000130672 001__ 130672
000130672 005__ 20240130150402.0
000130672 0247_ $$2doi$$a10.1016/j.actaastro.2019.09.039
000130672 0248_ $$2sideral$$a114725
000130672 037__ $$aART-2020-114725
000130672 041__ $$aeng
000130672 100__ $$aLacruz, Elvis
000130672 245__ $$aEstimation of a reliability range for the area-to-mass ratio of orbiters at the geostationary ring
000130672 260__ $$c2020
000130672 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130672 5203_ $$aThis paper shows the precise relative motion of different orbiters located at the geostationary region thanks to high precision astrometric coordinates, which are calculated thanks to different accurate observations taken from the Venezuelan National Observatory. These orbiters are close to each-other and present different relative motions although the magnitude of the distribution forces that act over them is the same. Thus, these orbiters must posses other intrinsic physic parameters which provokes the different observed morphological dynamic. In particular, the area-to-mass ratio could be one of them, and consequently, the main goal of this paper is to determine a reliability range for the area-to-mass ratio, that justifies the relative motion of these objects. Since a complete relative motion of the orbit is not feasible, we use realistic models to simulate the real motion of these orbiters, and we associate them an invented value for the area-to-mass ratio. Then, we use an analytical reduced model to compute the evolution of the eccentricity, considering different values for the area-to-mass ratio. Consequently, we are able to recover a reliability range for this invented parameter. In this work, it is also possible to consider the real ephemerides of objects listed in the CelesTrack database, and estimate its corresponding value for the area-to-mass ratio. Thus, this paper provides an innovative way to obtain a physical property of a space object just by observational information.
000130672 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130672 590__ $$a2.413$$b2020
000130672 591__ $$aENGINEERING, AEROSPACE$$b6 / 34 = 0.176$$c2020$$dQ1$$eT1
000130672 592__ $$a1.133$$b2020
000130672 593__ $$aAerospace Engineering$$c2020$$dQ1
000130672 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130672 700__ $$0(orcid)0000-0002-7620-4523$$aCasanova, Daniel
000130672 700__ $$0(orcid)0000-0002-5692-5876$$aAbad, Alberto$$uUniversidad de Zaragoza
000130672 7102_ $$12004$$2398$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física de la Tierra
000130672 773__ $$g166 (2020), 104-112$$pActa astronaut.$$tActa Astronautica$$x0094-5765
000130672 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073231807&doi=10.1016%2fj.actaastro.2019.09.039&partnerID=40&md5=7e712e37edba3f606be9e3e47d81a555$$zTexto completo de la revista
000130672 8564_ $$s1910614$$uhttps://zaguan.unizar.es/record/130672/files/texto_completo.pdf$$yPostprint
000130672 8564_ $$s3088789$$uhttps://zaguan.unizar.es/record/130672/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130672 909CO $$ooai:zaguan.unizar.es:130672$$particulos$$pdriver
000130672 951__ $$a2024-01-30-14:06:41
000130672 980__ $$aARTICLE