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Abstract

In this paper, we investigate the dynamics of a model spherical microorganism, called squirmer, suspended in a viscoelastic fluid undergoing
unconfined shear flow. The interplay of shear flow, fluid viscoelasticity, and self-propulsion on the squirmer orientational dynamics is addressed.
In the limit of weak viscoelasticity, quantified by the Deborah number, an analytical expression for the squirmer angular velocity is derived
by means of the Generalized Reciprocity Theorem. Direct finite element simulations are carried out to study the squirmer dynamics at larger
Deborah numbers. Our results show that the orientational dynamics of active microorganisms in a sheared viscoelastic fluid greatly differs
from that observed in Newtonian suspensions. Fluid viscoelasticity leads to a drift of the particle orientation vector towards the vorticity axis or
the flow-gradient plane depending on the Deborah number, the relative weight between the self-propulsion velocity and the flow characteristic
velocity, and the type of swimming. Generally, pullers and pushers show an opposite equilibrium orientation. The results reported in the present
paper could be helpful in designing devices where separation of microorganisms, based on their self-propulsion mechanism, is obtained.

1 Introduction

Suspensions of swimming microorganisms have excited much
interest over the last few decades due to their importance in
medicine1, ecology2, and in technological applications3. As
a matter of fact, the hydrodynamics of active suspensions is
central in many recent fundamental studies4–6.

Much effort, indeed, has been devoted to understanding
the propulsion mechanism of single organisms or the collec-
tive dynamics of self-propelling particles through a Newtonian
medium under quiescent conditions7–11. Interesting phenom-
ena, however, have been observed when active suspensions are
subjected to external flows. For instance, experiments12,13 and
simulations14 have shown that spermatozoa experience the so-
called rheotaxis, that is the tendency of swimming upstream
when subjected to external flows. Active stresses generated
by the swimming microorganisms also significantly impact on
the rheology of the suspension15,16.

In many situations of interest, small organisms swim
through biological fluids such as mucus which display highly
viscoelastic properties17. The effect of a quiescent viscoelas-
tic fluid on the locomotion of microorganisms has recently
received much attention in the literature and a comprehen-
sive review on the topic can be found in a recent book chap-
ter18. Most of the works have investigated the effect of vis-
coelasticity on the swimming velocity and efficiency of active
particles19–23 or the dynamics of ciliated organisms close to
boundaries24–26. Much less is, instead, known when an ex-
ternal flow is applied. In this regard, we are aware of only
two recent works where the dynamics of active microorgan-
isms suspended in a viscoelastic fluid undergoing vortical27

and Poiseuille flow28 is investigated. In both works, the sus-
pending medium is modelled by the so-called second-order
fluid (SOF) constitutive equation which is valid for slow and
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slowly varying flow conditions. Nevertheless, interesting phe-
nomena such as the emergence of well-defined patterns in vor-
tical flow27 and an increasing tendency of swimming upstream
in Poiseuille flow28 have been reported.

As the characteristic flow rates increase, viscoelastic effects
become relevant and more complex microorganism dynamics
are expected. The dramatic effect of fluid viscoelasticity is al-
ready evident in passive suspensions where peculiar phenom-
ena occur as compared to the Newtonian case29. Of course,
the addition of a self-propulsion velocity would even more
complicate the dynamics of the suspended particles.

Aim of the present work is to investigate the complex in-
terplay between swimming mechanism, viscoelasticity and
an external flow field on the dynamics of microorganisms.
Specifically, we present a detailed study on the dynamics of
a spherical ciliated microorganism suspended in a viscoelas-
tic fluid undergoing unbounded shear flow. We first perform
a perturbative analysis at small Deborah numbers (defined as
the product between the fluid relaxation time and the applied
shear rate), for which the rotational velocity of the microor-
ganism can be analytically computed. Numerical simulations
are, then, carried out to investigate the particle dynamics at
high Deborah numbers.

The present work is organized as follows: in section 2, we
present the model we used for the microswimmer; the equa-
tions governing the problem under investigation are reported
in section 3; the numerical method is briefly discussed in sec-
tion 4; in sections 5 and 6, the results obtained from the per-
turbative analysis (low Deborah numbers) and numerical sim-
ulations (high Deborah numbers) are presented, respectively.
Finally, conclusions are drawn in section 7.

2 Microorganism model

One of the most common mechanisms exploited by microor-
ganisms for generating propulsion is the undulatory movement
of many small flagella, called cilia, positioned on the organ-
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ism surface. Examples of these ciliated microorganisms are
Paramecium, Volvox, or Opalina. The prediction of the lo-
comotion of a microorganism through an accurate modeling
of the beating of a large number of cilia on its surface is ex-
tremely difficult. It is intuitive, indeed, that an accurate de-
scription of the motion of all the flexible cilia is not feasible,
especially if one is interested in the dynamics of the entire
microorganism and not in the dynamics of a single cilium.
To overcome this difficulty, different simplifying models have
been proposed that take into account the motion of many cilia
on the microorganism surface (or even an actual surface dis-
tortion). In this work, we choose the model introduced for the
first time by Lighthill30 and Blake31, and widely used in lit-
erature32–36. In this model, actual cilia motions are replaced
by a steady tangential ‘slip velocity’ on a rigid boundary rep-
resenting the microorganism surface. The slip velocity is, in
fact, a greatly simplified modeling of the time-averaged cil-
iary propulsion37. In the rest of the paper, we will refer to this
model microorganism as a ‘squirmer’.

In the context of the Lighthill-Blake model, we consider the
squirmer as a sphere of radius R propelling along a direction
denoted by an orientation vector p through axisymmetric and
time-independent surface tangential velocities. The velocity
on the surface of the squirmer is given by:

us =

∞∑
n=1

−2

n (n+ 1)
BnP

′
n

(p · r
R

)
p ·
(
I − rr

R2

)
(1)

where P ′n is the derivative of the nth Legendre polynomial
with respect to its argument, and r is the position vector of a
point on the squirmer surface computed from its center of vol-
ume. In the present work, we consider Bn = 0 for n > 3.
Thus, the specification of the coefficients B1, B2, and B3

completely determines the type of swimming. Although al-
most all the previous works on a similar subject limit the ex-
pansion to n = 2, we investigate also the effect of B3 in view
of the recent results on the relevance of higher modes on the
swimming of microorganisms in shear-thinning fluids38. A
squirmer with a positive ratio B2

B1
is called puller, as its maxi-

mum tangential velocity is on the frontal hemisphere; in other
words, a puller generates propulsion from the front. Squirm-
ers with a negative ratio B2

B1
are called pushers, as they gen-

erate propulsion from the rear. When B2 = 0, the organ-
ism is called neutral. The B3 mode is responsible for a force
quadrupole in the fluid and can be used to model fore-aft sym-
metric differences in cilia beating. In a quiescent Newtonian
fluid, the translational velocity of the squirmer is simply equal
to 2

3B1p as shown in the original paper of Blake31. Note that
a squirmer has no self-induced rotational velocity as the slip
velocity in Eq. (1) through which the microorganism propels
is axisymmetric.

We emphasize that, in view of the explicit time dependency
of the viscoelastic stress constitutive equation, a steady (rather
than a time-dependent) boundary condition on the squirmer
surface may not capture all of the features of a real microor-

Fig. 1 Schematic picture of the problem investigated in this work. A
spherical microorganism of radiusR is swimming in the direction de-
noted by the red vector p, while the fluid is subjected to a shear flow.
The undisturbed (i.e., without the microorganism) velocity profile is
shown on the right.

ganism that swims in a sheared viscoelastic fluid. On the other
hand, we believe that the simple steady slip velocity adopted
in the present work allows to understand the main character-
istics of the microorganism dynamics when an external shear
flow is coupled with self-propulsion and viscoelasticity, with a
relatively small number of parameters to model the swimming
velocity. (Notice that a time-dependent slip velocity would
add at least one frequency for each mode and a shift angle.)
Of course, the approximation of using a steady model is more
and more accurate if the (long) time scale over which the ori-
entation and position of the squirmer evolves is well-separated
from the (short) time scale of the boundary actuation.

3 Governing equations

In this work, we study the dynamics of a spherical microorgan-
ism of radius R suspended in a viscoelastic fluid undergoing
an unbounded shear flow. The system under investigation is
schematically depicted in Fig. 1. We assume that the distance
H between the walls and the distance between the particle and
the walls are much larger than the microorganism radius R.
A Cartesian reference frame is selected with x, y and z the
directions of flow, gradient and vorticity, respectively; with
this choice, the undisturbed flow field far from the squirmer is
u∞ = (ux,∞, uy,∞, uz,∞) = (γ̇y, 0, 0) where γ̇ is the shear
rate. The microorganism swimming direction is denoted by
the vector p.

In the low-Reynolds number regime, the equations describ-
ing the fluid motion are the continuity and the momentum bal-
ance equations:

∇ · u = 0 (2)

∇ ·Σ = 0 (3)

with u the fluid velocity and Σ the total stress tensor:

Σ = −pI + ηs
(
∇u+∇uT

)
+ τ (4)
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In Eq. (4), p is the pressure, I is the unity tensor, ηs is the vis-
cosity of a Newtonian solvent, and τ is the viscoelastic stress
tensor, for which a constitutive equation has to be specified. In
the present work, we consider the Giesekus model as constitu-
tive equation for the viscoelastic stress tensor, which is a good
model for many dilute and semi-dilute polymer solutions39:

λ
∇
τ +

αλ

ηp
τ · τ + τ = ηp

(
∇u+∇uT

)
(5)

In the above equation, ηp is the polymer viscosity, λ the fluid
relaxation time, and the dimensionless parameter α is the so-
called ‘mobility parameter’. For α = 0, the Giesekus model
reduces to the Upper-Convected Maxwell model39 that pre-
dicts a viscosity constant with the shear rate and a non-zero
first normal stress difference N1 = Σxx − Σyy. For α > 0,
the Giesekus model predicts shear-thinning (i.e., a decreasing
viscosity with increasing the shear rate), a non-zero first and
second normal stress difference N2 = Σyy − Σzz. The sym-
bol (∇) in Eq. (5) denotes the upper-convected time derivative
defined as:

∇
τ ≡ ∂τ

∂t
+ (u · ∇) τ −∇u · τ − τ · ∇uT (6)

The boundary condition far from the swimmer is given by:

u = u∞ (7)

with u∞ the externally imposed shear flow. Furthermore,
the boundary condition at the surface of the microorganism
is given by:

u = U+ω×r+

3∑
n=1

−2

n (n+ 1)
BnP

′
n

(p · r
R

)
p ·
(
I − rr

R2

)
(8)

where U and ω are the translational and rotational velocities
of the swimmer (to be determined), and r = x −X with x
the position vector of a point of the spherical surface and X
the position vector of the particle centroid.

To close the hydrodynamic problem, we need to consider
the force and torque balances on the squirmer surface. Assum-
ing negligible inertia, the squirmer is force- and torque-free:

F =

∫
∂P

Σ · n dS = 0 (9)

T =

∫
∂P

r × (Σ · n) dS = 0 (10)

with n the outwardly directed unit normal vector to the parti-
cle boundary. Notice that, for a spherical particle, n = r/R.

Finally, an initial condition for τ is required. We assume a
stress-free condition, i.e., that the stress is zero everywhere in
the fluid at the initial time: τ |t=0 = 0.

The solution of the just presented equations gives the time
evolution of the fields u, p, and τ as well as the time evo-
lution of the microorganism rotational velocity ω and of the

swimming velocity U . Once the translational and rotational
velocities have been computed, the evolution of the swimmer
centroid and orientation vector can be readily calculated from
the following kinematic equations:

Ẋ(t) = U , X|t=0 = X0 (11)

ṗ(t) = ω × p(t), p|t=0 = p0 (12)

where X0 and p0 are the initial particle position and orienta-
tion. Notice that, since we consider an unbounded domain, the
evolution of the particle center of volume does not affect the
particle kinematic quantities, i.e., at any position within the
domain, the squirmer always ‘feels’ the same shear flow field.

It is convenient to make the above equation dimensionless.
We select the inverse of the imposed shear rate γ̇−1 as char-
acteristic time, the radius R of the swimmer as characteristic
length, and η0γ̇ as characteristic stress where η0 = ηs + ηp is
the zero-shear viscosity. By using these characteristic quan-
tities, the governing equations in dimensionless form can be
readily obtained. The continuity and the momentum balances
are:

∇ · u∗ = 0 (13)

∇ ·Σ∗ = 0 (14)

The total stress tensor is expressed as:

Σ∗ = −p∗I + (1− ηr)
(
∇u∗ +∇u∗T

)
+ τ ∗ (15)

and the constitutive equation is given by:

De

( ∇
τ ∗ +

α

ηr
τ ∗ · τ ∗

)
+ τ ∗ = ηr

(
∇u∗ +∇u∗T

)
(16)

The boundary condition at infinity is:

u∗ = u∗∞ (17)

whereas the boundary condition on the microorganism surface
is:

u∗ = U∗ + ω∗ × r∗−

B∗1

[
P ′1 (p · r∗) +

β

3
P ′2 (p · r∗) +

γ

6
P ′3 (p · r∗)

]
p·(I − r∗r∗)

(18)

the force and torque free conditions read as:

F ∗ =

∫
∂P

Σ∗ · n dS∗ = 0 (19)

T ∗ =

∫
∂P

r∗ × (Σ∗ · n) dS∗ = 0 (20)

Finally, the kinematic equations are:

Ẋ
∗
(t∗) = U∗, X∗|t∗=0 = X∗0 (21)
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ṗ(t∗) = ω∗ × p(t∗), p|t∗=0 = p0 (22)

All the starred symbols denote dimensionless quantities. In
the equations above, the following dimensionless numbers ap-
pear: the Deborah number De = λγ̇ that is the ratio between
the fluid and flow characteristic times; B∗1 = B1

γ̇R that repre-
sents the ratio between the microorganism and flow charac-
teristic velocities; β = B2

B1
that denotes the type of squirmer

(neutral, puller or pusher); γ = B3

B1
that is the ratio between

the third and the first mode of the Blake’s expansion. A New-
tonian fluid with constant viscosity η0 is obtained by setting
De = 0, whereas a ‘passive’ sphere undergoing shear flow in
a viscoelastic fluid is obtained for B∗1 = 0. Realistic values of
β range between −1 and 140,41. In this paper, we consider the
three kinds of microorganisms by setting β = 0 for the neu-
tral, β = 1 for the puller and β = −1 for the pusher. Experi-
mental results on ciliated organisms have shown that the third
mode is generally lower than the first one41. In this work, we
selected values of γ in the range [-1,1]. Further rheological di-
mensionless parameters are the mobility parameter α and the
viscosity ratio ηr = ηp/η0; unless otherwise specified, we set
α = 0.2 (denoting a shear-thinning fluid) and ηr = 0.91. Fi-
nally, the last dimensionless parameter to be specified is the
initial orientation p0.

In what follows, all the symbols refer to dimensionless
quantities. To simplify the notation, the stars are omitted.

4 Numerical method

The microorganism orientational dynamics at non-vanishing
Deborah numbers is investigated by direct numerical simula-
tions. The governing equations (2)-(6) with boundary condi-
tions in Eqs. (7)-(8) and the force- and torque-free conditions
in Eqs. (9)-(10) are solved by the finite element method. A
tetrahedral, boundary-fitted mesh is used to achieve high ac-
curacy of the solution around the particle where large spatial
variations of the velocity (and, in turn, of the stress field) are
expected due to the condition in Eq. (8). Meshes are gen-
erated using Gmsh42. To facilitate the numerical solution, the
equations are solved in a reference frame moving with the par-
ticle centroid. In this way, the initial mesh can be used for the
whole computation. The computational domain used in the
simulations consists of a large sphere including the spherical
particle, and with center coinciding with the particle barycen-
ter. On the external spherical surface, the unperturbed shear
flow conditions (properly modified to account for the moving
reference frame) are imposed. To neglect any artificial interac-
tion between the particle dynamics and the far-field velocity,
the radius of the domain is selected much larger than the par-
ticle radius.

A two-step decoupled formulation is adopted whereby the
momentum and continuity equations are decoupled from the
constitutive equation. At each time level, the stress field is first
updated by solving the constitutive equation where the veloc-

ity field is taken from the previous step. Then, the viscoelastic
stress tensor just computed is used as known force term in the
momentum balance which is solved together with the conti-
nuity equation and the force- and torque-free conditions to get
the velocity and pressure fields, as well as the particle kine-
matic quantities. For the constitutive equation, a SUPG for-
mulation43 is adopted with a log-conformation representation
to improve the numerical stability44,45. The force- and torque-
free conditions in Eqs. (9)-(10) are imposed through Lagrange
multipliers46, and the unknown particle translational U and
angular ω velocities are automatically computed by solving
the augmented system of equations. Once the angular velocity
is computed, the particle orientation can be updated through
Eq. (12). This is done by using quaternions47,48, which eas-
ily allow to track the orientation of bodies in space47. The
adopted numerical code has been validated in several previ-
ous works dealing with the dynamics of passive particles in
viscoelastic fluids46,48. More details on the adopted numerical
procedure, the weak formulation of the governing equations
and the solver can be found elsewhere46,48.

Mesh and time convergence has been checked for all the
simulations presented in this work. A dimensionless time step
size ∆t = 0.01 and a mesh with about 1500 triangular ele-
ments on the particle surface and 30000 tetrahedral elements
in the domain suffices to assure convergence for the most of
the simulations. As expected, the most critical cases are found
for the highest values of the parameters B∗1 , De, and (the ab-
solute value of) γ. Furthermore, time and spatial convergence
for pushers requires lower time step sizes and finer meshes
on the particle surface as compared with pullers and neutrals.
For these cases, the dimensionless time step size needs to be
reduced to ∆t = 0.005 and a mesh with about 3000 trian-
gular elements on the particle surface and 50000 tetrahedral
elements in the domain is required.

5 Perturbative analysis

In this section, we report the results on the squirmer rotational
dynamics at low Deborah numbers obtained by the pertur-
bative analysis. The detailed procedures are reported in the
Appendices. Briefly, we seek a solution of Eqs. (13)-(16)
with boundary conditions Eqs. (17)-(18), plus the force- and
torque-free conditions Eqs. (19)-(20) in the limit of De � 1,
i.e, for a weakly viscoelastic fluid. The perturbative analysis
of non-Newtonian effects on the squirmer motion is performed
withDe as the expansion parameter. We therefore write all the
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Fig. 2 Plot of the z-component of the rotational velocity versus the positive angle θ between the flow direction and the orientation vector, for
three different values of De and for B∗

1 = 1. Solid lines represent the values obtained from our direct numerical simulations, dashed lines are
the values given by Eq. (26).

unknowns as regular expansions in De, that is to say:

u = u0 +Deu1 +O
(
De2

)
(23a)

p = p0 +Dep1 +O
(
De2

)
(23b)

Σ = Σ0 +DeΣ1 +O
(
De2

)
(23c)

τ = τ 0 +De τ 1 +O
(
De2

)
(23d)

ω = ω0 +Deω1 +O
(
De2

)
(23e)

U = U0 +DeU1 +O
(
De2

)
(23f)

In Appendix B, we show that the first-order rotational ve-
locity ω1 can be analytically computed without the explicit
knowledge of the first-order velocity, pressure, and stress
fields, by means of the Generalized Reciprocity Theorem49

from Stokes flow theory. To this aim, we only need to com-
pute the zeroth-order (i.e., Newtonian) fields. Onceω0 andω1

are known, the evolution of the orientation vector, accurate to
first-order in De, is then obtained from Eq. (22) with the total
rotational rate given by Eq. (23e).

5.1 Zeroth-order solution

The zeroth-order problem is simply the motion of a squirmer
in a Newtonian fluid of total viscosity η0 under shear flow.
Given the linearity of the Stokes equations, the solution to the
zeroth-order problem is completely determined by the super-
position of the solution for the motion of a squirmer with an
arbitrary orientation p in a quiescent Newtonian fluid50, and
that for a ‘passive’ sphere under shear flow in a Newtonian
fluid51.

The derivation of the zeroth-order fields is worked out in
the Appendix A. We want to emphasize here that, regardless
of the kind of microorganism (neutral, pusher or puller), the
dimensionless rotational velocity is simply equal to the rota-

tional velocity of a ‘passive’ sphere in a shear flow, that is:

ω0 = −1

2
k (24)

with k the z-axis unit vector. Indeed, in a Newtonian fluid, the
microorganism rotates because of the imposed external flow
only and it has no self-induced rotation rate.

5.2 First-order solution

Once the zeroth-order (i.e., Newtonian) fields are known, we
can compute the first-order rotation rate ω1. The details of the
derivation are reported in Appendix B. The final expression
is:

ω1 = −1

2
B∗1ηrβ

[
−px pzi+ py pzj +

(
p2x − p2y

)
k
]

(25)

where i and j are the x-axis and y-axis unit vectors, respec-
tively. It is interesting to note that the first-order rotational rate
depends linearly on β, similarly to what found by De Corato
et al.19 for the velocity of an unconfined squirmer in a weakly
viscoelastic fluid. Interestingly, Eq. (25) shows that ω1 does
not depend on the constitutive parameter α and on the third
mode parameter γ.

The total rotational velocity is thus given by:

ω = −1

2
k − 1

2
DeB∗1ηrβ[−px pzi+

py pzj +
(
p2x − p2y

)
k] +O

(
De2

)
(26)

A neutral squirmer (β = 0) behaves, in a weakly viscoelas-
tic fluid under shear flow, in the same way it would do in a
Newtonian fluid. Note also that, by setting B∗1 = 0, the ro-
tational velocity of a ‘passive’ sphere in a weakly viscoelastic
fluid, which is unchanged from the Newtonian one46,52,53, is
recovered.
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Fig. 3 Time evolution of the components of the orientation vector p for a puller (a) and a pusher (b) obtained from our perturbative solution.
The solid lines represent the solution for De = 0.1 and B∗

1 = 1. The dashed lines refer to the squirmer dynamics in a Newtonian suspending
fluid (De = 0).

As a first step, we assess the range of De-values for which
our perturbative analysis is applicable. In this regard, we con-
sider squirmers with initial orientation belonging to the xy-
plane (i.e, the shear plane). Indeed, in this validation case,
the microorganism keeps tumbling in the shear plane (as this
is a plane of symmetry), displaying a single non-zero compo-
nent of the rotational velocity, namely the z-component ωz .
We compare ωz as obtained from Eq. (26) with that obtained
from direct numerical simulations. In Fig. 2, we report ωz as
a function of the (positive) angle θ between the flow direc-
tion and the orientation vector for three different values of the
Deborah number De = 0.05, De = 0.1, and De = 0.15. For
De = 0.05, the analytical solution in Eq. (26) is nearly indis-
tinguishable from the numerical results for both the pusher and
puller. As De increases, some deviations appear although the
perturbative solution quantitatively well describes the numer-
ical predictions. The agreement between the analytical and
numerical solutions depicted in Fig. 2 also rules out possible
instabilities that may arise in weakly nonlinear expansions of
viscoelastic fluids as discussed by Morozov and Spagnolie54.

The evolution of the orientation of the microorganism in a
weakly viscoelastic shear flow can be obtained from Eq. (12)
with ω given by Eq. (26). An investigation of the equilibrium
points (ṗ(t) = 0) reveals that the only physically admissible
solution is pz = 1 that is the vorticity axis. To determine
the stability of this equilibrium point (i.e., the microorgan-
ism aligns to or is repelled from the vorticity axis), we solved
Eq. (12) for different initial orientations out of the shear flow
plane and for several choices of the rheological parameters.
Typical trajectories obtained for pullers and pushers are shown
in Figures 3a and 3b, respectively, for a selected set of param-
eters. In these figures, the three components of the orientation
vector are reported as a function of time for a squirmer sus-
pended in a Newtonian (dashed lines) and viscoelastic (solid
lines) fluid. First of all, it can be readily observed that vis-

coelasticity slightly reduces the frequency at which the mi-
croorganism tumbles around the vorticity. Nevertheless, simi-
larly to the Newtonian case, the trends for the viscoelastic sus-
pending fluid are periodic meaning that the first-order pertur-
bative solution does not predict any drift of the microorganism
orientation towards a preferential orbit. To better visualize the
squirmer orientational dynamics, in Fig. 4 the phase diagram
py vs. px for the same set of parameters and initial conditions
used in Fig. 3 is shown. The curve for a puller and a pusher in
a viscoelastic fluid are shown with blue and red lines, respec-
tively. In the same figure, we also show the case of a swimmer

Fig. 4 Phase diagram of py vs. px for a puller (blue line) and a
pusher (red line) suspended in a viscoelastic fluid with De = 0.1
andB∗

1 = 1 obtained from our perturbative solution. The same initial
conditions as in Fig. 3a for the puller and in Fig. 3b for the pusher
are used. The trend for a Newtonian suspending fluid (green curve)
is also reported.
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in a Newtonian fluid (green line). We clearly see that weak
viscoelastic effects change the shape of the closed orbit de-
scribed by the squirmer orientation vector, without, however,
qualitatively changing the behavior of its orientational dynam-
ics. Hence, we conclude that an orientational drift (if any) to-
wards some stable equilibrium solution would require expan-
sions to higher-orders in De, involving lengthy and cumber-
some calculations. For this reason, the analysis at high Debo-
rah numbers, with specific interest in the orientational drift, is
performed through direct numerical simulations as discussed
in the following section.

6 Numerical results

The orientational dynamics of an isolated microorganism sus-
pended in a sheared unconfined viscoelastic fluid at non-
vanishing Deborah numbers is investigated in this section. For
all the three type of squirmers (neutral, puller and pusher), we
perform numerical simulations by varying the Deborah num-
ber De in the range De ∈ [0.15, 2.0] and the dimensionless
parameter B∗1 in the range B∗1 ∈ [0.2, 2]. The dimension-
less constitutive parameters are kept constant as discussed in
section 3. For each set of parameters, we select different ini-
tial orientations in order to check the existence of multiple
equilibrium orientations. Specifically, we choose eight differ-
ent initial orientations in the semi-space z > 0 (for symme-
try we can limit to one semi-space): p0 = (±0.8, 0, 0.6),
p0 = (0,±0.8, 0.6), p0 = (±0.4, 0, 0.9165) and p0 =
(0,±0.4, 0.9165). Thus, the particle is initially oriented at
different distances from the vorticity axis, and along the nega-
tive and positive directions of the flow and gradient axes. The
results for the neutral, puller and pusher squirmers with γ = 0
are reported in the next three subsections. In the last subsec-
tion, the effect of the third mode (γ 6= 0) on the dynamics of
the three kinds of microorganisms is shown.

6.1 Neutral squirmer

In Fig. 5, we report the time evolution of the components of
the orientation vector p for a neutral squirmer with De = 1
and B∗1 = 1. The initial orientation is selected with p0
on the flow-vorticity plane near the flow direction. We ob-
serve damped oscillations towards the equilibrium solution
(px, py, pz) = (0, 0, 1), corresponding to a drift of the mi-
croorganism orientation vector towards the vorticity axis. We
repeated the simulations by varying the initial orientation as
previously discussed and always found the same long-time
regime. Hence, we conclude that the vorticity axis is a stable
equilibrium point regardless of the initial orientation p0. The
orientation dynamics can be better visualized through a phase
diagram showing the y−component of the orientation vector
vs. its x−component (see right panel of Fig. 5). The trend
describes circular spiraling trajectories towards the origin of
the diagram that represents the vorticity axis. We would like
to remark that the just presented dynamics is different from
that observed in a Newtonian suspending fluid where the or-
bits described by the orientation vector are periodic and no
drift is found.

Further simulations have been carried out to investigate the
influence of the parameters De and B∗1 . We found that, by de-
creasing these two parameters, the drift dynamics slows down.
Indeed, asDe is decreased, the system tends to the Newtonian
case where no drift occurs. This is also confirmed by the per-
turbative analysis presented in the previous section where no
drift is found at first-order in De. As B∗1 goes down, the case
of a passive spherical particle in a viscoelastic fluid is recov-
ered where, again, there is no drift (the only non-zero compo-
nent of the angular velocity is that around the vorticity axis).
Despite variations in De or B∗1 affect the transients, the long-
time regime remains the same, i.e., the vorticity axis, for any
set of parameters in the investigated range.

Our numerical results for a neutral squirmer are summa-
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Fig. 5 Left: time evolution of the components of the orientation vector p for a neutral squirmer (β = 0). The dimensionless parameters are
De = 1 and B∗

1 = 1. The initial orientation vector is p0 = (px, py, pz) = (−0.8, 0, 0.6). Right: phase diagrams py vs. px of the orbit
depicted in the left panel. The red circle denote the initial condition.
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Fig. 6 (a) Map of the equilibrium solutions for the orientation vector of a neutral squirmer (β = 0). Filled symbols denote alignment along
the vorticity axis. (b) Magnitude of the particle relative translational velocity as a function of the Deborah number for three different values of
B∗

1 . (c) Magnitude of the particle angular velocity as a function of the Deborah number for three different values of B∗
1 . The passive particle

case B∗
1 = 0 is also reported (black symbols/line). The data in panels (b) and (c) are normalized by the translational and angular velocity

of a squirmer in an unconfined sheared Newtonian fluid and refer to the long-time regime, i.e., once the particle has reached the equilibrium
orientation.

rized in Fig. 6a where a map of the equilibrium solutions is
reported as a function of De and B∗1 . The black circle in this
figure denotes vorticity alignment that, as just discussed, is
found for any combination of De and B∗1 investigated in this
work. It is worth emphasizing that, for De < 0.15, the drift
towards or away the vorticity axis is found to be negligible
and, then, the corresponding data are not reported in Fig. 6a.

In Fig. 6b and Fig. 6c, we show the trends of the particle
kinematic quantities when the microorganism attains the equi-
librium orientation as a function of the Deborah number and
for three different values of the parameter B∗1 . Specifically,
Fig. 6b reports the magnitude of the relative translational ve-
locity of the microorganism |U rel| = |U − u∞| (i.e., the
particle translational velocity without the background shear
flow field). Fig. 6c shows the magnitude of the microorgan-
ism rotational velocity |ω|. Both velocities are normalized
by the corresponding translational and rotational velocities
of a squirmer in an unbounded sheared Newtonian fluid, de-
noted by UN = 2/3B1 and ωN = γ̇/2, respectively. Since
a neutral squirmer always aligns along the vorticity direction,
the magnitudes of the translational and angular velocities are
|Uz| and |ωz|, respectively. The angular velocity of a passive
spherical particle (B∗1 = 0) in a sheared viscoelastic fluid is
also shown in Fig. 6c (black symbols and lines). In agree-
ment with previous calculations for active particles in a quies-
cent viscoelastic fluid22, fluid viscoelasticity slows down the
squirmer translational velocity as compared to the Newtonian
case. The trends also show a decreasing slope asDe increases,
again in agreement with the results of Zhu et al.22 where the
existence of a minimum in the normalized translational ve-
locity as a function of the Weissenberg number (defined as
Wi = λB1/(2R) = DeB∗1/2) was reported. Similarly to
a passive sphere, also the squirmer rotation rate slows down

as fluid viscoelasticity increases. However, higher angular ve-
locities are found for larger values of the parameter B∗1 , i.e.,
the squirmer rotates faster around the vorticity axis as the rel-
ative weight between the self-propulsion velocity and the flow
characteristic velocity is higher.

6.2 Puller squirmer

Let us consider now the case of a puller with β = 1. As for
the neutral squirmer, we carried out simulations for different
combinations of De and B∗1 , and for several initial orienta-
tions. Similarly to the neutral microorganism, no effect of the
initial orientation is found. Hence, we only present results for
a single initial orientation.

Fig. 7 reports the dynamics of the orientation vector of
a puller swimmer with the same parameters (De = 1 and
B∗1 = 1) and initial condition as in Fig. 5. As for the neu-
tral squirmer, the orientation vector drifts towards the vortic-
ity axis following a transient characterized by damped oscilla-
tions. The phase diagram shown on the right panel of Fig. 7,
however, reveals that the spiraling orbit deforms from circular
to elliptical shape, with major axis crossing the first and third
quadrant.

By changing the parameters De and B∗1 , however, a quali-
tative different dynamics is found. For instance, for De = 1
and B∗1 = 0.2, both px and py oscillate with increasing ampli-
tude as time goes on, up to spanning the whole range [−1, 1].
As a consequence, the trend of pz tends to zero at long times.
Therefore, the equilibrium solution is a ‘tumbling’ of the ori-
entation vector on the flow-gradient plane, around the vortic-
ity axis. In conclusion, by decreasing the parameter B∗1 , the
vorticity axis changes stability. We also found a much slower
dynamics for B∗1 = 0.2 as compared to the case B∗1 = 1 (for
B∗1 = 0.2, in 1000 dimensionless time units the equilibrium
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Fig. 7 Left: time evolution of the components of the orientation vector p for a puller (β = 1). The dimensionless parameters are De = 1 and
B∗

1 = 1. The initial orientation vector is p0 = (px, py, pz) = (−0.8, 0, 0.6). Right: phase diagrams py vs. px of the orbit depicted in the left
panel. The red circle denotes the initial condition.

orientation is not reached whereas 500 time units are sufficient
for the case depicted in Fig. 7).

The combined effect ofDe andB∗1 on the long-time regime
is depicted in the solution map of Fig. 8a where open symbols
denote that the flow-gradient plane is a stable equilibrium so-
lution. From the diagram we observe that, for De ≥ 1.5, the
orientation vector of a puller always drifts towards the vortic-
ity axis, whatever is the value of B∗1 . On the other hand, in
case of De = 0.15, for all the B∗1 investigated, the orienta-
tion vector of a puller moves towards the flow-gradient plane
and the microorganism tumbles around the vorticity axis. No-
tice that this result is at variance with the perturbative solu-
tion derived in the previous section meaning that, already for

De = 0.15, higher-order terms in De are required to predict
the drift. For Deborah numbers ranging from 0.15 to 1.5, tum-
bling in the shear plane or alignment of the puller orientation
vector towards the vorticity axis occur at low and high B∗1 -
values, respectively.

In Fig. 8b and Fig. 8c, the equilibrium translational and an-
gular velocities of the puller squirmer are shown as a function
of the Deborah number and for three different values of the
parameter B∗1 . As for the neutral squirmer, the filled sym-
bols represent the velocities attained when the squirmer aligns
along the vorticity direction, corresponding to the closed cir-
cles in Fig. 8a. Now, however, for low values of De and B∗1 ,
the squirmer tumbles around the z−axis. In this case, the mag-
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Fig. 8 (a) Map of the equilibrium solutions for the orientation vector of a puller (β = 1). Filled symbols denote alignment along the vorticity
axis whereas open circles denote tumbling around the vorticity axis. (b) Magnitude of the particle relative translational velocity as a function
of the Deborah number for three different values of B∗

1 . (c) Magnitude of the particle angular velocity as a function of the Deborah number
for three different values of B∗

1 . The passive particle case B∗
1 = 0 is also reported (black symbols/line). The data in panels (b) and (c) are

normalized by the translational and angular velocity of a squirmer in an unconfined sheared Newtonian fluid and refer to the long-time regime,
i.e., once the particle has reached the equilibrium orientation. As in panel (a), closed and open circles refer to alignment along the vorticity axis
and tumbling around the vorticity axis, respectively. In this latter case, the velocities are computed as an average over a period.
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Fig. 9 Left: time evolution of the components of the orientation vector p for a pusher (β = −1). The dimensionless parameters are De = 1
and B∗

1 = 1. The initial orientation vector is p0 = (px, py, pz) = (0.4, 0, 0.9165). Right: phase diagrams py vs. px of the orbit depicted in
the left panel. The red circle denotes the initial condition.

nitude of the particle relative translational velocity in Fig. 8b
is given by |U rel| =

√
U2
x + (Uy − γ̇y)2, whereas the magni-

tude of the angular velocity is again |ω| = |ωz|. Since both
velocities are periodic, we take the average over a period. Sim-
ilarly to the neutral squirmer, both De and B∗1 slow down the
translational and angular velocities as compared to the New-
tonian case. A comparison between Fig. 8b and Fig. 6b also
shows that a puller swims slower than a neutral squirmer, in
agreement with previous numerical calculations21.

6.3 Pusher squirmer

In this subsection, we report the results of our numerical sim-
ulations for a pusher squirmer (β = −1). In the left panel of
Fig. 9, the time evolution of the orientation vector components
for De = 1 and B∗1 = 1 are shown. At variance with both
the neutral and puller swimmers, for this set of parameters,
the orientation vector drifts towards the shear plane which is
a stable equilibrium solution. The spiraling orbit depicted in
the right panel of Fig. 9 shows an elliptical shape with major
axis crossing the second and fourth quadrant (thus inverted as
compared to that of a puller in the right panel of Fig. 7). By
decreasing the value of B∗1 , the shear plane becomes unstable
and the vorticity axis becomes an attractor. This is the case,
for instance, by setting De = 1 and B∗1 = 0.2 (not shown).

The overall picture of the long-time orientational dynamics
of the pusher is depicted in the solution diagram of Fig. 10a.
Here, the same notation as before is adopted. At large Deb-
orah numbers (De ≥ 1.5), for all the values of B∗1 consid-
ered, the orientation vector drifts towards the shear plane and
tumbles around the vorticity axis (open symbols in Fig. 10a);
on the other hand, if De = 0.15, a pusher always aligns
to the vorticity (closed symbols in Fig. 10a). As shown in
Fig. 10a, in an intermediate range of the Deborah number
(0.15 < De < 1.5), the stable equilibrium regime depends

onB∗1 , with tumbling and vorticity alignment promoted at low
and high values of this parameter.

Finally, the normalized equilibrium translational and angu-
lar velocities of the pusher squirmer are shown in Fig. 10b
and Fig. 10c as a function of the Deborah number and for
three different values of the parameter B∗1 . The same nota-
tion as in Fig. 8 is adopted. The translational velocity fol-
lows a trend similar to that observed for neutral and puller
particles, decreasing with both De and B∗1 . However, for any
value of these two parameters, the pusher swimming veloc-
ity is always faster than the corresponding velocity of neutral
and puller squirmers. The angular velocity shows a different
trend as compared to neutral and puller particles. Indeed, up
to De = 1.5, higher B∗1 -values slow down the rotation rate.
Only at De = 2, a faster rotation rate is found for increasing
values of B∗1 . However, the maximum variation of the angular
velocity fromB∗1 = 0 toB∗1 = 2 is lower than 5%-6%. Hence,
the effect of B∗1 on the angular velocity for a pusher microor-
ganism in a sheared viscoelastic fluid is relatively weak.

6.4 Effect of the third mode B3

The effect of the third mode B3 through the dimensionless
parameter γ on the particle dynamics is investigated in this
section. Figures 11, 12 and 13 report the simulation results
for the neutral, puller and pusher squirmers, respectively, with
γ varied in the range [−1, 1]. Panels (a) and (b) show the
particle orientational dynamics for (De,B∗1) = (0.5, 0.6)
and (De,B∗1) = (1, 1), respectively. We selected these val-
ues since the corresponding points in the equilibrium solu-
tion maps of a puller (Fig. 8a) and a pusher (Fig. 10a) are
close to the transition between vorticity alignment and tum-
bling on the flow-gradient plane, where a qualitative change
on the rotational dynamics due to γ (if any) should be more
evident. For the sake of clarity, only the z−component of the
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Fig. 10 (a) Map of the equilibrium solutions for the orientation vector of a pusher (β = −1). Filled symbols denote alignment along the
vorticity axis whereas open circles denote tumbling around the vorticity axis. (b) Magnitude of the particle relative translational velocity as a
function of the Deborah number for three different values of B∗

1 . (c) Magnitude of the particle angular velocity as a function of the Deborah
number for three different values of B∗

1 . The passive particle case B∗
1 = 0 is also reported (black symbols/line). The data in panels (b) and

(c) are normalized by the translational and angular velocity of a squirmer in an unconfined sheared Newtonian fluid and refer to the long-time
regime, i.e., once the particle has reached the equilibrium orientation. As in panel (a), closed and open circles refer to alignment along the
vorticity axis and tumbling around the vorticity axis, respectively. In this latter case, the velocities are computed as an average over a period.

orientation vector is shown in these figures. For any investi-
gated set of the parameters, the only two equilibrium solutions
are again vorticity alignment or tumbling on the flow-gradient
plane. Furthermore, different initial orientations do not affect
the long-time solution. Hence, the trends of pz are sufficient to
determine the equilibrium orientation attained by the particle.

The data reported in these figures show that negative (pos-
itive) values of γ tend to slow down (speed up) the drift of
the orientation vector towards the vorticity axis or speed up
(slow down) the drift of p towards the flow-gradient plane.
This is clearly visible for the neutral and puller squirmers

with (De,B∗1) = (1, 1) (Figs. 11b and 12b) where vortic-
ity alignment is reached in times that significantly depend on
γ. A similar effect of γ is also found for a pusher (Fig. 13b)
where the tumbling on the flow-gradient plane is reached at
a higher or lower rate whether γ is negative or positive, re-
spectively. Notably, for the highest γ-value investigated (black
line), the equilibrium dynamics changes from tumbling to vor-
ticity alignment.

The influence of the third mode on the equilibrium orien-
tation is more relevant for the case (De,B∗1) = (0.5, 0.6) re-
ported in panels (a) of the previous figures: the equilibrium
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Fig. 11 (a), (b) z−component of the orientation vector of a neutral squirmer (β = 0) as a function of time for different values of the parameter
γ. The data in panels (a) and (b) refer to (De,B∗

1 ) = (0.5, 0.6) and (De,B∗
1 ) = (1, 1), respectively. The colors in panel (b) correspond to

the same γ-values as reported in panel (a). (c) Magnitude of the particle translational velocity as a function of the parameter γ for the two
sets of (De,B∗

1 ) as in panels (a) and (b). The translational velocities are computed in the moving reference frame and are normalized by
the translational velocity of a squirmer in an unconfined sheared Newtonian fluid and refer to the long-time regime, i.e., once the particle has
reached the equilibrium orientation.
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Fig. 12 (a), (b) z−component of the orientation vector of a puller (β = 1) as a function of time for different values of the parameter γ.
The data in panels (a) and (b) refer to (De,B∗

1 ) = (0.5, 0.6) and (De,B∗
1 ) = (1, 1), respectively. The colors in panel (b) correspond to

the same γ-values as reported in panel (a). (c) Magnitude of the particle translational velocity as a function of the parameter γ for the two
sets of (De,B∗

1 ) as in panels (a) and (b). The translational velocities are computed in the moving reference frame and are normalized by
the translational velocity of a squirmer in an unconfined sheared Newtonian fluid and refer to the long-time regime, i.e., once the particle has
reached the equilibrium orientation.

orientation for the neutral and pusher squirmers switches from
vorticity alignment to tumbling by decreasing γ from 0 to -0.5;
the opposite is observed for a puller by increasing γ from 0 to
0.5. Furthermore, as before, higher and lower γ-values speed
up vorticity alignment and tumbling, respectively. In conclu-
sion, the third mode of the Blake’s expansion can change the
equilibrium orientation attained by the particle, especially for
low values of the parameters De and B∗1 . It is important to
point out, however, that the effect of the parameter γ is de-
coupled from β in the sense that, regardless of the kind of mi-
croorganism, positive or negative γ-values promote vorticity
alignment or tumbling on the flow-gradient plane.

Panels (c) of the previous figures show the normalized
translational velocity of the microorganism for different val-
ues of the parameters γ and for the two sets of (De,B∗1) cor-
responding to the data in panels (a) and (b). For all the three
kinds of squirmer, an increasing translational velocity is found
as γ increases. This effect is more evident for higher values of
De and B∗1 , and for a neutral and a puller squirmer. Finally,
we mention that the equilibrium particle angular velocity is
essentially unaffected by the third mode being the maximum
deviations in the investigated range of γ lower than 1%.
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Fig. 13 (a), (b) z−component of the orientation vector of a pusher (β = −1) as a function of time for different values of the parameter γ.
The data in panels (a) and (b) refer to (De,B∗

1 ) = (0.5, 0.6) and (De,B∗
1 ) = (1, 1), respectively. The colors in panel (b) correspond to

the same γ-values as reported in panel (a). (c) Magnitude of the particle translational velocity as a function of the parameter γ for the two
sets of (De,B∗

1 ) as in panels (a) and (b). The translational velocities are computed in the moving reference frame and are normalized by
the translational velocity of a squirmer in an unconfined sheared Newtonian fluid and refer to the long-time regime, i.e., once the particle has
reached the equilibrium orientation.
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6.5 Discussion

The numerical simulation results presented in the previous
sections clearly show a dramatic effect of fluid viscoelastic-
ity on the squirmer dynamics as compared to the Newtonian
case. Previous works on passive particles in sheared viscoelas-
tic liquids have shown that the first normal stress difference is
the main cause of the different particle dynamics as compared
to Newtonian suspensions. This is the case, for instance, of
the slowing down effect of spherical particles46 and the exis-
tence of preferential orientations of non-spherical particles48.
Since both phenomena have been found for a microorganism
suspended in a viscoelastic fluid under shear, it is likely that
the first normal stresses are the main source of the peculiar
dynamics reported in the present work as well. In particular,
the drift of the orientational vector of pusher microorganisms
towards the vorticity axis or the flow-gradient plane at low
and high Deborah numbers is similar to the orientational dy-
namics of a prolate ellipsoidal passive particle in a sheared
viscoelastic liquid48,55. However, it has to be pointed out that
some relevant features observed for passive spheroids are not
found for spherical active particles: i) a spheroid with major
axis on the xy−plane reaches an equilibrium orientation near
the flow axis if the aspect ratio is sufficiently large whereas a
spherical squirmer tumbles around the z−axis; ii) for interme-
diate De, the major axis of a spheroid reaches an equilibrium
orientation between the vorticity and the flow axis; iii) the lat-
ter solution can coexist with vorticity alignment. The more
complex scenario reported for spheroidal particles might be
attributed to their anisotropic shape and could be observed for
non-spherical active particles.

The rheological properties of the suspending fluid might
also have an important role on the microorganism dynam-
ics. We already mentioned that the first normal stresses are
the main responsible for the observed drift. It is worthwhile
to point out, however, that the Giesekus model employed in
this work also predicts shear-thinning and a non-zero second
normal stress difference in shear flow. Both these two fea-
tures might contribute in some way to the observed particle
dynamics (as happens, for instance, for spheroidal passive par-
ticles48). To clarify the detailed effect of the fluid rheology,
the constitutive parameters of the viscoelastic model should
be varied and simulations by changing the constitutive model
are needed. This investigation will be part of future work.

A comparison between the solution maps for a puller re-
ported in Fig. 8a and a pusher reported in Fig. 10a shows
that, for a fixed couple (De,B∗1) (and for γ = 0), the two
kinds of microorganisms have an ‘opposite’ behavior, i.e., if
the pusher orientation vector drifts towards the shear plane,
a puller aligns to the vorticity and vice versa. This oppo-
site behavior is not completely unexpected because their flow
fields in a Newtonian fluid are also inverse. As previously
mentioned, the normal stresses are expected to be responsible
for the orientation vector drift. The inverse flow field around
pushers and pullers leads to an inverse shear rate gradient pro-

file as well that, in turn, generates an opposite distribution of
normal stresses around the surface, possibly justifying the ob-
served behavior. This interesting feature might be exploited
to obtain a separation of swimming microorganisms based on
their propulsion mechanism.

Finally, it is interesting to compare the relevant time scales
involved in real microorganism dynamics. Several character-
istic times can be identified: i) the time tb for the boundary
actuation that is related to the frequency of the cilia beating
on the organism surface; ii) the characteristic time required
for the viscoelastic stress development tv that is related to the
fluid relaxation time λ; iii) the flow characteristic time tf re-
lated to 1/γ̇; iv) the characteristic time tm of the microorgan-
ism swimming that is related to R/B1 (i.e. the time required
to swim a distance equal to its radius); v) the time tT needed
for a revolution of the orientation vector around the vorticity
axis, i.e., the characteristic time of the oscillations in Figs. 5, 7,
9, that is related to the rotation period T = 2π/ω; vi) the time
ts required to achieve the equilibrium orientation. The fluid,
flow and swimming time scales can be combined as discussed
in section 3 to give De and B∗1 . The values selected for these
two parameters give O (tv) ≈ O (tf) ≈ O (tm). Typical val-
ues of tm of real microorganisms range between [0.1-1 s]40,41.
Thus, the interval of B∗1 investigated in the present paper cor-
responds to shear rates that are easily accessible through con-
ventional rheometers56. Hence, employing dilute and semi-
dilute polymer suspensions, it should be possible to experi-
mentally observe some of the effects described in the present
paper. The rotation period T depends on ω that, in turn, de-
pends on De, B∗1 and β. However, in the range of parameters
investigated in this work, the microorganism angular veloc-
ity is of the same order of magnitude of the Newtonian case
ωN = γ̇/2 (see, e.g., Figs. 6c, 8c, 10c). Thus, tT is slightly
less than one order of magnitude higher than tf. The time ts
needed to reach the equilibrium orientation depends on all the
relevant dimensionless numbers as well as on the initial ori-
entation. However, it is always found that ts is much larger
than tT as clearly visible in Figs. 5, 7, 9 where several oscilla-
tions are required before reaching the steady-state condition.
Finally, the characteristic time of the microorganism beating
cilia tb is typically 10-20 milliseconds57. Hence, in the range
of parameters investigated in this work, such a time is sig-
nificantly lower than the other aforementioned characteristic
times justifying the use of a steady-state boundary condition
on the particle surface.

7 Conclusions

In this paper, we investigated the orientational dynamics of a
swimming microorganism suspended in a sheared unconfined
viscoelastic fluid. In the limit of small Deborah numbers, we
performed an asymptotic expansion accurate to first-order in
the Deborah number yielding to an analytical expression for
the microorganism rotational velocity. The perturbative analy-
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sis reveals that, at low Deborah numbers, swimming microor-
ganisms do not attain any preferential orientation nor migrate
towards a stable orbit, and the dynamics remains qualitatively
similar to the Newtonian case.

The analysis is extended to high Deborah numbers by
means of direct finite element simulations. The numerical re-
sults show that, at variance with the Newtonian case, spheri-
cal microorganisms in a viscoelastic fluid attain a preferential
orientation that depends on the Deborah number De, the rela-
tive weight between the self-propulsion velocity and the flow
characteristic velocity B∗1 , and the type of swimming (β, γ).
Specifically, for γ = 0, neutral microorganisms always align
to the vorticity axis. On the other hand, tumbling around the
vorticity axis is found for pullers and pushers at low and high
De-values, respectively. For intermediate De-values, the sta-
ble long-time solution depends on the value of B∗1 . We em-
phasize that, for a fixed set of De and B∗1 , puller and pusher
squirmers always show an opposite behavior, suggesting a
possible technique to separate microorganisms based on their
propulsion mechanism. Non-zero values of γ can modify the
equilibrium orientation as compared to the case γ = 0 in a di-
rection that does not depend on the kind of squirmer. For some
combinations of parameters, pushers and pullers can also tend
towards the same long-time regime.

The results presented in this work can be extended in sev-
eral ways. The effect of the fluid rheological properties as well
as of a more realistic time dependent boundary condition for
the microorganism beating cilia on the particle dynamics can
be investigated. Finally, the orientational dynamics found in
this study also suggests that the rheology of dilute microorgan-
ism suspensions in viscoelastic fluids could be very different
from the Newtonian counterpart. The predictions of the rheol-
ogy behavior of active viscoelastic suspensions will be part of
future work.

A Zeroth-order problem

By substituting Eqs. (23) into Eqs. (15) and (16), and retaining
only the zeroth-order terms (i.e., the terms that do not depend
on De), we obtain the following dimensionless equations:

∇ · u0 = 0 (27)

∇ ·Σ0 = 0 (28)

with u0 the zeroth-order flow field and Σ0 the zeroth-order
stress tensor given by:

Σ0 = −p0I + (1− ηr)
(
∇u0 +∇uT0

)
+ τ 0 (29)

From Eq. (5), the zeroth-order viscoelastic stress is:

τ 0 = ηr
(
∇u0 +∇uT0

)
(30)

that can be substituted in Eq. (29) to give:

Σ0 = −p0I +
(
∇u0 +∇uT0

)
(31)

The boundary condition on the particle surface, in a reference
frame translating with the particle, is:

u0 = ω0×r+

2∑
n=1

−2

n (n+ 1)
BnP

′
n (p · r)p·(I − rr) (32)

with r a point on the squirmer surface, and far from the organ-
ism:

u0 = u∞ −U0 (33)

The force and torque-free conditions to the zeroth-order are
given by:

F 0 =

∫
∂P

Σ0 · rdS = 0 (34)

T 0 =

∫
∂P

r × (Σ0 · r) dS = 0 (35)

Notice that, in the low Deborah number analysis, the vis-
coelastic stress tensor instantaneously reaches its pseudo-
steady value, hence no initial condition is required for it.

Due to the linearity of the Stokes equations, the solution of
the above system of partial differential equations is the super-
position of the solution for the motion of a squirmer in a qui-
escent Newtonian fluid with arbitrary orientation p and that
of a ‘passive’ sphere suspended in a Newtonian fluid undergo-
ing a shear flow u∞ at infinity. Hence, the total zeroth-order
translational velocity is given by the velocity of an unconfined
squirmer in a quiescent Newtonian fluidU0 = 2

3B
∗
1p(t)31 (as

a ‘passive’ sphere in shear flow has no translational velocity in
the reference frame we have chosen, see Section 3). The total
rotational velocity is given by the rotational velocity of a ‘pas-
sive’ sphere in a Newtonian shear flow ω0 = − 1

2k with k the
z-axis unit vector (as the microorganism has no self-induced
rotational velocity). The zero-th order translational and rota-
tional velocities reported above can also be derived from the
reciprocal theorem as previously shown in the literature8 and
summarized a recent book58. The total Newtonian velocity
flow field u0 can be written as a sum of an ‘active’ contribu-
tion u0,a and a ‘passive’ contribution u0,p. The ‘active’ flow
field is given by31:

u0,a = −8π

3
B∗1p(t) · ∇S − 2

3
B∗1p(t)+

4πB∗1 β p(t) ·
[(

1 +
1

6
∇2

)
(p(t) · ∇)G

]
−2πγ

3
p(t)·

{(
1 +

1

10
∇2

)[
−∇S +

5

2
(p(t)p(t) : ∇∇)G

]}
(36)

where S is the Green’s function for a point source in an un-
confined Newtonian fluid49:

S =
x

8πr3
(37)

with x the position vector of a point in the space, and r its
magnitude. The tensorG is instead the Green’s function for a
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point force in an unconfined fluid49:

G =
1

8πr

(
I +

xx

r2

)
(38)

The ‘passive’ contribution is well-known in the literature, as
it was originally derived by Einstein, and is reported here em-
ploying the nomenclature used in Greco et al.59:

u0,p = u∞ +

(
5

4r4
− 5

4r2

)(
∇u∞ +∇uT∞

)
:
xxx

r3
−

1

2r4
(
∇u∞ +∇uT∞

)
· x
r

(39)

Finally, the zeroth-order (Newtonian) flow field is obtained as:

u0 = u0,a + u0,p (40)

B First-order problem

The dimensionless equations of the first-order problem are
found by substituting Eqs. (23) into Eqs. (15) and (16) and
retaining only the first-order terms (i.e., the terms that depend
linearly on De):

∇ · u1 = 0 (41)

∇ ·Σ1 = 0 (42)

with u1 the first-order flow field and Σ1 first-order stress ten-
sor given by:

Σ1 = −p1I + (1− ηr)
(
∇u1 +∇uT1

)
+ τ 1 (43)

where τ 1 is:

τ 1 = − ∇
τ 0 −

α

ηr
τ 0 · τ 0 + ηr

(
∇u1 +∇uT1

)
(44)

Substituting the expression of τ 1 into Eq. (43) we obtain:

Σ1 = −p1I +
(
∇u1 +∇uT1

)
− ∇
τ 0 −

α

ηr
τ 0 · τ 0 (45)

Since only the first two terms of the right-hand side of Eq. (45)
are unknowns, it is convenient to introduce the following def-
inition:

σ1 = −p1I +
(
∇u1 +∇uT1

)
(46)

Equation (42) is then rewritten as:

∇ · σ1 = ∇ ·
(
∇
τ 0 +

α

ηr
τ 0 · τ 0

)
(47)

where the left-hand side contains the unknowns and the right-
hand side contains (known) contributions from the zeroth-
order solution. We emphasize that the time derivative of the

zeroth-order flow field appearing in
∇
τ 0 is computed by time

differentiation and, thus, no specific treatment is required.

The first-order mass balance in Eq. (41) and the first-order
momentum balance in Eq. (42) are equipped with the first-
order boundary conditions on the particle surface, in a refer-
ence frame translating with the particle:

u1 = ω1 × r (48)

and far from the organism:

u1 = −U1 (49)

Finally, the force- and torque-free conditions hold for the first-
order problem:

F 1 =

∫
∂P

(
σ1−

∇
τ 0 −

α

ηr
τ 0 · τ 0

)
· r dS = 0 (50)

T 1 =

∫
∂P

r ×
[(
σ1−

∇
τ 0 −

α

ηr
τ 0 · τ 0

)
· r
]
dS = 0 (51)

B.1 First-order rotational velocity

In principle, the unknown fields p1 and u1 plus the first-order
squirmer translational U1 and rotational ω1 velocities can be
obtained from the solution of Eq. (41), (47), (50), (51). In
what follows, however, we show that the first-order squirmer
rotational velocity ω1 can be obtained without the explicit
knowledge of the first-order velocity and pressure fields, by
making use of the Generalized Reciprocity Theorem49 from
Stokes flow theory.

We proceed by defining an auxiliary Stokes problem,
namely, the rotation of a sphere with a rotational velocity ω̂,
suspended in an unbounded quiescent Newtonian fluid. (All
the quantities related to the auxiliary problem are denoted with
a hat superscript.) We emphasize that in principle any Stokes
problem might be chosen as auxiliary problem in the reci-
procity theorem. Typical choices are rigid body motions like
translation and rotation20. The choice of the auxiliary problem
made in the present work is motivated by the fact that we are
interested in the rotational rate of the particle and not in the
translational velocity. The dimensionless equations governing
this problem are:

∇ · û = 0 (52)

∇ · Σ̂ = 0 (53)

The stress tensor of the auxiliary problem is given by:

Σ̂ = −p̂I +∇û+∇ûT (54)

The boundary conditions to the auxiliary Stokes problem are:

û = ω̂ × r (55)

on the spherical surface and:

û = 0 (56)

far from the sphere.
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The derivation in this Appendix closely follows what origi-
nally reported by Lauga20,60, subsequently used in Datt et al.38

and De Corato et al.19, and recently summarized in a book
chapter18. The Generalized Reciprocity Theorem states that:

−
∫
∂P

û · r · σ1 dS +

∫
∂P

u1 · r · Σ̂ dS =

+

∫
V

û · (∇ · σ1) dV −
∫
V

u1 ·
(
∇ · Σ̂

)
dV (57)

We can make some simplifications in the above equation: i)
the second volume integral of the right-hand side is identically
zero (see Eq. (53)); ii) the velocities û and u1 are replaced by
the expressions given in Eq. (55) and Eq. (48), respectively,
and the well known property of cross product (a× b) · c =
a · (b× c) is used; iii) in the first volume integral of the right-
hand side, ∇ · σ1 is substituted by the expression given in
Eq. (47). Hence, Eq. (57) becomes:

−
∫
∂P

ω̂·[r × (r · σ1)] dS+

∫
∂P

ω1 ·
[
r ×

(
r · Σ̂

)]
dS =∫

V

û ·
[
∇ ·
(
∇
τ 0 +

α

ηr
τ 0 · τ 0

)]
dV (58)

By using the identity w · ∇ ·W = ∇ · (w ·W )−∇w : W
(w andW are a vector and a tensor, respectively), we rewrite
the volume integral in Eq. (58) as the sum of two volume inte-
grals, and transform the volume integral containing the overall
divergence into a surface integral to obtain:

−
∫
∂P

ω̂ · [r × (r · σ1)] dS+

∫
∂P

ω1 ·
[
r ×

(
r · Σ̂

)]
dS+

+

∫
∂P

û · r ·
(
∇
τ 0 +

α

ηr
τ 0 · τ 0

)
dS =

−
∫
V

∇û :

(
∇
τ 0 +

α

ηr
τ 0 · τ 0

)
dV (59)

Equation (59) can be further manipulated: i) in the third sur-
face integral the velocity on the boundary is substituted with
the boundary condition in Eq. (55) and the aforementioned
property of cross product is used; notice that, after this substi-
tution, the rotational velocity ω̂ appears in the third integral;
ii) such rotational velocity ω̂ is constant and is put outside
the integrals; iii) also the rotational velocity ω1 in the second
surface integral is constant and is put outside the integral; iv)
the resulting integral expresses the drag torque on the rotat-
ing sphere in the auxiliary problem and it is simply −8πω̂.
Therefore, we get:

− ω̂ ·
∫
∂P

r ×
[
r ·
(
σ1−

∇
τ 0 −

α

ηr
τ 0 · τ 0

)]
dS

− 8πω1 · ω̂ = −
∫
V

∇û :

(
∇
τ 0 +

α

ηr
τ 0 · τ 0

)
dV (60)

The surface integral in the above equation is identically zero
as it expresses the first-order torque-free condition Eq. (51).
Thus, we have:

ω1 · ω̂ =
1

8π

∫
V

∇û :

(
∇
τ 0 +

α

ηr
τ 0 · τ 0

)
dV (61)

The x, y and z components of the first-order rotational veloc-
ity ω1 can therefore be computed by evaluating the integral on
the right-hand side (which has an analytical solution) employ-
ing three different auxiliary problems, namely the rotation of
a sphere around the x, y and z axis, respectively. In conclu-
sion, we end up to the following expression for the first-order
angular velocity:

ω1 = −1

2
B∗1ηrβ

[
−px pzi+ py pzj +

(
p2x − p2y

)
k
]

(62)

with i, j, and k the x-, y-, and z-axis unit vectors, respectively.
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