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Abstract

Dense granular flows are present in geophysics and in several industrial pro-
cesses, which has lead to an increasing interest for the knowledge and un-
derstanding of the physics which govern their propagation. For this reason,
a wide range of laboratory experiments on gravity-driven flows have been
carried out during the last two decades. The present work is focused on geo-
morphological processes and, following previous work, a series of laboratory
studies which constitute a further step in mimicking natural phenomena are
described and simulated. Three situations are considered with some common
properties: a two-dimensional configuration, variable slope of the topogra-
phy and the presence of obstacles. The setup and measurement technique
employed during the development of these experiments are deeply explained
in the companion work. The first experiment is based on a single obsta-
cle, the second one is performed against multiple obstacles and the third one
study the influence of a dike on which overtopping occurs. Due to the impact
of the flow against the obstacles, fast moving shocks appear, and a variety
of secondary waves emerge. In order to delve into the physics of this type
of phenomena, a shock-capturing numerical scheme is used to simulate the
cases. The suitability of the mathematical models employed in this work has
been previously validated. Comparisons between computed and experimen-
tal data are presented for the three cases. The computed results show that
the numerical tool is able to predict faithfully the overall behavior of this
type of complex dense granular flow.
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1. Introduction1

The study of landslides and their movement constitutes an important en-2

vironmental issue as they play a key role in landscape evolution. Currently,3

the triggering mechanisms, mechanical properties and assessment of likeli-4

hood and consequences as well as the development of measures to limit their5

impact, is an active topic in the field of the geophysical flows research.6

These geophysical flows are essentially a mass of solid grains within a7

less dense intergranular fluid such as water or gas. This type of mixture8

is classified in three different regimes as was pointed out by Pouliquen and9

Forterre (2008): a dense quasi-static regime in which grain deformations10

can be neglected and the frictional forces govern the movement, a gaseous11

regime in which the grains present a strong agitation and the collision forces12

are predominant and an intermediate liquid regime in which the material is13

dense but flows like a fluid and collision and frictional forces are in the same14

order of importance. If it is assumed that the concentration of grains within15

the flow is high enough, then the frictional forces govern the momentum16

transport. Therefore, dry granular flows are the most suitable candidates for17

studying this type of geophysical phenomena.18

Due to the fact that avalanches are initiated on steep slopes, pioneer19

experimental studies concerning granular flows were focused on the grain20

movement over constant inclined planes with slopes larger than the ma-21

terial repose angle (Wieland et al., 1999; Pouliquen, 1999; Pouliquen and22

Forterre, 2002; Mangeney et al., 2010). This type of movement is governed23

by the gravity component along the slope direction. Experiments developed24

in Pouliquen (1999); Mangeney et al. (2010) were performed over a genuine25

1D configuration whilst Wieland et al. (1999); Pouliquen and Forterre (2002)26

were devoted to 2D events. All of them brought the opportunity of study-27

ing unstable granular masses, focusing on the maximum spreading or the28

avalanche front and tail speeds.29

Additionally to these prior laboratory works, in Lajeunesse et al. (2004);30

Boutreux and deGennes (1997) other type of configuration was experimen-31

tally addressed: the sudden release of a surface over a quasi-horizontal sur-32

face. In such case, the weight of the sand grains was the responsible for33

the onset of the movement, while the frictional forces were in charge of the34
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stopping condition. These experiments, being free from the influence of the35

topography, were of utmost importance, since they provided results con-36

cerning the quantity of mass mobilized by the flow, the final shape and the37

maximum spreading of the granular mass.38

Another important configuration which has been recently mimicked in39

the laboratory consists of granular flows traveling over erodible topography,40

(Mangeney et al., 2010; Roche et al., 2011). This phenomena is easily found41

in nature, as under certain circumstances landslides can move over deposits42

built up by earlier events. The strong effects of erosion processes can sig-43

nificantly increase the mobility of avalanches, changing drastically the final44

distribution of the granular mass, (Mangeney-Castelnau et al., 2005; Bouchut45

et al., 2008; Mangeney et al., 2010).46

The study of granular flows in combination with obstacles has also ac-47

quired prominence during the last years. The impact of the obstacle in the48

flow behavior needs to be understood for a better design of civil engineer-49

ing elements such as mast of electrical power lines, buildings, ski lifts, dams50

and other man-made structures. Several works have dug on this active re-51

search field, some of them analyzing the flow overtopping on dike elements52

(Hakonardottir et al., 2003; Faug et al., 2008) and other ones focusing on53

the shock waves generated by the impact between the flow and the single54

obstacle (Gray et al., 2003; Hakonardottir and Hogg, 2005; Hauksson et al.,55

2007).56

Following the previous effort made by the authors mentioned above (Gray57

et al., 2003; Hakonardottir et al., 2003; Hakonardottir and Hogg, 2005; Hauks-58

son et al., 2007), the main concern of this work is in relation with the study59

of the variable nature of the moving shocks and their complex birth and60

propagation. Since we want to get closer to the phenomenology which takes61

place in nature, a series of laboratory experiments have been carried out for62

studying novel an real-life configuration: 2D spread of the granular mass over63

variable topography with a changing slope and multiple shock waves derived64

from the presence of multiple obstacles. The experimental avalanche is trig-65

gered by a simple mechanism: a granular mass which is suddenly released66

from a semi-spherical container. The full description of the experimental67

facility, methods and cases is found in the experimental paper which accom-68

panies the present work. To provide a physical insight into these phenomena,69

the spatial and temporal spreading dynamics and the morphology of the re-70

sulting shape are investigated and discussed in this work through the wave71

theory (Roe, 1983). This theory is based on solving the Riemann problem72
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and, originally, it was applied to pure hyperbolic systems of equations. As73

the geophysical flows involve the presence of source terms, in Murillo and74

Garćıa-Navarro (2012); Juez et al. (2013), approximate solvers where devel-75

oped devoting special attention to the numerical fixes (entropy fix, friction76

fix and time step fix). In this fashion, the numerical tool obtained provides77

accurate numerical predictions even in cases of complex topography and with78

independence of the reference coordinate system employed. Therefore, the79

computed results generated are free of distorting numerical effects allowing80

to study the physical features involve in the granular flows.81

This work is organized as follows: section 2 is devoted to a brief summary82

of the laboratory set up where the experiments have been carried out, section83

3 describes the mathematical model employed. Section 4 displays briefly the84

numerical scheme used and in section 5 the computed results are compared85

with the experimental data, and several geophysical processes are addressed86

and explained.87

2. Experimental setup and results88

The experimental setup is briefly addressed in this section as a detailed89

explanation is provided in the companion paper. The laboratory experiment90

was carried out on an inclined rough plane with a changing slope and with-91

out lateral walls. Three experiments were carried out with this experimental92

facility. Each of them was defined by a particular obstacle configuration.93

Experiment 1 consisted of a single semisphere obstacle located on longitu-94

dinal axis of the slope. Experiment 2 had the same semisphere obstacle as95

in the prior experiment but included also two smaller semisphere obstacles96

positioned upstream. Experiment 3 had a square bar as obstacle across the97

transversal direction of the slope. The initial condition was the same for98

the three experiments and consisted of a semispheric cap full of sand at the99

upstream end of the facility. Sand grain diameters ranged from 1 mm to100

2 mm. The granular avalanche was triggered by the sudden release of the101

semispheric deposit. A schematic representation of the experimental setup102

is displayed in Figure 1.103

Three-dimensional temporal and spatial data of the moving mass was104

throughly collected. The measurement technique employed included an RGB-105

D sensor on the top of the experimental facility and a reflex camera which106

was set up from different views to complete the data.107
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Figure 1: Section 2. Schematic representation of the experimental setup

3. Mathematical model108

For the discussion of the observed results, the mathematical model formu-109

lated in global coordinates in Juez et al. (2013) is considered. This model for110

dense granular dry flows without interstitial fluid assumes that the material111

is oriented in a predominantly longitudinal direction and is confined to a layer112

which is thin compared to the scale of interest. Hence the depth-averaged113

procedure is performed in the mass and momentum equations. Hydrostatic114

pressure distribution in the direction normal to the bed is considered and115

a Coulomb type bed friction formulation is used to model the basal stress.116

Additionally, in presence of steep slopes, the gravity vector needs to take into117

consideration projections derived from bed topography as detailed in Juez118

et al. (2013). The adequate definition of the fluxes and source terms is an119

important issue when the bed slopes may change within the domain, since120

these terms are the responsible of preserving quiescent equilibrium stages121

and the start/stop flow conditions.122

Consequently, the depth averaged equations expressing volume and mo-123

mentum conservation are written as follows124

∂U

∂t
+ ∂F(U)

∂x
+ ∂G(U)

∂y
= Sτ + Sb (1)

where125

U = ( h, hu, hv )T (2)
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Figure 2: 1D sketch of global coordinates

are the conserved variables, with h representing mass depth in the z coordi-126

nate and (u, v) the depth averaged components of the velocity vector along127

x, y coordinates. The fluxes are given by128

F = (hu,hu2 + 1

2
gψh

2, huv)T

G = (hv, huv, hv2 + 1

2
gψh

2)T (3)

where gψ = g cos2ψ, being ψ the direction cosine of the bed normal with129

respect to vertical, Juez et al. (2013). The term Sτ represents the frictional130

effects in the bed, and is defined as131

Sτ = (0,−τb,x
ρ
,−τb,y

ρ
)T (4)

with τb,x, τb,y the bed shear stress in the x and y direction respectively and ρ132

the density of the granular mass.133

The term Sb is defined as134

Sb = (0, −gψh∂z
∂x
,−gψh∂z

∂y
)
T

(5)

and expresses the variation of the pressure force in the x and y direction135

respectively. Figure 2 shows a 1D sketch of the global coordinates and the136

variables involved in system 2.137

Regarding equations (3) and (4) some extra considerations are notewor-138

thy. Regarding the flux terms, the velocity profile across the material layer is139
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assumed to be well modeled as a plug flow, following Pouliquen and Forterre140

(2002), who stated how changes in the shape of the velocity profile had slight141

importance in the dynamic of the flow. Moreover, some works (Savage and142

Hutter, 1989; Gray et al., 1999; Pouliquen and Forterre, 2002; Pirulli et al.,143

2007) include a coefficient K in the term of the pressure force linked to the144

thickness gradient, which represents a ratio of the normal horizontal stress145

(x-y direction) to the normal vertical stress (z direction) Savage and Hut-146

ter (1989). This K coefficient is built through the Mohr-Coulomb theory147

(Savage and Hutter, 1989), which was derived on the basis of a rigid solid.148

However, since in this type of geophysical flows, the granular material be-149

haves as a fluid, no large differences between vertical and horizontal stresses150

are present, Ertas et al. (2001); Pouliquen and Forterre (2002). Consequently,151

in this work, it is not considered.152

Focusing on (4), some extra forces may need to be considered. Bouchut153

et al., Bouchut et al. (2003) introduced a new term in the mathematical154

model, related to the curvature of the bottom, which is usually neglected155

when compared in terms of magnitude. However, in some phenomena, such156

as landslides over large areas, the curvature terms play an important role157

(Favreau et al., 2010; Moretti et al., 2012). In recent works, Pirulli et al.158

(2007); Pirulli and Mangeney (2008), this term was omitted and promising159

computational results were obtained. Following Pirulli et al. (2007) and160

Pirulli and Mangeney (2008) curvature terms related with the geometry are161

not included in the mathematical model used herein.162

3.1. Empirical friction law163

The description of the rheological laws which govern geophysical granu-164

lar flows is not a trivial task, as it is necessary to delve into their physical165

origins at the grain scale. The main advantage of the depth averaged equa-166

tions is precisely, that the dynamics of the flowing layer can be predicted167

without knowing in detail the internal structure of the flow, (Pouliquen and168

Forterre, 2008). The complex three dimensional rheology of the granular169

mass is mainly considered through the basal friction term. Assuming a sim-170

ple constant Coulomb-like basal friction is generally sufficient to capture the171

main flow structures and has been widely used to describe granular motion172

(Pouliquen and Forterre, 2002; Bouchut et al., 2003; Kerswell, 2005; Pirulli173

et al., 2007; Juez et al., 2013). This basal friction term is governed by a174

dynamic angle of friction which is usually several degrees less than the tra-175

ditional static friction angle (Cui and Gray, 2013).176
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However, when considering complex transient situations which involve177

realistic topography and propagating shocks, more sophisticated basal fric-178

tion laws may need to be considered. The assumed dense quasi-static regime179

may fail and an intermediate liquid regime can develop in which the collision180

forces take center stage. In the search of accurate quantitative predictions181

several authors (Pouliquen and Forterre, 2002; Forterre and Pouliquen, 2003;182

Pirulli et al., 2007) have studied in detail the onset and overall behavior of183

the gravity-driven flows. As it was stated in Pouliquen (1999); Pouliquen and184

Forterre (2002), experimental works have proved the existence of two criti-185

cal angles: an initial static angle which governs the onset of the movement,186

θstart, and another lower angle, which is in charge of the stopping phenom-187

ena, θstop. A relationship between both angles can be found in Pouliquen188

and Forterre (2002), providing a way of explaining the hysteresis behavior of189

granular slope stability (Douady et al., 1999). Additionally, Da Cruz et al.190

(2005) discussed another way of computing the friction coefficient in terms of191

the relevant timescales controlling grain motion (mean deformation and con-192

fining pressure). Both approaches, Pouliquen and Forterre (2002); Da Cruz193

et al. (2005), despite of providing a full description of the granular behavior194

at different regimes present the main drawback of requiring ad hoc parame-195

ters. In this way, the accuracy of the predictions are tied to the accuracy of196

the calibration which is usually supplied by small-scales laboratory test.197

In order to avoid these calibration parameters, but pursuing a more so-198

phisticated friction term not only a dry friction law is considered in this199

work. Regarding the fact that the conservation equations in (1) are depth200

averaged, the tangential forces generated by the stresses may have different201

and wide nature: turbulent stress τt, dispersive stress τd, Coulomb-type fric-202

tional stress τf , yield stress τy and even viscous stress τµ. Not all stresses203

act along or simultaneously at the same location of the material column.204

However, since the conceptual model is depth-averaged, all terms may actu-205

ally coexist and may be mathematically lumped in the same formula. For206

this reason, and because the mathematical structure of the equations is the207

same as the one of the shallow-water equations, and following previous works208

(Johnson and Jackson, 1987; Louge, 2003; Hungr and McDougall, 2009), the209

Manning’s law (Manning, 1895) is considered in addition to the dry frictional210

Coulomb’s law.211

The Manning’s law is based on a power-law velocity model where the212

friction exerted over the bed is written as the product of a friction coefficient213

and the square velocity profile. Depth averaging this expression and consid-214
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ering turbulent flow on the basis of the flow, (Burguete et al., 2007), drives215

to define the new tangential forces as216

τt,x = ρgψ n2u
√
u2+v2

h1/3

τt,y = ρgψ n2v
√
u2+v2

h1/3

(6)

where n is the Manning-Strickler’s coefficient which is related to the bed217

topography roughness. With the inclusion of this friction term in the mo-218

mentum equations, the effect of very thin layers where only a small number of219

grains are present in the vertical column is taken into account (the collisional220

term becomes more relevant). Since under these conditions only few layers of221

granular material exist, and all of them are mobilized, the local dissipation222

of the potential energy needs to be increased in such area. In this fashion,223

the stopping conditions of the moving mass is not only reached when the224

slope of the surface level equals the slope of the friction angle. Thanks to the225

mathematical structure of Manning’s law, the smaller the granular depth is,226

more friction dissipation is generated at the base of the flow. Hence, the sum227

of tangential forces of (4) applied over the moving mass are evaluated as228

τb,x = τf,x + τt,x i.e. τb,x = ρgψh tan θb + ρgψ n2u
√
u2+v2

h1/3

τb,y = τf,y + τt,y i.e. τb,y = ρgψh tan θb + ρgψ n2v
√
u2+v2

h1/3

(7)

4. Numerical scheme229

System (1) is solved through the numerical scheme for global coordinates230

proposed in Juez et al. (2013) which is based on a Finite Volume Model.231

System (1) is integrated in a grid cell Ωi232

∂

∂t
∫
Ω
UdΩ + ∫

Ω
(Ð→∇E)dΩ = ∫

Ω
SdΩ (8)

Using Gauss theorem (8) is written as233

∂

∂t
∫
Ωi

UdΩ + ∮
∂Ωi

E
n
dl = ∫

Ωi

SdΩ (9)

where vector n is outward from cell Ωi, as displayed in Figure 3. The second234

integral in (9) can be explicitly expressed as a sum over the cell edges,235

∂

∂t
∫
Ωi

UdΩ + NE∑
k=1
∫ E

nkdlk = ∫
Ω
SdΩi (10)
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with nk = (nx, ny) the outward unit normal vector to the cell edge k, dlk is236

aligned in the direction of the edge and NE is the number of edges in cell i,237

as shown in Figure 3.238

l3

n3e1
e2

e3

Uj1
UiUj2

Uj3

Figure 3: Cell parameters

Assuming a first order in space approach, (10) becomes239

∂

∂t
∫
Ωi

UdΩ + NE∑
k=1

E
nklk = ∫

Ω
SdΩi (11)

Also, the volume integrals of the source terms are expressed in terms of240

appropriate contour integrals by projecting the source terms onto the normal241

direction nk to each cell edge as follows242

∫
Ωi

SdΩi ≈
NE

∑
k=1
∫
x′
[Skdx′k] lk (12)

being x′ the coordinate normal to cell edge k, as shown in Figure 4. Then,243

the initial system of equations in (1) is transformed in244

∂

∂t
∫
Ωi

UdΩ + NE∑
k=1

(E
n
− ∫

x′
Skdx

′)
k

lk = 0 (13)

System (13) is solved using approximate linear solutions of initial value245

problems according to the Godunov method, where Un
i is the cell-average246

value of the solution U(x, y, t) for the ith cell at time tn247

Un
i = 1

Ai
∫
Ωi

U(x, y, tn)dΩ (14)
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being Ai the cell area. Assuming a piecewise representation of the variables248

within the cell drives to define an uniform value for each variable.249

The development of the numerical scheme in the Godunov method can be250

completed by the definition of an approximate solver of the Riemann problem,251

hereafter RP, governed by the fluxes at each side of each edge, Ej and Ei.252

For the Roe’s approximate solver this solution is given by an approximate253

Jacobian matrix constructed through the flux difference (δE)k = Ej−Ei, Roe254

(1983).255

Un
i

Un
j

U

Un
i

Un
j

nk

x′

x′

x′ = 0

Figure 4: Riemann problem in 2D along the normal direction to a cell side

As it was justified in Juez et al. (2013) the piecewise representation of the256

variables in the Godunov method and the definition of gravity forces affected257

by the presence of non-uniform topography are need to bring together to258

ensure the well-balanced property at each RP. Following Juez et al. (2013),259

appropriate integrals for the bed slope and friction terms are provided and260

through the upwinding technique the variables are spatially and temporally261

updated. The allowable time step size are controlled by the CFL condition262

(Murillo and Garćıa-Navarro, 2012).263
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Figure 5: Section 5. Probes location

5. Results and discussion264

The purpose of this section is twofold: first, we aim to validate the com-265

puted results obtained by comparison against the experimental data. There-266

fore, the forecasting capabilities of the shock-capturing scheme are explored267

when considering a fast 2D transient condition with a variable topography268

which includes obstacles. Additionally, a discussion on the physics involved269

in the granular flow behavior is developed. Some fluid-mechanical character-270

istics are identified, providing useful information for future design guidelines271

of dikes or other man-made civil elements.272

All the simulations have been performed using an unstructured Delaunay273

triangular mesh, since only this type of mesh avoids the presence of mislead-274

ing preferential flow directions as shown by Juez et al. (2013). A maximum275

cell area of 6 mm2 is considered with a stability condition of CFL = 0.4.276

The bed domain is considered non-deformable and no boundary conditions277

are imposed.278

Comparisons between experimental and computational results are based279

on quantitative temporal 3D information detailed in companion paper. 2D280

plan views and a number of probes located at points of interest, shown in281

Table 5, are analyzed in depth. A summary of all the probes is presented in282

Figure 5.283
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Probe X (mm) Y (mm)

PU 500 500
PD1 600 500
PD2 680 500
PS0 760 500
PS1 705 410
PS2 705 590
PSL 770 550
PSR 770 450
PS0L 814 570
PS0R 814 430

Table 1: Probe locations

5.1. Gravity driven flow facing up a single obstacle284

The understanding of the flow behavior against obstacles gathers a great285

interest as it is crucial in the design of elements which protect civil buildings286

and structures from several types of material slides (snow avalanches, debris287

flows, rockfalls or pyroclastic flows). Prior works have also pointed out the288

importance of this kind of configuration, carrying out 1D laboratory experi-289

ments with cylindrical obstacles Gray et al. (2003); Cui and Gray (2013) and290

with square blocks Hauksson et al. (2007). Being conscious that a landslide291

is a genuinely 2D flow, although under particular circumstances it can be292

constrained by bed topography driving to a 1D flow, we have developed a 2D293

experimental case as in Tai et al. (2001) but over a rough bed surface. For294

this purpose, in the experiment considered in this subsection a single obstacle295

with semispherical shape is located within the flow region. This semisphere296

can be seen as an obstacle and also as a characteristic of the bed topography.297

Figure 6 shows a three-dimensional plot of the initial configuration.298

Before comparing computed results with the experimental data, the in-299

fluence of the dynamical friction angle and the effect of the Manning’s term300

is studied. For this purpose numerical results obtained by using two differ-301

ent dynamical angles, θb = 22o and θb = 30o are shown in Figure 7 at the302

final stage of the experiment. As it is observed, when using θb = 22o the303

friction term is diminished in comparison to the inertia terms and the granu-304

lar mass exceeds the obstacle, which results in two symmetric sand deposits305

downwards. On the other hand, when applying θb = 30o, the flow is stopped306
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Figure 6: Section 5.1. Initial configuration with the sand deposit at the beginning of the
slope and the obstacle downwards

before overrunning the obstacle.307

Additionally, the effect of the gravity projections considered in the nu-308

merical scheme is also analyzed. For this purpose, Figure 8 displays the final309

stage with two different dynamical angles, θb = 22o and θb = 30o and without310

considering the projections. As it observed, the overall surface level is com-311

pletely different from Figure 7 and an important mismatch of a physically-312

based behavior is observed. Therefore, the effect of the gravity projections313

is need it is retained from now on in all the computed results.314

Bearing in mind the granular movement observed in the experiments,315

more accurate results are obtained when using an intermediate dynamical316

angle equal to θb = 26o, Figure 9 (a). Once the effect of the dynamical angle317

is clearly identified, the effect of Manning’s law is taken into account in the318

friction term. In this fashion, the final stage of the granular avalanche, shown319

in Figure 9 (b), displays some differences with respect to 9(a): the front of the320

avalanche keeps the same maximum spreading and the lateral movement is321

almost identical. However, noticeable discrepancies appear in the tail of the322

avalanche: whereas with the unique existence of the friction angle the effects323

of the thin layer are not taken into consideration and the tail is shortened,324

when considering the Manning’s law the tail is enlarged, providing a better325

physical description of the phenomena.326

A temporal sequence of 3D views, numerically obtained, is plotted in327

Figure 10. Additionally, in Figures 12 and 13 a temporal series of 2D plan328

views with experimental data and computational results are presented. Since329
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(a) (b)

Figure 7: Section 5.1. Final stage of the granular avalanche with two different dynamical
friction angles θb = 22o (a) and θb = 30o (b) at the final stage of the movement

(a) (b)

Figure 8: Section 5.1. Final stage of the granular avalanche with two different dynamical
friction angles θb = 22o (a) and θb = 30o (b) and without considering the gravity projections
at the final stage of the movement
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(a) (b)

Figure 9: Section 5.1. Final stage of the granular avalanche when using only the dynamical
friction angle with θb = 26o (a) and when summing the Manning’s law (b) at the final
stage of the movement

the sand cap is suddenly removed, the overall granular mass is put in motion330

and the initial shape is lost quickly. The flow spreads over the longitudinal331

and transversal direction until it reaches the obstacle, at t = 540ms. At this332

point, two interesting flow structures are formed: a wake region downslope333

from the semisphere, and a shock region upstream and to the sides of the334

semisphere. The shock evolves symmetrically around the sphere until the335

avalanche front remains at rest at t = 1000ms. From this temporal point, only336

the granular tail is still in motion up to an equilibrium stage at t = 2000ms.337

An important phenomena reported in the companion work is the existence338

of a stagnation area, i.e. an area where the granular mass has a local zero339

velocity. This structure is also observed in the computational results in340

figure 11, and is temporally well described as it occurs at the same time,341

t = 850ms, as it was observed in the laboratory. From a numerical point of342

view, it is remarkable the robustness of the computed solution in the wet/dry343

fronts: the computed solution is able to handle with these situations without344

ruining the stability of the numerical solution. This characteristic is of utmost345

importance since it is present during the movement of the granular mass and346

when impacting against the obstacle: a part of the sand arrives to the top of347

the semispheric cap.348

When analyzing the numerical results against the experimental data, the349

overall behavior of the granular mass is well described. Temporal evolution350
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Figure 10: Section 5.1. 3D contour views for the free surface level at times t = 100 ms, t
= 200 ms, t = 500 ms, t = 1000 ms, t = 1500 ms and t = 2000 ms
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Figure 11: Section 5.1. 2D plant view of the computed velocity field at time t = 850 ms

of the sand run out is accurately tracked in time. Furthermore, although351

the shock is a genuinely 3D structure, it is well reproduced by the depth352

averaged model considered in this work. However, some differences appear353

around the shocks area and at the final stage, where the computed results354

tend to overestimate the sand depth in the vicinity of the semisphere. Both355

situations are explained by the fact that the mass located in the avalanche356

tail is not stopped at the adequate position by the numerical scheme. Hence,357

an extra quantity of mass evolves downslope increasing the sand depth up to358

reach a rest condition. This fact is clearly understood when computing the359

absolute error between numerical and experimental results, Figure 14. Red360

areas, located at the sides of the obstacle showed a higher prediction for the361

sand depth, whereas the blue areas positioned at the avalanche tail show an362

underestimation of the mass. Nevertheless, the error at the avalanche front363

is close to zero, which implies an accurate tracking of the transient moving364

mass.365

All the probes measured in the companion work (except PU, which in this366

experiment was not recorded) are compared with the computed results, Fig-367
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Figure 12: Section 5.1. 2D plant views for the sand depth obtained experimentally (left
side) and computationally (right side) at times t = 540 ms, t = 600 ms, t = 700 ms
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Figure 13: Section 5.1. 2D plant views for the sand depth obtained experimentally (left
side) and computationally (right side) at times t = 1000 ms, t = 1500 ms, t = 2000 ms
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Figure 14: Section 5.1. 2D plant views displaying the absolute error at times t = 540 ms,
t = 600 ms, t = 700 ms, t = 1000 ms, t = 1500 ms, t = 2000 ms21



ure 15. PD1 shows a time lag with respect to the experimental measurement.368

This is due to the fact that, during the experiment, the opening of the sand369

container was not instantaneous, in contrast to the computational assump-370

tion under which a sudden dam break of the initial sand cap is considered.371

Additionally, differences between experimental and numerical results are ob-372

served from time t = 1100ms and are associated to the different behavior of373

the avalanche tail observed with the experimental and computed results: in374

the laboratory work the tail area is spatially stopped before and consequently,375

the sand depth is stretched. In PD2, which is located downstream from PD1,376

the time lag perturbation of the gate is less evident. Numerical results are377

in good agreement with experimental data. An interesting phenomena is378

observed in the computational solution: the sand depth grows quickly up to379

time t = 750ms, then drops up to time t = 1100ms and then the sand layer is380

increased again. Since the avalanche front moves quickly, the granular mass381

is split into two regions: the front and the tail. Once the front remains at382

rest, the tail is still in motion and goes on traveling downslope. Therefore,383

the final height of the sand layer at point PD2 is the sum of two moving384

masses: first the front and then the tail. PS1 and PS2 provide an accurate385

prediction of the sand flow and the same explanations given for the jump in386

the sand depth at PD2 is applicable here. PSL, PSR, PS0L, PS0R, PS0 are387

placed in the vicinity of the obstacle, providing information of the shocks388

upstream and to the sides of the semisphere. All of them tracked accurately389

the temporal evolution. Nevertheless, the final sand depth is overestimated390

as a consequence of the extra granular mass which comes from the tail area.391

In addition to the probes, in Figure 16 a longitudinal profile at y = 500mm392

is shown. The tendency of the experimental measurement is well reproduced393

by the computed solution, although the predicted surface level is overesti-394

mated over the obstacle. This larger amount of material located in the front395

of the avalanche comes from the tail area. The gap between the numerical396

results and the experimental data has its origin in the interplay between rhe-397

ology and deposition processes. The better results provided by the friction398

law are biased in this case by the absence of a deposition/entrainment con-399

dition in the depth-averaged mathematical model (Faug et al., 2004; Tai and400

Kuo, 2008).401

22



 0

 5

 10

 15

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(a) PD1

 0

 5

 10

 15

 20

 25

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(b) PD2

 0

 5

 10

 15

 20

 25

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(c) PS1

 0

 5

 10

 15

 20

 25

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(d) PS2

 0

 10

 20

 30

 40

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(e) PSL

 0

 10

 20

 30

 40

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(f) PSR

 0

 10

 20

 30

 40

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(g) PS0L

 0

 10

 20

 30

 40

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(h) PS0R

 0

 10

 20

 30

 40

 0  250  500  750  1000  1250  1500  1750  2000

D
ep

th
 (

m
m

)

Time (ms)

(i) PS0

Exp. repetitions Exp. Average Simulated

Figure 15: Computational and experimental probe results
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Figure 16: Section 5.1. Longitudinal section (y = 500mm) for Experiment 1 at the final
stage
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Figure 17: Section 5.2. Initial configuration with the sand deposit at the beginning of the
slope and the three obstacle downwards

5.2. Gravity driven flow facing up three obstacles402

The next step in this work is considering a configuration which involves403

several obstacles. In this situation the shock propagation is expected to404

be influenced by the presence of other moving waves in their vicinity. To405

our knowledge, this particular configuration has not been addressed in other406

works. Figure 17 displays a sketch of the initial configuration of the experi-407

ment.408

The temporal computed evolution of the mass spreading is plotted in 3D409

and 2D plan views in Figures 18, 20, 21. The first instants of time, prior410

to the sand reaching the obstacles, are similar to the ones obtained in the411

experiment with one obstacle. The abrupt opening of the sand container trig-412

gers the sand avalanche. The mass is accelerated rapidly downslope towards413

the obstacles. Both lateral and longitudinal spreadings are observed. The414

impact of the sand flow against the small semispheres is accurately tracked415

by the numerical model at time t = 460ms. At this point the flow undergoes416

an abrupt transition in flow regimes, since a shock is derived in front of each417

obstacle at time t = 640ms and t = 740ms. In the vicinity of the shocks the418

horizontal scales of the phenomena no longer exceed the vertical scales, which419

constitute a challenge for the shallow approach. Despite the complexity, the420

computed results describe correctly this complex wave structure, which is421
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generated by the interactions of each obstacle. It is worth noting how the422

waves numerically reproduced in this experiment, are significantly influenced423

among themselves. On the other hand, once the flow overtakes the three ob-424

stacles, the maximum runout is quickly reached and at time t = 1500ms425

the quiescent equilibrium stage is already achieved. The final shape of the426

computational results is similar to the obtained in the previous experiment.427

However, when analyzing the experimental results, it is observed how the428

surface angle described by the particles in the avalanche front is larger in429

the three obstacles configuration. With this latter configuration the shocks430

developed have significantly more influence in the flow behavior and make431

the sand grains move not only by rolling, but also by salting. This grain432

mechanism of movement is not affordable with the model proposed in this433

work and such behavior can not be mimicked.434

On the other hand, it is interesting to observe how the numerical results435

are able to reproduce the initial immersion of the small caps by the sand436

mass, time t = 640ms, and the later reappearance of the obstacles, time437

t = 1500ms. Furthermore, the stagnation area pointed out in the laboratory438

work at time t = 900ms is also well reproduced with the simulated results,439

Figure 19.440

The main differences between computational and experimental data are441

due to the overestimated lateral spreading and by the fact that the mass442

located in the avalanche tail is not adequately stopped. Figure 22 displays443

the absolute error and the major differences are found in the lateral sides,444

the vicinity of the obstacles and the avalanche tail. This behavior is fairly445

similar to the observed in the previous experiment.446

The temporal accuracy of the computed results at particular locations447

during the development of the sand avalanche is validated against the mea-448

surements developed during the laboratory work at particular locations as it449

is described in the companion work. Figure 23 displays all probes plotted in450

Figure 5 except PU which is out of the field of view in this experiment. The451

overall behavior of all the probes is similar to the one observed during the ex-452

periment with one obstacle. The probes located closer to the sand container,453

PD1 and PD2, are influenced by the sand release procedure, since, from the454

computational point of view it is instantaneous, but experimentally it takes a455

short period of time. This fact provokes a time lag between laboratory data456

and numerical results. The differences at probes PS1 and PS2 are generated457

by the numerical behavior of the avalanche: the moving mass is split into two458

groups: the front and the tail. The tail spreads faster during the first instants459
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of time and consequently, it achieves the equilibrium stage earlier. Then, the460

mass coming from the tail arrives and the final depth elevation is increased.461

This phenomena is also responsible for the higher computational sand ele-462

vation at probes PSL, PSR, PS0L and PS0R. Nevertheless, the numerical463

results are able to well reproduce the temporal evolution of this particular464

avalanche which includes complex transient and local 3D shocks.465

Figure 24 displays a longitudinal profile located at y = 500mm. The466

overestimated computational sand depth is due to the differences in the tail467

of the avalanche, where a larger downwards mobilization of the material has468

occurred. Notwithstanding, the numerical prediction is able to reproduce the469

fact the the main obstacle is not overtopped.470
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Figure 18: Section 5.2. 3D contour views for the free surface level at times t = 100 ms, t
= 200 ms, t = 500 ms, t = 600 ms, t = 1000 ms and t = 1500 ms
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Figure 19: Section 5.2. 2D plant view of the computed velocity field at time t = 900 ms
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Figure 20: Section 5.2. 2D plant views for the sand depth obtained experimentally (left
side) and computationally (right side) at times t = 460 ms, t = 500 ms, t = 640 ms
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Figure 21: Section 5.2. 2D plant views for the sand depth obtained experimentally (left
side) and computationally (right side) at times t = 740 ms, t = 900 ms, t = 1500 ms
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Figure 22: Section 5.2. 2D plant views displaying the absolute error at times t = 460 ms,
t = 540 ms, t = 640 ms, t = 740 ms, t = 900 ms, t = 1500 ms32
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Figure 23: Section 5.2. Computational and experimental probe results
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Figure 24: Section 5.2. Longitudinal section (y = 500mm) for Experiment 2 at the final
stage
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Figure 25: Section 5.3. Initial configuration with the sand deposit at the beginning of the
slope and the dike downwards

5.3. Gravity driven flow facing up a dike471

Another important configuration in real applications is an oncoming flow472

against barriers. The design and location of this type of structures highly473

governs the dynamical description of the granular flow and its final shape.474

The two principal phenomena observed in this configuration are the presence475

of deflection waves upstream of the dike and the overtopping generated when476

the flow depth exceeds the height of the dike crest. Previous works focused on477

small-scale laboratory experiments with dike structures and granular flows478

such as the ones by Hakonardottir et al. (2003); Faug et al. (2008). In both479

works, the granular material was confined in a 1D configuration and the480

start/go mechanism was not studied in detail, as no data about the plan481

view spreading of the material was provided. The spreading of the landslide482

against a dike is an active topic as it was stated in Johannesson et al. (2009).483

Figure 25 shows a 3D view of the initial configuration of the experiment.484

Figure 26 displays a temporal sequence of 3D views. Once the sand is485

released on the top of the slope the flow is accelerated downwards. The486

inertia of the moving mass is high enough for it to fly over the dike, for487

example at times t = 490ms, t = 610ms. Nevertheless, the most of the mass488

is retained by the dike structure, and the maximum run out of the avalanche489

is highly shortened by the dike effect, see times t = 710ms and t = 910ms.490

At time t = 1040ms most of the morphodynamic changes have taken place491

and at time t = 2000ms the mass has reached an equilibrium stage.492

Comparison with the experimental data is shown in Figures 27 and 28.493
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At times t = 490ms and t = 610ms the computational results are affected by494

the time lag of the sand release procedure. Afterwards, differences among the495

instants of time are located in the tail of the avalanche. In the computational496

results the tail moves faster than in the experimental data and consequently,497

the depth elevation upstream from the dike is higher and in the tail region it498

is smaller. These differences during the transient stage of the avalanche are499

reduced once the equilibrium stage is reached, at time t = 2000ms. The front500

and the tail of the avalanche are well reproduced by the numerical model.501

The maximum run out obtained with the computational model tends to be502

slightly underestimated. This can be justified by the high level of energy503

that the grains have during the avalanche and that allow them to fly further504

downstream from the dike. With the depth averaged assumption considered505

in this work, the vertical acceleration is neglected and consequently, the506

vertical motion is underestimated.507

Additionally, at this temporal stage, the constant slope of granular mate-508

rial upstream from the dike clearly identified in the companion work is also509

easily distinguishable.510

The transient absolute errors are displayed in Figure 29. As it has been511

explained above, the larger differences at times t = 490ms, t = 610ms and512

t = 710ms are found at the front and at the tail, since in the computed513

results, the head of the avalanche moves faster and the sand accumulates514

upstream from the dike and at the tail. Nevertheless, the final stage provides515

a limited error all over the domain. At that time, the main error area is516

located in the middle of the slope material accumulated upstream from the517

dike. This is consistent with the phenomena observed at the plan views,518

Figure 28 at time t = 2000ms, since in the numerical solution the area with519

constant slope is wider than in the experimental data. Moreover, the quasi520

zero error area located on the top of the dike, i.e. the overtopping area, at521

the final stage is remarkable. Computational and experimental data match522

accurately.523

The computational results are also validated against the probe results524

obtained in the companion work, but excluding PS0R, PS0L and PS0 because525

they showed no information in this experimental case, Figure 30. As it has526

been noted in the previous experiments, the probes located upslope are more527

influenced by the sand release procedure. Consequently, a temporal lag in the528

peak flow is observed at probes PU and PD1. Probe PD2 display an accurate529

tracking of the temporal evolution of the sand depth evolution. PS1 and PS2530

present a good trend of the experimental dynamics although the surface level531
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is underestimated downwards the dike. This is coherent with the 2D views532

shown in Figure 28 at time t = 2000ms: the maximum run out is slightly533

shorten in the computational solution.534

Figure 31 shows the longitudinal section at y = 500mm. Regarding the535

observed computed and experimental bed topography differences, i must be536

noted that the conceptual model is depth averaged and the region down-537

stream from the dike can not be correctly described. Therefore, it has been538

decided to design a vertical dike for the simulation. Nevertheless, both com-539

putational and experimental data display the same tendency, describing a540

uniform slope upstream from the dike. The main differences are focused on541

the tail, where numerical solution presents a more severe slope. Addition-542

ally, the maximum run out is overestimated with the computed prediction,543

which is justified by the highly fluidized mass observed in the laboratory544

work, which allows the material granular to fly further during the overtop-545

ping event.546
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Figure 26: Section 5.3. 3D contour views for the free surface level at times t = 490 ms, t
= 610 ms, t = 710 ms, t = 910 ms, t = 1140 ms and t = 2000 ms
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Figure 27: Section 5.3. 2D plant views for the sand depth obtained experimentally (left
side) and computationally (right side) at times t = 490 ms, t = 610 ms, t = 710 ms
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Figure 28: Section 5.3. 2D plant views for the sand depth obtained experimentally (left
side) and computationally (right side) at times t = 910 ms, t = 1140 ms, t = 2000 ms
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Figure 29: Section 5.3. 2D plant views displaying the absolute error at times t = 490 ms,
t = 610 ms, t = 710 ms, t = 910 ms, t = 1140 ms, t = 2000 ms
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Figure 30: Section 5.3. Computational and experimental probe results
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Figure 31: Section 5.3. Longitudinal section (y = 500mm) for Experiment 3 at the final
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6. Conclusions547

In the present work dry granular flow has been simulated using a 2D Finite548

Volume scheme previously validated in Murillo and Garćıa-Navarro (2012)549

to predict the stop/go mechanisms of the flow behavior but considering the550

features of gravity projections derived for unstructured meshes in Juez et al.551

(2013). Fluxes and source term discretization were obtained from the analysis552

of quiescent equilibrium, prior to being included in the approximate Riemman553

Problem. These characteristics make the numerical scheme an adequate tool554

to verify its capacities under a series of experimental cases, which represent555

small-scale up-to-date environmental problems.556

The development of the laboratory work and the measurement technique557

employed is fully described in the companion work. The main singularity558

of the experiments is focused on the presence of obstacles, over a rough and559

complex topography, which in turn implies shock formation. These moving560

shocks are the key for the understanding of the flow behavior and are well561

reproduced by the numerical scheme considered. Three experiments have562

been modeled and analyzed.563

The first experiment is based on granular flow around a semispherical564

obstacle. The computed results are able to accurately track in time the565

movement and spreading of the mass. Additionally, the two phenomena566

observed during the development of the experiment, namely the stagnation567

area upstream from the obstacle and the shock around it, are also numerically568

reproduced.569

The second experiment consists of granular flow around two small semi-570

spherical obstacles and one semispherical obstacle located downstream. The571

complexity of this case is larger, since the shock structure involves the pres-572

ence of additional moving waves which interact with each other. Nevertheless,573

the temporal prediction of the computed results displays a good agreement574

in comparison with experimental data.575

The third experiment is of granular flow over a square dike where a over-576

flow takes place. The temporal prediction and the maximum run out are well577

reproduced by the numerical model.578

The main flow structures are well captured in time and space by the579

numerical scheme in the three experiments: the impact, the shock formation,580

the overflow and the maximum run out. The small differences in the shocks581

are justified by the depth averaged assumption considered, as the vertical582

accelerations around the obstacles are neglected. Moreover, thanks to the583
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robustness of the numerical scheme, able to handle with complex stop/go584

conditions and wet/dry situations, distorting numerical effects are avoided.585

Hence, the forecasting capabilities of the computed results can be used for586

the future design of civil infrastructures or for the understanding of more587

complex and ambitious rheological models.588
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Juez, C., Murillo, J., Garćıa-Navarro, P., 2013. 2D simulation of granular649

flow over irregular steep slopes using global and local coordinates. Journal650

of Computational Physics 255, 166–204.651

Kerswell, R., 2005. Dam break with Coulomb friction: A model for granular652

slumping? Physics of Fluids 17.653

Lajeunesse, E., Mangeney-Castelnau, A., Villote, J.P., 2004. Spreading of a654

granular mass on a horizontal plane. Physics of Fluids 16, 2371–2381.655

46



Louge, M., 2003. Model for dense granular flows down bumpy inclines. Phys-656

ical Review 67, 061303.657

Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.,658

2010. Erosion and mobility in granular collapse over sloping beds. Journal659

of Geophysical Research 115, F03040.660

Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E.,661

Aubertin, A., Pirulli, M., 2005. On the use of Saint-Venant equations662

for simulating the spreading of a granular mass . Journal of Geophysical663

Research 110, B09103.664

Manning, R., 1895. On the flow of water in open channels and pipes. Trans-665

actions of the Institution of Civil Engineers of Ireland 20, 161–207.666

Moretti, L., Mangeney, A., Capdeville, Y., Stutzmann, E., Huggel, C.,667

Schneider, D., Bouchut, F., 2012. Numerical modeling of the Mount Steller668

landslide flow history and of the generated long period seismic waves. Geo-669

physical Research Letters 39, L16402.670
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