)

Sicardy B.: Numerical exploration of planetary arc dynamics.
Icarus 89-2, pp. 197–212 (1991)

Stone J.M., Balbus S.A.: Angular Momentum Transport in Accre-
tion Disks by Convection. Astrophys. J.464, pp. 364 (1996)

Tiscareno, M.S., Burns J.A., Nicholson P.D., Hedman M., Porco
C.: Cassini imaging of Saturns rings II: A wavelet techniquefor
analysis of density waves and other radial structure in the rings.
Icarus 189, pp. 14-34 (2007)

Tresaco E., Elipe A., Riaguas A.: Dynamics of a particle under
the Gravitational Potential of a Massive Annulus: properties
and equilibrium description. Celest. Mech. Dyn. Astron. (2011).
doi:10.1007/s10569-011-9371-1



12

Tresaco E., Ferrer S., Some ring-shaped potentials as a general-
ized 4-D isotropic oscillator. Periodic orbits. Celest. Mech. Dyn.
Astron.107-3, pp. 337–353 (2010)

This manuscript was prepared with the AAS LATEX macros v5.2.


