000130595 001__ 130595
000130595 005__ 20240126184245.0
000130595 0247_ $$2doi$$a10.1016/j.jcp.2016.04.040
000130595 0248_ $$2sideral$$a135331
000130595 037__ $$aART-2016-135331
000130595 041__ $$aeng
000130595 100__ $$0(orcid)0000-0002-9361-4794$$aDe Corato, M.
000130595 245__ $$aFinite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes
000130595 260__ $$c2016
000130595 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130595 5203_ $$aIn this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.
000130595 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130595 590__ $$a2.744$$b2016
000130595 591__ $$aPHYSICS, MATHEMATICAL$$b3 / 55 = 0.055$$c2016$$dQ1$$eT1
000130595 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b26 / 105 = 0.248$$c2016$$dQ1$$eT1
000130595 592__ $$a2.048$$b2016
000130595 593__ $$aPhysics and Astronomy (miscellaneous)$$c2016$$dQ1
000130595 593__ $$aComputer Science Applications$$c2016$$dQ1
000130595 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130595 700__ $$aSlot, J.J.M.
000130595 700__ $$aHütter, M.
000130595 700__ $$aD'Avino, G.
000130595 700__ $$aMaffettone, P.L.
000130595 700__ $$aHulsen, M.A.
000130595 773__ $$g316 (2016), 632-651$$pJ. comput. phys.$$tJournal of Computational Physics$$x0021-9991
000130595 8564_ $$s1203951$$uhttps://zaguan.unizar.es/record/130595/files/texto_completo.pdf$$yPostprint
000130595 8564_ $$s1095323$$uhttps://zaguan.unizar.es/record/130595/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130595 909CO $$ooai:zaguan.unizar.es:130595$$particulos$$pdriver
000130595 951__ $$a2024-01-26-18:13:02
000130595 980__ $$aARTICLE