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Abstract 

We propose a new co-evolutionary computational two-sector approach to the design of national 

innovation policy that recognizes the importance of inter-sectoral absorptive capacity constraints in 

innovation linkages between sectors in an economy. We show how the innovative capacity of an 

upstream producer sector can be constrained by the absorptive capacity of the downstream-user sector. 

This suggests that the low productivity performance of modern innovation policy might in part be 

understood as a consequence of sectorally unbalanced knowledge evolution, where the problem lies in 

underinvestment in innovative capabilities in the downstream sector. Our computational two-sector 

model suggests an important role for innovation policy to create a balanced, sectorally-targeted 

approach.    
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1 Introduction 

The twin pillars of modern innovation policy literature are economic analysis of the production of new 

information under uncertainty (Nelson 1959, Arrow 1962a), and the evolutionary economic model of 

innovation diffusion (Schumpeter 1939, Nelson and Winter 1982). Innovation policy seeks institutional 

solutions to market failure in the production of new knowledge in order to support innovating firms to 

adopt new technologies and to develop new markets and industries (Martin and Scott 2000). The theory 

of innovation policy is mostly developed within a representative market or representative industry 

approach, with policy attention directed to resolve market failure and guide industrial dynamics. 

Consideration of how other sectors affect innovation is generally treated as an additional complexity in 

an essentially monosectoral analysis. 

The absence of a multisectoral approach in innovation policy is striking when compared to its centrality 

in the modern innovation strategy literature, which builds on the same evolutionary economic 

foundations – namely in Schumpeter’s model of an industrial trajectory and Penrose’s model of firm 

capabilities – but instead follows Coase’s transaction cost line of analysis to consider how innovation 

creates value in firms by assembling capabilities within organisational boundaries. A multisectoral 

approach is fundamental to strategic analysis because value creation in complex technological systems is 

an interdependent process across multiple firms. Such analysis of the balance of knowledge requires 

understanding how firm capabilities are arrayed across value chains and within industry architectures, 

and how these in turn give rise to business ecosystems (Rosenberg 1969, Teece et al. 1997, Jacobides et 

al 2006, Adner and Kapoor 2010). Being highly attuned to modular structure, complementarities, 

interdependencies, and bottlenecks in the innovation process (Baldwin 2018, Adner and Kapoor 2018), 

the innovation strategy literature is foundationally multisectoral.  

Yet nothing in the innovation policy mandate actually requires a multisectoral approach, nor implies that 

specific concern with the intersectoral balance of knowledge is the fundamental problem to be solved. 

Indeed, modern innovation policy has always had a singular direction of intersectoral attention, namely 

that all problems originate upstream with weak market incentives to basic science and technology 

development. Innovation policy has of course developed a long way from the linear model (Bush 1945), 

but the basic analytic formulation of technology creation in firms and diffusion in markets has made 

innovation policy largely self-contained within an industry, as per the framework of industrial dynamics. 
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Equivalently, this perspective shifts to an entire economy, in which innovation is ‘upstream’of consumer 

markets, and innovation policy seeks to furnish the institutions of an innovation system (Nelson 1993). 

While economists and policy-makers have long observed that constrained downstream factors, such as 

sophisticated demand, can block upstream development of innovation (Saviotti and Pyka 2013), or that 

technological innovation can overshoot a market (Earl and Potts 2013, 2016), modern innovation policy 

still lacks a well-developed analytic framework through which to study the effects of intersectoral 

structure and coordination through bottlenecks such as the balance of capabilities, technological 

overshooting, and absorptive capacities.  

In this paper, we develop a new analytic framework to study how innovation policy works in a 

multisectoral economy. We propose a new class of co-evolutionary computational model that is 

designed to explore multisectoral innovation interdependence (although we simplify this to a two-sector 

upstream/downstream model for analytic convenience). Our model uses properties of the Beta 

distribution (specifically its skew) to model institutional scenarios in which certain parameters 

correspond to alternative innovation policy settings. Our model builds on Nelson and Winter (1982), 

Almudi et al. (2013) and Dosi et al. (2013) and consists of a two-sector neo-Schumpeterian economy 

with an “upstream” capital goods producer sector, and a “downstream” user sector. It provides a general 

framework for analysing how the innovation properties of one sector can affect innovation properties of 

another, providing an agent-based computational model of the co-evolution of an innovation ecosystem. 

An implication of our model is to show how knowledge coordination failures can cause intersectoral 

innovation bottlenecks in the form of absorptive capacity constraints that backpropagate between firms, 

and can thus become a new target for innovation policy. 

Innovation strategy scholars have long emphasised the importance of dynamic competence, bottlenecks, 

and industry architectures to an understanding of how innovation creates value in complex technology 

systems. A core contribution of this paper is to propose a new class of analytic model to translate these 

insights from firm strategy into implications for policy analysis. We do this by representing as outcomes 

from statistical distributions operating in a complex model, and as a result of learning by doing and 

adaptation efforts, the strategies and capabilities of innovating firms. Then, we characterize as 

knowledge coordination problems such as bottlenecks arising from overshooting and absorptive capacity 

constraints the simulated probability of collapse of intersectoral trading in our multisector model. Our 
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stochastic computational model is able to show how different policy settings that affect the institutional 

properties of one sector of an economy – over parameters such as a firm’s absorptive capacity over a 

sectoral technology (what we will call the ‘understanding radius’) – are dynamically interdependent with 

innovation properties of firms in other sectors.       

We proceed as follows. In Section 2 we present the theoretical background. Section 3 explains the model 

in a descriptive manner. This explanation can be completed with the corresponding formal structure, 

with technical details presented in Appendices A and B (provided online). Section 4 presents the 

computational analysis of the model and results. We pay special attention to the novelties regarding the 

role of absorptive capacity in intersectoral co-evolution and innovation. To show the relevance of our 

results, we relate our findings to two specific examples: The puzzle of commercial supersonic aviation 

failed technology and the challenges posed by advanced robotics to be successfully implemented in the 

factory of the future. Finally, Section 5 reviews the implications of our co-evolutionary model for 

innovation theory and policy. We also comment on potential lines for future empirical and theoretical 

research.            

 

2 Theoretical Background 

The Neo-schumpeterian economics that underpins modern innovation policy largely focuses on fostering 

innovation through design of supporting institutions complementary to entrepreneurial knowledge-

creating innovating firms. Perhaps the most developed bodies of theoretical work supporting innovation 

policy in this stream are those around the concepts of National Innovation Sytems (Freeman 1987; 

Lundvall 1988, 1992; Nelson 1993) and Sectoral Systems of Innovation (Malerba 2005), which are both 

derived from the industrial dynamics literature. These policy supporting literatures explore the roles of 

specific institutions that facilitate the sharing of knowledge, skills and resources that are necessary for 

technological change to occur. It is nevertheless remarkable that both the contributions on national 

systems of innovation and on sectoral systems of innovation dismiss the detailed study of multisectoral 

interactions. This analytic propension has been corrected to a certain extent by those evolutionary 

economists dealing at the meso-to-macro levels with structural change and the emergence of economic 

growth (Dosi et al. 2013; Saviotti and Pyka, 2013). 
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The lack of a multisectoral approach from the knowledge coordination perspective is surprising, since 

the idea of technological imbalances has long been recognized as central to understand the direction of 

technological change. According to Rosenberg (1969) technological imbalances (or bottlenecks) may 

arise since complex technologies explore forward and backward linkages creating complex and 

interlinked technological trajectories. Technological change can be seen as a set of exploratory activities 

that stimulate change in complementary processes. Therefore, knowledge coordination problems caused 

by technological imbalances or bottlenecks may arise in any direction of the search space, blocking 

further developments of interconnected technologies. To unblock specific technological trajectories 

requires the correct design of institutional frameworks and the engagement and participation of a range 

of organizational players involved in technological change. 

 

Unlike innovation policy approach, the multisectoral approach to innovation is well developed in the 

organisational strategy literature. Management scholars have focused on innovation strategy, that is, the 

strategic dimensions through which the innovating firm create and captures value. This literature is 

centred about the concepts of capabilities, industry architectures, and ecosystems (Baldwin and Clark 

2000, Jacobides 2008, Jacobides et al 2006, Jacobides 2018, Adner and Kapoor 2010). Sectors are seen 

as complex architectures whith clear complementarities in knowledge and complex vertical and 

horizontal interconnected links among organizations (Jacobides et al 2016, Kapoor, 2018). Value chain 

dynamics and change is explained because of the mutual influence of interconnected knowledge and 

links among organizations (Jacobides et al 2006, Teece et al.1997). In this sense, the importance of 

understanding vertical adjoining segments and the circumstances under which bottlecknecks can emerge 

have been explicitly recognized in this context (Adner 2012, 2017, Baldwin 2018, Jacobides et al. 2014, 

Jacobides and Tae 2015). 

 

There is a lack of theoretical work in economics focused on potential multisectoral knowledge 

coordination problems and the policy implications that follow. We have developed a two-sector model 

in which technological unbalances and bottlecnecks can arise inter-sectorially in which technological 

overshooting occurs because of a lack of intersectoral absorptive capacity. We develop a model in 

which different parametric setting can be posed, representing different institutional frameworks, as 
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mechanisms of innovation policy control. The following sections discuss our assumptions and results in 

terms of the existing literature. 

  

2.1 A multisectoral approach to innovation policy 

The key insight of our multisector approach to innovation policy is that sectoral knowledge capacities 

are interconnected. Absorptive capacity (i.e. bottleneck) constraints in a sector limit the value of 

innovation that is complementary to that sector. Conversely, innovation developments in one sector can 

overshoot adoption and use capabilities in another sector. This has important implications for innovation 

policy.  

In the multisectoral approach, the innovation prospects and capabilities in one sector affect the 

innovation prospects of another. Moreover, these relationships flow forwards and backwards; 

underinvestment in an upstream sector can limit the prospects of a downstream sector, just as the 

capabilities of a downstream sector can constrain an upstream sector. New theory and evidence now 

increasingly and consistently emphasizes the reality and consequence of unbalanced sectoral knowledge 

and the multisectoral complexity of market linkages, technological interdependencies, industrial 

architectures and innovation ecosystems (Pitelis 2012, Adner 2017, Jacobides et al. 2018). Modern 

innovation economics is increasingly recognising that an intrinsic characteristic of evolutionary 

technical change is extreme inter-field unevenness and that technological progress emerges from the co-

evolution of practice and understanding in coupled multisector domains (Dosi and Nelson 2010, Dosi 

and Grazzi 2010, Nelson 2012). The upshot of the incipient “multisectoral revolution” in innovation 

theory is a growing awareness that innovation policy may also require fundamental reconsideration. 

Innovation policy can work differently in a multisectoral economy compared to a single sector economy. 

To show this, we develop a new class of computational model (an agent-based coevolutionary model) 

built around two key mechanisms in the multisectoral revolution: aborptive capacity (Cohen and 

Levintal 1990, Zahra and George 2002) and innovation overshooting (Earl and Potts 2013, 2016, 

Almudi et al. 2018). Absorptive capacity is an ability to adopt, understand and make use of a technology 

or capability originating in another sector. We suppose that innovation in each sector is characterized by 
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Schumpeterian competition in which heterogeneous firms develop and co-evolve within spaces of 

performance and price determined by R&D spending and technological learning. Overshooting occurs 

where the technological capabilities developed in one sector exceed the absorptive capacity constraints 

of the other sector owing to unbalanced knowledge development incentives. Our model of unbalanced 

sectoral knowledge in a multisector context can help to explain the low productivity performance of 

modern innovation policy as a consequence of downstream bottlenecks and suggests a new role and 

rationale for innovation policy. For instance, advanced technology procurement by the public sector can 

be effective as demand-side innovation policy.    

 

2.2   The multisectoral approach in economics 

Our model builds on Nelson and Winter (1982), Almudi et al. (2013) and Dosi et al. (2013). It consists 

of a two-sector neo-Schumpeterian economy with an “upstream” capital goods producer sector, and a 

“downstream” user sector in which capital goods are acquired and used to produce consumption goods 

for final consumers. Absorptive capacity limitations in the downstream sector constrain innovation in 

the upstream sector. Innovation overshooting is due to unbalanced Schumpeterian competition between 

different sectors. We identify in unbalanced intersectoral knowledge a general coordination failure 

problem in innovation, and not just a bilateral problem in capital and consumer goods sectors.  

The multisectoral modeling tradition in economics originates in Leontief-type input-output (IO) models 

that connect sectors of an economy through flows of commodities and payments. IO-type models have 

long been a workhorse of macroeconomic planning and policy (Chenery 1960). By integrating prices 

and micro-foundations, general equilibrium models (e.g. CGE, DSGE) developed in the 1980s have 

subsumed the input-output approach. Both IO and GE models are designed to represent industrial market 

economies where the main constraints between sectoral flows are factor supply and demand for 

commodities expressed in income and prices. These models have been optimized to macro-industrial 

planning (IO models for industry policy) and macro-dynamic forecasting (GE models for competition 

policy, Aghion and Griffith 2005). However, less attention has been afforded to a related but different 

problem in a Schumpeterian economy, namely unbalanced intersectoral knowledge and the innovation 

constraints this causes. Consequently, the multisectoral approach has proven less useful in the context of 
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innovation policy, which has instead used an institution-centered innovation systems approach (Nelson 

1993, Etzkowitz and Leydesdorff 2000, Foray et al. 2009; Edler and Fagerberg 2017). 

This matters, because IO and GE approaches struggle to explain low aggregate productivity measures on 

public sector R&D and innovation policy widely reported across OECD nations (Jaumotte and Pain 

2005). In the ‘basic-science technology-push’ model, the practical innovation policy prescription is to 

target the source of market failure (Nelson 1959, Arrow 1962a, Martin and Scott 2000, Trajtenberg 

2012). This is equivalent to a single sector innovation target in our multisectoral approach. However, if 

absorptive capacity between sectors is a more general constraining factor, as we argue here, then market 

failure targeting may lead to overshooting. This will manifest in misallocation of innovation spending 

and low absorptive capacity. Alternatively, our multisectoral approach predicts that an unbalanced 

distribution of innovation policy may produce multisectoral innovation blockages and bottlenecks, 

leading to a slow-down of productivity growth or to sectorally bounded search and innovation processes. 

Such outcomes are easily misdiagnosed as demand-side failures, or adoption-diffusion constraints rather 

than their true cause, according to our model, in unbalanced sectoral knowledge. As we will show, if we 

analyze innovation as resulting from the co-evolution of inter-linked sectors, subject to the possibility of 

knowledge coordination problems, then new arguments for current vivid debates on the innovativeness 

of modern economies emerge (Gordon 2012, Mokyr 2017).  

 

2.3   Balanced economic change in knowledge and innovation 

Systemic innovation requires balanced sectoral knowledge, which requires solving a meso-macro 

coordination problem. The consequences of unbalanced sectoral knowledge are wasted resources and 

capabilities, but also frustrated advance or even sectoral collapse. Examples can be contemporaneously 

observed in green energy technologies, where retail and consumer adoption constraints are limiting 

upstream deployments of more advanced technologies. Further examples are in distributed ledger 

technologies where downstream regulatory barriers and consumer learning barriers constrain adoption of 

cryptocurrency payments and smart contracts into mainstream financial services, causing investment 

overshooting of blockchain infrastructure (Davidson et al. 2018). Similar claims can reasonably be made 

with respect to genetic engineering and artificial intelligence technologies, where the relevant innovation 
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constraint does not necessarily lie with the fundamental science and translational engineering, but with 

the absorptive capacities in downstream consumer-facing health, agricultural and financial sectors.  

In a perfectly balanced innovation economy, each sector can absorb and adopt technologies from every 

other sector. Sectoral innovation constrains, in a balanced economy, can only be a consequence of 

variation in resources, prices and income, as in IO and GE models. Note the standard absorptive capacity 

literature focuses on intra-sectoral constraints, not inter-sectoral constraints. In an unbalanced 

innovation economy, absorptive capacity constraints (i.e. bottlecnecks) in a sector – because of prior 

experiential learning (Dosi et al. 2005, Arrow 1962b) or because of weak user-firm dynamic capabilities 

– limit its ability to adopt technologies from another sector, which in turn reduces the demand for 

technological advances. In this way, the innovation choices of firms in different sectors interlink. 

Constrained R&D in a downstream sector can limit innovation in the upstream sector through absorptive 

capacity constraints. We characterize this as an inter-sectoral knowledge coordination problem, with 

excess innovation spending in one sector and too little absorptive capacity in a connected sector. The 

consequence of an unbalanced innovation economy is wasted private and public innovation effort 

because the benefits cannot be diffused owing to absorptive capacity constraints.  

 

3 The Model 

This section describes our agent-based computational neo-Schumpeterian model of a multisectoral 

economy (Dosi et al. 2013; Metcalfe et al. 2006; Saviotti and Pyka 2013). The model description can be 

completed with the equations, technical details and the pseudocode in Appendix A and Appendix B. To 

simplify, we constrain the model to just two sectors, each containing a population of heterogeneous 

firms, and with each firm operating over several dimensions. In Sector 1 different and gradually 

improved varieties of a capital-good (machines) are produced and sold to Sector 2. In Sector 2, different 

varieties of a final good are produced by firms and sold to consumers. Firms in downstream Sector 2 buy 

different varieties of machines from the upstream Sector 1 and produce specific varieties of the 

consumption good for final consumers.  

Firms producing and offering machines in Sector 1 compete in price and quality (i.e. machine-

performance). They fix prices according to a modified-pricing rule (Bloch and Metcalfe 2018, Winter 
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1984, Vives 2001) with a mark-up that evolves according to each firm’s changing market power, and 

according to each firm’s estimates of its close competitor’s market power. This is a simple and novel 

way to incorporate (intra-sectoral) strategic interactions in an evolutionary model. Each firm then 

charges an endogenously-changing margin on expected unit cost. Unit cost includes a unit production 

cost, which is common and constant across firms, and a unit R&D-cost (ex-ante to fix prices, and 

realized ex-post to calculate real ex-post profits once the market has operated). R&D intensity in a firm 

is a firm-specific behavioral trait, as a lagged proportion of profits. Likewise, we model firm 

performance in Sector 1 as a relative and normalized specific dimension that evolves through 

innovation. Each firm in Sector 1 produces machines up to the demand point of users from Sector 2. The 

demand captured by each firm in Sector 1 probabilistically depends on both the offerings over price and 

quality dimensions of its machines. Each firm in Sector 2 buys at most one machine per period of time. 

Machines fully depreciate and disappear in one period. At any time period only profitable firms remain, 

and new firms enter continuously the upstream sector, although many will fail. 

On the other side, Sector 2 consists of a changing number of firms due to entry and exit that produce and 

sell different varieties of a consumption good. Sector 2 firms use one machine (bought from Sector 1) 

each to produce their variety of the consumption good, with each quality (variety) of the consumption 

good dependent on the firm’s production technology (i.e the quality of the corresponding machine). 

Sector 2 firms have a specific knowledge endowment that evolves with experience, and they observe 

and assess different parts of the distribution of machines supplied by Sector 1. They combine price and 

machine performance from a range of (cogntitively-understandable) options under consideration and 

choose probabilistically. Once downstream firms buy machines, they set prices and qualities and 

compete over price and performance to capture final consumers. There is an ongoing process of firm 

entry in the downstream sector too, although as with the upstream sector, many entrants will fail. 

We assume that firms in Sector 2 update their knowledge endowments according to the performance of 

their most recent machines. Likewise, each firm in Sector 2 has, as a specific behavioral trait, what we 

call a cognitive radius when scanning the supply of machines supplied by Sector 1: the higher the 

radius, the wider the scope of innovative search. Thus, Sector 2 firms have differential absorptive 

capacity (Cohen and Levintal 1990) as an ability to understand and adopt innovation from Sector 1. 

Clearly, this absorptive capacity in reality may be constructed over several distinct cumulative 
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mechanisms. The first dimension we can mention is the cognitive capacity of each firm and the 

implications of bounded rationality for organizational learning (Simon 1955, 1957, 1991). A second 

dimension is related to what Kremer (1993) called O-Ring theory, where the absorptive capacity is 

constrained by the worst performing members of the organizational team. Third, absorptive capacity in 

Sector 2 may be determined and constrained by the social technologies and institutions needed for 

training technical people (Nelson and Sampat 2001). As we explain in the formal presentation of the 

model in the Appendices, the process described generates co-evolutionay dynamics linking Sector 1 and 

Sector 2 from which emergent properties arise. We present in a very detailed way the model equations in 

Appendix A, and the computational implementation in Appendix B (provided online). We devote the 

following Section 4 to obtain results on the role of absorptive capacity in this co-evolution model. As we 

will see, interesting policy implications follow. 

 

4 Computational Analysis of the Model 

Our model is suitable for addressing many different research questions. In fact, we propose it as a 

general framework to carry out complementary research lines dealing with the determinants of industrial 

dynamics, open issues related to economic development as a learning process, industrial ecologies and 

sectoral ecosystems, price dynamics and firm theory as it relates to the sources of innovation, economic 

growth and innovation policy. Nevertheless, considering the limited scope of a single paper, in this 

current initial work we seek to analyze the following specific questions: can knowledge-coordination 

problems be responsible of systemic failures in multisector innovative economies? Which is the specific 

role of absorptive capacity in these processes? And, from a policy perspective, what should we do to 

deal with these knowledge coordination problems? We respond to these questions through the 

computational analysis of the model (see below). Afterwards, we discuss our theoretical findings 

explaining two very relevant examples: The puzzle of the failed commercial supersonic aviation 

technology and the challenges posed by advanced robotics to design successful factories in the future. 

These two cases exemplify, in which sense, our results are useful to interpret some sectoral problemsin 

terms of intersectoral knowledge coordination problems, and how our theory, can orientate innovation 

policy to potentially solve them.  
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To tackle the aforementioned questions in our model, let us begin by explaining (from a technical point 

of view) that the model is implemented in JAVA and the statistical analysis is carried out with R-Project 

(see the formal structure of the model in Appendix A and Appendix B). The model dynamics reach limit 

states in approximately 5,000 periods, which is the time-span to stationary situations that we have 

obtained through several methods, including the Kolmogorov-Smirnoff (K-S) test (see a detailed 

discussion in Fernández-Márquez et al. 2017a, 2017b). Because of stochasticity, we run the model 100 

times and average the data for each setting of parametric values.  

 

In this specific paper, we focus computational analysis on the role played by absorptive capacity in the 

downstream machine-using Sector 2 as a key driver of intersectoral coevolution and innovation. We 

consider how the generative stochastic structure Beta (a,b) distribution (from which machine-user firms 

emerge) affects multisector coevolution. The shape of the distributions varies depending on parameters 

(a,b) (ses Fig.1). We can relate these frames to the role of national Universities, different training and 

regulatory frameworks, R&D programs, and professional associations leading to more or less absorptive 

firms and permeable industrial ecologies. 

 

More precisely, we are going to analyze the influence of the skewness of the Beta (a,b) distribution on 

the probability of technological overshooting (Earl and Potts 2013, 2016). We denote this effect in the 

model as the probability of collapse in the dynamics. We consider that technological overshooting 

occurs in the model when the rate of innovation in Sector 1 does not fit with the absorptive capacity of 

firm-users in Sector 2. In these situations trade collapses. We measure the (average) probability of 

collapse for each setting, as the average number of times in which either Sector 1 or Sector 2 vanish 

during the 100 initial steps of the average run. The probability of collapse for each parametric setting 

enables us to obtain a base of simulated data. From these data we can study the relation between 

absorptive capacity in the downstream sector and innovation overshooting from the upstream sector. 

 

A temporary collapse of intersectoral trading in our model is a consequence of knowledge coordination 

problems that block the coevolutionary process (Almudi et al. 2018). When we study the precise origin 

of these coordination problems, we obtain below a statistical relation linking technological overshooting 

(as represented by the probability of collapse), and the skewness of the generative distribution Beta (a,b) 
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in Sector 2. Once we have analyzed the precise relations between probability of collapse and the skew of 

the Beta distribution, we wonder whether the overall innovativeness of our system may be related also 

with the shape of the Beta (a,b) in Sector 2. We obtain that the skew of the Beta distribution arises also 

as a crucial factor which indirectly guides the overall pattern of R&D innovation in the model. The 

emergent average level of (upstream) sectoral R&D intensity is clearly related to absorptive capacity in 

the downstream sector. The analysis will lead us to propose a new type of innovation policy that is 

focused on eliminating intersectoral cognitive-coordination problems. 

 

4.1 Relations between absorptive capacity in Sector 2 and the probability of collapse  

Is it possible that a lack of absorptive capacity in the machine-using sector back-propogate to a collapse 

of activity in the upstream innovative sector? If these paths emerge, we say that our two sector economy 

is experiencing technological overshooting. There is a knowledge coordination problem: Sector 1 has 

overshot Sector 2 caused by the lack of absorptive capacity in the downstream sector, and this failure 

also leads the upstream sector to collapse. Regarding this question, we find a strong statistical relation in 

the model explaining the probability of collapse in our two-sector economy in terms of specific 

skewness patterns of the Beta (a,b) in Sector 2. As we stated in Section 3 and in Appendix A, this 

distribution is the generator of the firm’s understanding radius .  

  

It is a well known general statistical result that the Beta (a, b) distribution can be assimilated to 

different distributions (Uniform, Power Law, Truncated Nornal, Negative Exponential) depending on 

the (a, b) parameters. To recall this fact, we show in Figure 1 alternative shapes for the Beta-probability 

density function (PDF) with different values for (a, b). This versatility in representing different 

generative structures for machine user-firms is the reason why we chose the Beta distribution. If we 

consider the role and place of this distribution in the model, it can be easily related to the institutional 

structure (ecology of training centers, Universities, supporting organizational sources of entrepreneurial 

initiatives) from which Sector 2-firms with higher or lower absorptive capabilities (as measured by the 

firm’s understanding radius  emerge (see Appendix A and B).   

)1,0(∈jρ

)1,0(∈jρ
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Figure 1. Density functions for the Beta (a,b) distribution. 

 

Our first analysis consists of trying to relate the probability of collapse in the model, to specific shapes 

(i.e. specific values for the (a,b) parameters underlying alternative shapes in Fig.1) of the Beta (a,b) in 

Sector 2. Thus, we run the model for different initial conditions and parametric values. Specifically, we 

depart from what we call in the Appendix B the base-setting and we run the model for 79X79=6,241 

different parametric combinations (we run the model 100 times for each possibility, since the model is 

stochastic). 

Figure 2 shows the probability of collapse related to the specific values of the (a,b) parameters. 

We can clearly see in the heat-graph that the probability of collapse is higher for high values of b, and 

for low values of the parameter a  (notice red-orange-yellow to dark blue colors).  
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Figure 2. Probability of collapse related with the Beta (a,b) parameters. 

 

In we relate Figure 2 with the PDFs in Figure 1 we have a first indicator suggesting how the Beta 

distribution’s shape may be crucial in driving the model results. We see in Figure 1 that higher values of 

“a” tend to generate higher levels of average radius in Sector 2, and higher absorptive capacity. This 

effect leads –according to Figure 2- to lower probabilities of collapse. The opposite effect occurs for 

parameter “b”.  

To sharpen this intuition, and given that parameters (a, b) determine the shape of the Beta 

distribution, we show in Figure 3 alternative specific shapes of the Beta (a,b) density function, and we 

have colored each shape depending on the corresponding probability of collapse when running the 

model. In Figure 3, the probability of collapse is higher (red-orange-yellow, -hot colours) when the 

Beta- (PDF) is convex-shaped and the distribution is closer to the ordinate axis. These shapes 

correspond to intensely right-tailed distributions. Likewise, when the Beta-density function presents a 

maximum, it is less likely that collapse emerges (blue and black). In principle, as shown in Figure 3, the 

probability of collapse is lower the more left-tailed-shape we have in the Beta-distribution. This profile 

corresponds to generative structures tending to create firms with high absorptive capacity in Sector 2. 
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Figure 3. Beta distributions and probability of collapse 

 

Thus, hot-colored (right-tailed) Beta distributions in Figure 3 generate high probability of multisectoral 

collapse. We have pointed out that right-tailed Beta distributions can represent in the model institutional 

aspects and framing conditions tending to generate user-firms with low-absorptive capacity (small 

understanding radius). Figure 3 clearly shows that, when institutional frames with this characteristics are 

in place, they may lead not only to low innovativeness in their domain-related industries, but also to 

back-propagating slow-downs and multisectoral blockages.  

To formalize the graphical results in Figures 2 and 3, we can analyze from an statistical perspective the 

explicative power of the parameters (�,�), and also the explanatory significance of the skewness of the 

Beta distribution, as regressors for the probability of collapse by technological overshooting. As we will 

see, the best fits we find in both cases correspond with polynomial regressions. For the interested reader, 

a detailed explanation of the econometric methology for polynomial regressions, the use of p-values as 

indicators of statistical significance, and the nonlinear regression methodology that we are going to use 

below can be seen (e.g.) in Montgomery et al. (2006, chapters 7 and 13) or in Stachurski (2016).  
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In Table 1, we show the statistical fit when we regress the model generated data for the probability of 

collapse to alternative settings in terms of parameters (a,b). In Table 1, we show (in columns), first, the 

polynomial degree in each fit, second the summand which appears in the polynomial �(�, �) 	
�
�
�
 � �����
 � ⋯ � ���
�� . In the third column, we present the estimated coefficient value with 

confidence interval [5% and 95%] and the p-value (H0: a null coefficient). As we see, the ���������  

becomes acceptable (>0.9) for a 3-polynomial degree. 

Collapse=P(�, �) 

Degree Coe . Fit-estimates P-value 

1 

�
�
 0.01789939 � 0.000576302 0.0000000000000002 

���
 "0.00391692 � 0.000092497 0.0000000000000002 

�
�� 0.00206380 � 0.000092498 0.0000000000000002 

��������� 	 0.4983 

� " $�%&' 	  0.00000000000000022 

2 

�
�
 0.02059867 � 0.000748923 0.0000000000000002 

���
 "0.01215065 � 0.0002691396 0.0000000000000002 

�)�
 0.00140464 � 0.00002921586 0.0000000000000002 

�
�� 0.00544907 � 0.0002691324 0.0000000000000002 

���� "0.00080105 � 0.00002613197 0.0000000000000002 

�
�) "0.00001231 �  0.00002921566 0.488 

��������� 	 0.7918 

� " $�%&' 	  0.00000000000000022 

3* 

�
�
 0.021010944 � 0.000824935 0.0000000000000002 

���
 "0.022615002 � 0.0005055976 0.0000000000000002 

�)�
 0.006149604 � 0.0001197051 0.0000000000000002 

�*�
 "0.000465648 � 0.000009228442 0.0000000000000002 

�
�� 0.009887639 � 0.0005055976 0.0000000000000002 

���� "0.003192800 � 0.00009537797 0.0000000000000002 

�)�� 0.000239635 � 0.000008100738 0.0000000000000002 

�
�) "0.000197762 � 0.000119705 0.00659 

���) 0.000052042 � 0.000008100326 0.0000000000000002 
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�
�* "0.000002270 � 0.000009228393 0.68572 

��������� 	 0.9168 

� " $�%&' 	  0.00000000000000022 
 

 

Table 1. Polynomial regressions for (a, b). 

 

To present very clearly this result, note in Table 1 that the best estimation (3*) we get from the 

model, linking the probability of collapse as a polynomial function of (�, �), is given by the cubic 

polynomial which we can be approximately expressed as: 

�(�, �) 	 0.021 " 0.02� � 0.00614�) " 0.000465�* � 0.0098� " 0.00319�� � 0.000239�)�
" 0.00019�) � 0.000052��) " 0.00000227�* 

In Table 1 we show the confidence intervals for the fit-estimates, and the very low values we 

obtain for the p-values -which indicate the high statistical significance of the regressors. Likewise, 

regarding the quality of the statistical estimation, notice that in Table 1 the confidence intervals are 

narrow, and the indicator  ��������� 	 0.9168 is very high for the cubic polinomyal. Thus, we have a 

very good fit and a significant statistical relation linking probability of collapse -through a cubic 

polinomyal- with (a,b) parameters of the Beta distribution in the model. The results in Table 1 support 

statiscally the findings in Figure 2, and they suggest the need to dig deeper along these lines.  

Therefore, and to sharpen our results, we recall now what we depicted in Figure 3 showing that 

the skewness of the Beta distribution is a good candidate to explain (in a more compact and 

understandable manner), the probability of collapse in the model. To check and formalize this possibility 

we have analyzed the statistical relationship between the Beta-skew in alternative settings, and the 

corresponding probabilities of collapse arising from the simulations. We present the results in Table 2 

and Figure 4. 

As we show in Table 2 and Figure 4, the best fit for this emergent property of our model is a 

polynomial regressions with “skew” of the Beta-distribution as the unique explanatory variable for the 

probability of collapse. Now the interpretation of the coefficients is simpler and more informative. Table 

2 reports that a second-degree polynomial notably increases the quality of adjustment ��������� (>0.9), 
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while increasing the degree adds little to the quality of the adjustment. Therefore, we choose a 2-degree 

polynomial as the best fit to explain the probability of collapse in the model in terms of the Beta-skew. 

From Table 2, we can see that the specific polinomyal with the best fit (2*), in which the probability of 

collapse emerges in the model as a quadratic function of skew, is given by the expression (confidence 

intervals in Table 2): 

�(+,'-) 	 0.0066425 � 0.01192869(+,'-) � 0.00402343(+,'-)). 
 

Collapse= P(skew) 

Degree Coef. Fit-estimates P-value 

1 

+,'-
 0.0103665 � 0.00018184 0.0000000000000002 

+,'-� 0.0119287 � 0.00018898 0.0000000000000002 

��������� 	 0.6365 

� " $�%&' 	  0.00000000000000022 

2* 

+,'-
 0.00664250 � 0.000086206 0.0000000000000002 

+,'-� 0.01192869 � 0.00008093 0.0000000000000002 

+,'-) 0.00402343 � 0.000039975 0.0000000000000002 

��������� 	 0.9334 

� " $�%&' 	  0.00000000000000022 

3 

+,'-
 0.00664250 � 0.000085733 0.0000000000000002 

+,'-� 0.01141738 � 0.000129326 0.0000000000000002 

+,'-) 0.00402343 � 0.0000397563 0.0000000000000002 

+,'-* 0.00010179 � 0.0000201477 0.0000000000000002 

��������� 	 0.9341 

� " $�%&' 	  0.00000000000000022 
 

 

Table 2. Polinomial regressions for skew. 
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This statistical result is represented graphically in Figure 4, where we show the fit for the second-

order polynomial (2*) with Beta distribution skew as the explanatory variable. We depict with the 

continuous thick-line the representation of the estimated polinomyal, and with shaded bands the 

confidence set (Stachurski 2016, chapter 10). Notice in Table 2 and in Figure 4 that the effect of skew is 

statistically significant (very low p-values), and that the quality of the estimation is good.  

Regarding the interpretation of the results, Figure 4 and Table 2 show that a higher skew (a more 

right-tailed Beta-distribution) produces a higher probability of collapse. In economic terms, the 

outcomes of the model simulations reveal a fastly-increasing probability of multisectoral collapse for 

institutional settings with low capacity for creating absorptive machine user-firms. As right-tailed 

distributions tend to generate user-firms with low understanding radius, and this feature induces in the 

model back-propagating effects, we obtain blocked co-evolution because of knowledge coordination 

problems. The lack of absorptive capacity by user-firms can block overall industrial change. Therefore, 

the model reveals as an emergent property the existence of meso-level coordination failures for specific 

institutional conditions (i.e. deficient institutional and socio-economic frames unable to engender high 

numbers of absorptive user-firms: right-tailed Beta distributions). 
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Figure 4. Second order polinomial fit (Collapse/skew). 

 

We have related the shape or skew of the Beta-distribution with the characteristics of the institutional 

framework that generates downstream absorptive capacity, or what we called high values for the “firm-

specific understanding radius” (see section 3 and appendices A and B). This framework involves 

supporting institutions for the provision of specific skills by training (Universities and technical 

institutes), but also domain-specific schools for users or professional associations, or even new linking 

institutions.  

The model results point out that innovation policy should not only target increasing knowledge where 

producer-innovation takes place, but also at the level of the user-sector, and this may imply institution-

building policies. This is a new perspective different from taxing, giving subsidies, applying neo-

classical market-failure corrections or picking winners. This need to promote absorptive capacity at the 

Sector 2 (the downstream level) to reduce blockchages upstream (Sector 1) is however not usually a key 

target for innovation policy. This implication becomes even reinforced from the new results we will 

show below in subsection 4.2. 

 

4.2  Absorptive capacity, R&D intensity, and innovation  

Let us move to another set of results. In our co-evolutionary model, firm specific R&D to profit ratios 

are the key behavioral variables to explain innovation and technological change in the upstream sector. 

Notice that the distribution of these firm-specific ratios ./ at any time, and the average R&D ratio .�0 	
∑ +/,�.//  in Sector 1 at t, are dynamic emergent properties dependent on the overall functioning of the 

model. The next step is to consider whether we might detect regularities in the computational results by 

connecting R&D intensity (given by .�0 	 ∑ +/,�.// ) in the upstream innovative sector, and the Beta (a,b) 

generative distribution in the downstream sector. The skewness of the Beta (a,b) distribution is a good 

target to explain the limit-stationary value of .�0 	 ∑ +/,�.// .  

Figure 5 shows a surprising result that we call the slump effect in the model. This effect admits an 

interesting economic interpretation and suggests a new implication for innovation policy. Specifically 
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Figure 5 illustrates a sigmoidal fit for the limit-stationary data .�0 	 ∑ +/,�.//  emerging from our runs in 

Sector 1 as we change the skew of the Beta (a,b) distribution. The model reaches stationarity in 5,000 

steps. 

 

 

Figure 5. Sigmoidal fit (Average R&D to profits ratio/skew). 

 

We can see in Figure 5 how departing from negative skew (highly left-tailed) distributions in Sector 2 

(in horizontal axis), we obtain in correspondence high average R&D to profits ratios in Sector 1 in the 

stationary limit of the dynamics. High levels of .�0 	 ∑ +/,�.//  in the innovative Sector 1 spontaneously 

emerge. Note that this emergent change happens not because of subsidies or favorable tax reductions in 

Sector 1, but because of a left-tailed pattern in the Beta (a,b) in Sector 2. That is to say, suitable 

generative structures in the user-sector, from which new firms with high absorptive capabilities 

(cognitive radius) stochastically are drawn and selected in coevolution, spontaneously induce high R&D 

investment upstream. Institutional structures that are dense in probability around relatively high 

absorptive capacity (i.e. cognitive radius) in the downstream sector drive innovative efforts in the 
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upstream sector. As a policy model this means that to increase the return to R&D in Sector 1, we need to 

boost absorbtive capacity in Sector 2. 

The decreasing relationship explaining lower values for .�0 	 ∑ +/,�.//  in Sector 1 in terms of 

increasing Beta (a,b) skew is clear in Figure 5. Notice that the range of change in the emergent values 

for .�0 	 ∑ +/,�.//  is wide: from around 13 percent of net profits devoted to R&D (on average in Sector 1 

as a stationary value) in the best cases, to two percent of profits to R&D on average in Sector 1 under 

less innovative conditions. 

In Table 3 the numerical results of the sigmoidal estimation for Figure 5, show a very good 

statistical fit to the model-generated data when we use the inverted sigmoidal. The specific functional 

form that we have estimated for the stationary results of .̅  and skew is:   .̅ 	 34
�5�67·9:;<=6> � ?@  where 

?�, ?), ?*, ?@ are the coefficients to be estimated. It is a highly nonlinear regression, so that we paint (in 

shaded bands in Figure 5; 90% confidence interval) the confidence set around the fitted curve in Figure 

5 and we can observe that the estimation is a good fit. Table 3 shows the numerical results for 

coefficients, intervals and very low p-values (high statistical significance of the explanatory variable).  

 

.̅ = F(Skew) 

Funtion Coef. Fit P-value 

Sigmoidal 

?� 0.0546695�0.00091479 0.0000000000000002 

?) 3.0831232 � 0.11519132 0.0000000000000002 

?* "0.1610722 � 0.03749395 0.00000000000282 

?@ 0.0584723 � 0.00061389 0.0000000000000002 

�'+AB&�% CD�EB�.B F..G. 	 0.008813 

 

 

Table 3. Sigmoidal fit for the result in Figure 5. 

 

The best-fit (sigmoidal) that can be seen in Table 3 is given by: 
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.̅ 	 0.0546695
1 � '*.
H*�)*) ·IJ�KL
.�M�
N)) � 0.0584723 . 

What is relevant in this result (Figure 5 and Table 3) is what we call the “slump effect” of R&D 

intensity. In economic terms, we find a non-linear relationship which explains R&D intensity in the 

innovative upstream sector with absorptive capacity in the downstream sector (skew) as the regressor. 

Moreover, the inverted sigmoidal shape in Fig.5 indicates that, as the generative structure in the 

downstream sector becomes less generative of aborptive capacity (Beta (a,b) becomes more right-

tailed), then we obtain initially slight reductions in .�0 	 ∑ +/,�.// . Eventually, we reach a point of skew 

from which .�0 	 ∑ +/,�.//  decreases sharply: from emergent values of about 11 percent of profits to R&D 

in Fig.5, we quickly fall to values of five percent along the vertical axis. This is the slump effect. As we 

see in Fig. 5, in our model, absorptive capacity in the user-sector influences in a highly non-linear 

manner the R&D-to-profits emergent ratio in the innovative upstream sector.  

From an economic point of view, constructive institutional policies targeting the Beta (a,b) generative 

structure in the downstream sector have a significant effect in increasing R&D intensity and 

technological change in the upstream sector. Thus, the model suggests that the user-firm’s capability to 

understand and assimilate innovations is crucial in generating spontaneous and voluntary increases in 

R&D upstream. This is a very important result which poses additional arguments in favour of 

procurement policies capable of unchaining technological progress with no need to rely on taxes, pickig 

winners, subsidies and other traditional policies.  

Finally, we would like to point out that our model formally supports previous results in the literature 

-such as Adner (2017), Adner and Kapoor (2010) or Jacobides et al. (2018)- in which it is shown how 

coordination failures within industry ecosystems may block innovation adoption and technological 

change. Nevertheless, our model adds something very important to these results, namely, the dangerous 

possibility that the mechanisms underlying innovation slowdowns may be highly non-linear (the slump 

effect). In these cases, silent and even moderate deteriorations of the socio-economic and institutional 

frames engendering user-firms have only minor effects (at first!) in the innovation rates; but 

unexpectedly and in a very quick manner, an slightly higher deterioration of the generative structure 

near the inflection zone (see Fig. 5) can produce a very intense decrease in innovativeness (in an inverse 
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sigmoidal way). This is a possibility that adds a new perspective to recent debates on possible innovation 

slowdowns in modern economies (e.g. the Gordon vs Mokyr controversy). 

4.3 Illustrative Examples 

In this section we illustrate our results with two specific examples: The puzzle of commercial 

supersonic aviation and the challenges posed by advanced robotics to design the factory of the future. 

Both cases highlight: i) The need of knowledge coordination between vertical adjoin segments in 

complex industrial architectures; ii) The need of proper supporting institutions to coordinate 

technological knowledge at the intersectoral level; iii) The potential speed-up feedbacks between  the 

absorptive capacities of downstream sectors and the innovation performance of upstream sectors. These 

mechanisims can be related to what we have called in the model the slump effect.  

The puzzle of commercial supersonic aviation: 

 Aviation technology was born at the beginning of the 20th Century. Few decades after, in 1926, 

technological developments made possible commercial aviation, and in 1947, a manned aircraft broke 

the sound barrier, appearing the supersonic technology. This technology was firstly exploited for 

military purposes during the 50s, with engineers being focussed on building safer planes.  It was during 

the 60’s, when supersonic technology was seen as a promising option also for commercial flights. 

During that decade, research teams at competing airframers in USA, USSR and Europe, started working 

on making possible supersonic commercial flights. As a result, the first supersonic prototypes were 

design and built: the soviet Tupolev TU-144 prototype appeared in 1968 and the British-French 

Concorde was the next, in 1969. USA was not an exception and Boeing and General Electric entered 

also into the scene. At that time, the feeling was that the future of commercial aviation would be 

supersonic. But the next decades would show that, after some flights, mainly intercontinental and 

operated in a very discontinuos manner, supersonic technology would be interrupted until its 

disappearance at the beginning of the 21st Century. 

The reasons behind the interruption of the commercial supersonic technology remain intriguing. As a 

non-mature technology, it suffered from some shortcomings as noise pollution, excessive fuel 

consumption and some concerns about safety. There are also abundant conflicting studies questioning 

the long-term profitability of supersonic commercial flights because of demand-side factors (see Bale 

and Sharp, 2013). But, as in any other non-mature technology, all these shortcomings could have been 
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overcome by technological investments in better aircrafts performance upstream, whilst, commercial 

exploitation downstream could have led to a more profitable business model. What seems clear is that, 

commercial supersonic flights operated, both, under a strict monitoring regulatory control on design and 

development of the technology upstream and, in a very discontinuos manner with susbstantial vacuums 

for airlines and final customers. Therefore, during the time at which commercial supersonic flights were 

in place, airframers, airlines and customers were not able to align their needs around technological 

improvements. Technology was developed up-bottom without putting attention to the vertical inter-links 

(between airframers, airlines and final customers). Under these conditions, it seems difficult for a 

technology to achieve the proper developments needed to consolidate its position at the market place. In 

terms of our model results we can argue that, somehow, the failure of commercial supersonic technology 

can be seen as a knowledge coordination problem. Technological developments upstream overshot in 

some directions the implementability of supersonic commercial aircrafts, indeed, commercial flights are, 

nowadays, slower than they were in the 70s. On the other side, certain safety and noise-related 

technological shortcomings remained unsolved because upstream and downstream firms did not manage 

to coordinate their needs and efforts. Finally, if we look at the potential developments that are currently 

perceived for the re-opening of this industry, for example, the American Boom Supersonic airframer 

together with Japan Airlines announced a re-start of the supersonic commercial flights at some point in 

the mid-2020, if can be predicted that a possible speed-up of this trajectory once vertically linked efforts 

may be carried out.    

 

The challenges posed by advanced robotics to design the factory of the future. 

Advance robotics is seen as one of the main potential driving forces to dynamize the factory of the 

future. According to Küpper et al. (2019), the three precondition for this to happen would be: i) 

Significant reductions in price for future adquistions of advance robotics machinery. This reductions 

would appear due to process innovation achievemensts in the advance robotic sectors; ii) A better 

adequancy between the factories’ needs and the performance developments of advanced robotics. This is 

expected to happen through product innovation in advance robotic sectors; iii) It is needed to build up 

some new managerial capabilities in downstream firms. 

Therefore, if we analyse these requirements with the lenses of our model, it seems clear that, for the 

correct implementation of advance robotics, it is needed proper intersectoral knowledge coordination 
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between advance robotics producers upstream, and the specific manufacturing sectors involved 

downstream (e.g. in transportation and logistic firms, consumer technology producers and automotive 

companies). Otherwise, our model predicts a potential technological overshooting upstream that can be 

propagated downstream frustrating that manner, the expected promising productivity gains in factories. 

In other words, further intersectoral absorptive capacities are needed downstream for the slump effect to 

take place upstream. Since advance robotics seem to be a technology that can have many developments 

in several sectors downstream (transport, automotive, engeneeiring, healthcare, etc.), the development of 

intersectoral supporting institutions would be also very important for economic development and 

growth. Therefore a new innovation policy is claimed.  

There exists some examples of the kind of institutional support that would be needed, for example: the 

Manufacturing Advisory Services sponsored by the UK Department for Business, Innovation and Skills, 

the Manufacturing Extension Partnership funding from the US National Institute of Standards and 

Technolog or Industrial Research Assistance Program (IRAP) sponsored by Canada’s National 

Research Council (see Shapira and Youtie 2016). However, even if all these organizations exist, they are 

very marginal compared to the R&D driven supply side measures, and they are not specifically focussed 

on the intersectoral connections. Same argument applies for the skill enhancement policies already in 

place.  Therefore, a new rationale can be inferred from our model that implies that the key role for 

innovation policy has to be, undoubtedly, intersectorally oriented.  

 

5 Discussion 

We have proposed a specific (two-sector) model of a general analytic concept of multisector innovation 

interdependence. In our computational two-sector model (following Dosi et al. 2013) Sector 1 is an 

innovative sector producing and selling machines, and Sector 2 is a user innovative sector that buys 

machines from Sector 1, produces consumption goods and supplies goods to final consumers. The key 

point of our model is that the cognitive alignment of knowledge creation and absorption capabilities 

among the innovation trajectories of Sector 1 and Sector 2 is complex. This is because absorptive 

capacity constraints in the downstream sector can backpropagate to cause innovation overshooting in the 

upstream sector.  
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We have modeled this general knowledge coordination problem as a multisectoral process in which 

firms producing machines in Sector 1 compete in price and machine-type (quality) performance to 

capture users. They fix prices following a mark-up pricing rule and spend on R&D-innovation a lagged 

proportion of profits. Firm performances in Sector 1 evolve by innovation. Downstream in Sector 2, 

firms buy machines, fix prices, and produce varieties of a consumer good. Both sectors have entry and 

exit mechanisms. A new feature of our model is that firms in Sector 2 have a specific (endogenously-

changing) knowledge endowment or absorptive capacity that allows them to understand (or not), and 

choose among the set of machine-varieties or formal parts of it offered by Sector 1. Therefore, the 

dynamics linking both sectors depend on the emergent co-evolution of innovation and absorption 

activities taking place and developing across both sectors. 

The computational results of our model highlight the importance of inter-sectoral absorptive capacity 

constraints in innovation linkages between the two sectors in the economy. Innovation in the upstream 

sector (Sector 1) can be stimulated – but can also be slowed or even blocked – depending on the 

absorptive capacity of the downstream-user sector (Sector 2). We have found that not only the 

absorptive capacity of the user-Sector 2, but also the evolution of this sector in interaction with the final 

consumers are crucial for the sustainability of activities in Sector 1 (upstream). 

Balanced sectoral knowledge requires solving a meso-macro coordination problem. In a complex 

evolving economy, this is a major task for innovation policy. Thus, drawing on the model, we could 

suggest that the lack of absorptive capacity in certain realms of activity in modern economies might be 

preventing the timely adoption of radical contemporary innovations. Moreover, it could be the case that 

whereas we observe increasing innovation rates in certain (upstream) activities, the overall effects of 

technological change could be difficult to be seen if downstream sectors were insufficiently absorptive 

of innovation. Indeed, the consequences of innovation slowdowns due to knowledge-coordination 

problems can be unpredictable from the viewpoint of standard macroeconomic policy, and may end up 

in income distribution problems, fluctuating growth paths and employment pathologies such as those 

analyzed in Fatas-Villafranca et al. (2012). 

The model we have presended in this paper can help make sense of the widely observed low 

productivity performance of modern innovation policies as a consequence of sectorally unbalanced 



29 

 

knowledge and frictions in intersectoral co-evolution. The innovation policy problem lies in aligning 

innovation and absorptive capacity in a two-sector non-linear stochastic complex framework. New roles 

for innovation policy are suggested, such as combining supporting and intersectoral connective 

institutions. In this regard, the slump effect, according to which improving the generative structures in 

downstream sectors could have very sharp effects in upstream R&D, highlights promising new ways for 

innovation policy in the near future. 
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APPENDIX A. The model equations 

We formally state the model assumptions (see also Appendix B). 

The Capital-good sector (Sector 1) 

Prices and performance 

At time t, we have a changing set of firms in Sector 1: C�� 	 {?/,�� }. We denote by ?/,��   each individual 

firm i in Sector 1 at t. These firms produce different varieties of a capital-good we call machine. We 

assume profit-seeking firms that compete in price Q/,�  and machine performance �/,�  (performance is 

normalized on the unit interval). Firms in Sector 1 set prices using an endogenously-changing mark-up 

(R/,� > 1) over expected unit cost. Thus the price set up by firm i at t is:  

Q/,� 	 R/,�T/,��                                      (A1)                                  

We highlight two aspects in the pricing routine. On the one hand, we consider that the higher the 

expected market share of each firm, the higher the margin it applies (Almudi et al. 2012, Winter 1984). 

On the other hand, we state that each firm i delineates at t the set of “perceived close rivals” depending 

on performance distance. This set is determined according to information from t–1, and is a firm-specific 

strategic trait. We define this set as: 

Λ/,� 	 V,: X�J,� " �/,�X ≤ Z/��[�\],    Z/ ∈ (0,1)               (A2)                                

From (A2) each firm estimates the rivals’ overall market power by adding up the market shares of the 

close rivals: _∑ +J,�L�J`ab,c d. If we now consider this intensity of direct competition _∑ +J,�L�J`ab,c d as an 

element that makes the demand for the specific machine more elastic (it erodes the perceived market 

power of the firm), the mark-up set up by firm i at t can be obtained as follows: 

R/,� 	 e5∑ �:,cf4:gh:,cf4
e5∑ �:,cf4:gh:,cf4 L�b,c;   ,      i > 1               (A3)                          

+/,�� 	 �
j�k�(Ic4)  for new firms,  and +/,�� 	 +/,�L� otherwise. 

Finally, regarding firm performance (�/,�) we assume that firms improve their machines through 

innovation (below).  

Demand-driven production and costs 

We assume demand-driven production in Sector 1, so that l/,� 	 l/,�� . Likewise, we assume that total 
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costs include production costs and R&D costs. We consider constant and common unit production costs 

(c). Firms will differ in their unit R&D efforts. To set prices (see (A1)), firms use ex-ante expected unit 

costs. They must use expected unit costs because they still do not know their demand-driven level of 

production and sales. We assume naïve expectations about the production level, so the expected unit cost 

is: 

T/,�� 	 T � mb,c
nb,c; 	 T � mb,c

nb,cf4 ,          T > 0                              (A4) 
                     

Once the structure of demand arises (below) and the exchanges between Sectors 1 and 2 have occurred, 

firms will know the effective production and the effective unit costs. Then, they will calculate the real 

profit for i at t as:  

o/,� 	 _Q/,� " T/,�dl/,�;   T/,� 	 T � mb,c
nb,c                     (A5) 

Only profitable firms remain in the market (see Appendix B).  

We also asume that firms devote a specific proportion of profits to R&D with a lag, so that: 

�/,� 	 ./o/,�L�,           ./ ∈ (0,1)                     (A6) 
We often find slightly different R&D spending routines in the literature, but all of them render 

essentially similar results (see Fatas-Villafranca et al. 2008, 2012, 2014, Bloch and Metcafe, 2018 and 

Almudi et al. 2012, 2013).  

We also assume that every firm in Sector 2 demands, at most, one unit of a specific variety of the 

capital-good from Sector 1 and uses this machine to produce a consumption good in Sector 2. For 

simplicity, we assume that every unit of capital totally depreciates and dissappears at no cost at the end 

of each period. When selecting a specific type of machine at t, downstream firms assess the prevailing 

levels of price and performance in Sector 1. Observe that if we define the set of customers for each 

capital-firm i at t in Sector 1 as Ω/,�, we have l/,�� 	 T�.B_Ω/,�d. 
R&D-based Innovation 

Let q/,� be the flow of new knowledge generated by each firm i in Sector 1 at t. Assume this flow is a 

random realization of a (truncated) Pareto distribution, so that  q/,�~rA+D.,  with "rA+D" representing the 

truncated Pareto distribution, supporting values L=0 and H=1. We endogenize the typical Pareto-

parameter (the slope of the density function t) so that t 	 �
u∙/[/���/w�5(�Lu)∙k����kjx , where (a la Nelson 
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1982, Fatas-Villafranca et al. 2009, Dosi et al. 2017) we have: 

AyAD�DAGE 	 \cz{|L\b,c
\b,c ,  assimilation of external knowledge from the gap to the frontier;  

                                                                                                                                                       (A7) 

.'+'�.Tℎ 	 mb,c
mb,cz{| , generating knowledge from (normalized) inner R&D; 

In (A7), we assume that the productivity of R&D reflected in the flow of new knowledge q/,�, depends 

on both complementary sources, with a sectoral bias denoted by parameter ~ that determines the relative 

importance of imitation. The lower the firm-specific value of  θ  at t, the higher the probability of 

obtaining a large flow of new knowledge γ�,� . Finally, we assume that the relative performance of each 

Sector 1 firm is updated through a mechanism in which those firms generating higher than average flows 

of new knowledge, i.e.  q/,� " q̅� > 0 , increase their relative performance compared to rivals in Sector 1. 

Thus: 
\b,c=4L\b,c

\b,c 	 q/,� " q̅�;      q̅� 	 ∑ �x,�qx,�x                (A8) 

Firm entry-exit 

Firms in Sector 1 with profit o/,� ≤ 0 exit the market. Also, at each time step, one new firm enters the 

sector. With probability "�" , the new firm’s traits are selected randomly (so that the new entrant enters 

into the sector by carrying genuine novel traits). With probability "1 " �" , the new firm copies one of 

the incumbents with probabilities proportional to market shares and by bearing an implementation cost 

(Appendix B). 

The Consumption-good sector (Sector 2) 

At time t, there exists a set of firms in Sector 2,  C�) 	 V?�,�) ]. Each firm (denoted by j) produces a 

different variety of consumption-good (with different prices Q�,� and quality levels, 
��,�). Firms in Sector 

2 produce with different techniques or machine-varieties depending on the technological performances 

of their respective capital-good provider. The technological level of the machines used by firms in 

Sector 2 determines the corresponding quality of the consumption good. Firms in Sector 2 with superior 

machines will supply quality-superior consumption goods. Considering the prevailing distribution of 
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machine-performance levels on the supply-side (Sector 1 at t), and the distribution of cognitive 

endowments corresponding to the consumption firms in Sector 2 
(��,� , … , �j�k�(Ic7),�), each firm  j in 

Sector 2 decides which firm to buy from Sector 1. Assume full-capacity use and total depreciation of 

machines in one period. For simplicity, the production level in Sector 2 is normalized to 1 and fully sold 

to consumers. The market in Sector 2 is driven by a replicator equation (see below). 

 The process of machine choice by each j-firm in Sector 2 

We represent the limits of user-firms’ absorptive capacity as follows: we assume that each firm is 

endowed with a firm-specific capacity to understand, incorporate and use new technology. This firm-

specific capability depends on each firm’s experience, but it also rests on the knowledge-base traits of 

the firm (cognitive capacities), each firm’s culture regarding risk-taking, and the different abilities to 

manage technological and organizational change. We assume that each firm j has, at t, a specific 

performance interval capturing what she can understand and assimilate. These intervals are distinct 

among firms, and they get updated in a path-dependent way as firms learn by using specific machines 

(Arrow 1962b). Each user-firm j is endowed at t with a specific and changing absorption interval 

defined by a path-dependent center ��,� and a specific understanding radius .  

We also consider that firms not only care about machine performance but also about prices. Thus we 

consider that firms make their choices within the set of machines that they can understand, and they 

compare performances and prices of understandable machines. When they buy, they incorporate the 

price of the machine as a cost. This cost will be the referential upon which user-firms charge their 

margins to make the prices for final consumption. The quality of the machines determine the quality of 

the final goods to be sold in Sector 2. Formally, we propose the following process of assessement and 

choice for each machine user-firm j in Sector 2: 

(1) Firm j delimits the set of (cognitively) feasible options, which will be conditioned by the firm 

specific cognitive capabilities . This understanding radius is a way of parameterizing 

absorptive capacity in a firm. Each firm’s radius of understanding, together with the firm-specific 

changing center ��,� of the absorption interval, determine the set of feasible providers for firm j 

which is: Ξ�,� 	 VA: X��,� " �/,�X ≤ ����[�\]; 

(2) Firm j chooses a feasible-provider (a cognitively-feasible type of machine) with a probability 

)1,0(∈jρ

)1,0(∈jρ
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which is proportional to   ���/,� � (1 " ��) �1 " �b,c
∑ �:,c:g��,c

� , �� ∈ (0,1) 

(3) The quality of firm j becomes: ��,� 	 �/,�     

(4) Each firm in Sector 2 has a cost equal to the price of the machine bought: T�,� 	 Q/,� 

Since this process takes place for all the firms in Sector 2 (see also Appendix B), we can define now 

the set of customers for every single firm in Sector 1: Ω/,� 	 {A " T&+DGy'.+}.  

As long as a firm in Sector 2 uses one specific type of machine, we asume that this level of 

performance becomes the firm’s cognitive endowment for the next period: ��,�5� 	 ��,� .  

Market competition in Sector 2 

Sector 2 firms compete in price and quality in the consumption good market. We have already defined 

how to obtain the quality level of each firm, �/,�. Regarding price, we propose that consumption firms 

also apply a mark-up pricing routine. Then, we consider  

Q�,� 	 � �
�L��,c� T�,�,           � > 1                          (A9) 

In (A9) T�,�is the cost of the chosen machine, and  (>1) is just a parameter. As in Winter 1984, or more 

recently in Fatas-Villafranca et al. 2008, and Almudi et al. 2012, we consider that each firm`s market 

share is a good proxy for market power and, then, it is positively related to the margin. As in Almudi et 

al. 2013, to represent the market process, we define a firm-competitiveness (fitness) level for each firm j 

that combines normalized quality and price: 

   ��,� 	 �) ��,c
�cz{| � (1 " �))(1 " ��,c

�cz{|);            �) ∈ (0,1)   . 

It is clear that we are representing both dimensions as related to maximum quality and price in Sector 2 

at t. Now, from this fitness indicator we represent the market process in Sector 2 as follows: 
��,c=4L��,c

��,c 	 ��,� " ��̅;          with   ��̅ 	 ∑ +x,��x,�x                 (A10)             

Firms entry-exit 

Firms in Sector 2 with a share lower than 0.005 leave the market, while at every time step one new firm 

enters the sector. The new entrant may carry novel traits, or it may copy one of the incumbents (see 

Appendix B). Regarding these two possibilities, we consider that with probability  �  (a mutation rate) 

the new entrant carries fully-novel traits. With probability 1 " � the new entrant copies one of the 

δ
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incumbent firms. In the case of fully-new entrants (with probability �), we assume that these firms 

randomly draw, as a specific feature, their understanding-cognitive radius  ) from a Beta 

distribution with positive parameters (�,b) . These parameters appear as exponents in the random 

variable and thereby control the shape of the distribution. We consider this distribution because it allows 

us to represent a wide range of alternative scenarios regarding the institutional structure engendering 

machine-user firms with different degrees of absorptive capacity. This element of the model allows us to 

represent the effects of more or less skewed generative structures, which will be our proxy to 

characterize alternative institutional systems from which more or less absorptive fully-new user-firms 

emerge. Observe that the expected value and variance of a Beta distribution, given � > 0,  b>0,  are  E= 

�
�5� , and variance  Var	 ��

(�5�)7(�5�5�)  . Finally, for those cases in which (probability "1 " �" ) the 

entrant firm copies one of the incumbents, we consider that this process takes place with probabilities 

proportional to market shares. We assume that the initial market share of the new entrant is 0.005, with 

other market shares being re-calculated accordingly (Appendix B). 

  

)1,0(∈jρ
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APPENDIX B: List of symbols and pseudocode. 

We use subscript A for any firm in Sector 1; �  for firms in Sector 2 ; we use , otherwise. 

Notation regarding Sector 1 

?/,�� : firm i from Sector 1 at time D. 

C�� 	 {?/,�� }: set of firms operating in Sector 1 at D. 

 Parameters in Sector 1 and base-setting 

�� 	 0.5 Performance/price sensitivity of demand 

i 	 1.5 Common parameter in pricing routine 

T 	 0.01 Unit production cost 

~ 	 0.5 Relative importance imitation vs inner R&D. 

� 	 0.75 Entry cost for new imitative entrants 

� 	 0.05 Probability of entering doing innovation (identical in both sectors) 
 

Firm-specific parameters in Sector 1 

./~�(0,1) Share of profits devoted to R&D 

Z/~�(0,1) Radius delimiting perceived direct competitors 
 

Firm-specific variables Sector 1 

�/,� ∈ �0,1� Technological level in relative terms 

l/,�� � 0 Expected sales (in real terms = number of expected customers) 

�/,� � 0 R&D spending 

T/,�� > 0 Expected total unit cost 

R/,� > 1 Unit profit mark-up on costs 

Q/,� > 0 Price 

q/,� ∈ �0,1� Firm knowledge 

l/� > 0 Sales (in real units = number of customers) 

+/� ∈ �0,1� Market Share 

T/,� > 0 Total unit cost (ex post) 

o/,� � 0 Total firm profit 

 

Notation regarding Sector 2 

?�,�) : firm j in Sector 2 at D.  
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C�) 	 {?�,�) }: Set of firms in Sector 2 at D. 

Parameters in Sector 2 and base-setting 

�) 	 0.5 Performance/price sensitivity of demand 

� 	 0.05 Probability of entry doing innovation (equal in both sectors) 

� 	 1.06 Common parameter in pricing routine 

� 	 1 Parameter beta-distribution 

� 	 1 Parameter beta-distribution 
 

Firm-specific parameter Sector 2 

��~Beta (�,b) Cognitive absorptive capacity (as a radius) 

 

Firm-specific variables in Sector 2 

��,� ∈ �0,1� Knowledge to manage machines 

T�,� > 0 Cost of the machine 

��,� � 0 Machine quality 

Q�,� > 0 Price of the variety of consumption good 

��,� ∈ �0,1� Consumption good firm-specific fitness (tradeoff quality/price) 

+�,� ∈ �0,1� Market Share 

o�,� � 0 Firm profit 

 

Aggregates 

• Number of firms in each sector: T�.B(C��) and T�.B(C�)). 

• Industrial concentration index (Herfindhal) in each sector:  �� and  �). 

Parametric conditions when departing from the standard (base) setting 

• 0 ≤ �� ≤ 1; 

• i > 1; 

• T > 0; 

• 0 ≤ ~ ≤ 1; 

• � � 0; 

• 0 ≤ � ≤ 1; 

• 0 ≤ �) ≤ 1; 
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• � > 1; 

• � > 0; 

• � > 0; 
Pseudocode (Algorithm) 

1. Initialize: 

1.1. Sector 1 (machines production). Initially empty sector- no firms (C
� 	 ∅). 

1.2. Sector 2 (consumption goods production). Initially empty sector- no firms (C
) 	 ∅). 

1.3. END; 

2. For any D: 

2.1. Call Entry_Sector1; 

2.2. Call Entry_Sector2; 

2.3. Call Operate _Sector1; 

2.4. Call Operate_Sector2; 

2.5. Call Apply_Replicator_Sector1; 

2.6. Call Apply_Replicator_Sector2; 

2.7. Call Exit_Sector1; 

2.8. Call Exit_Sector2; 

2.9. END; 

3. END; 

 Define Entry_Sector1: 

1. Entry Sector 1: One new firm A enters in Sector 1 (C�� 	 C�L�� ∪ {?/,�� }); 

2. With probability �,  or if the sector is empty, then C�� 	 {?/,�� } random initialization of traits: 

./~�(0,1); 

Z/~�(0,1); 

�/,�~�(0, y),  y 	 ��L�[�\  if  ��L�[�\ exists, or y 	 1 otherwise;   

3. If the new entrant copies, then: it copies firm , ≠ A, with probability proportional to market 
share +J,�L�, so that: 
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./ 	 .J; 

Z/ 	 ZJ; 

�/,� 	 �J,�L�;      

4. Normalize ∑ �/,�/ 	 1. The new entrant affects sectoral technology levels; 

5. END; 

 Define Entry_Sector2: 

1. Entry Sector 2: A new firm j enters Sector 2 (C�) 	 C�L�) ∪ {?�,�) }); 

2. Recalculate market shares: +�,� 	 0.005,  ∑ +J,�J 	 1 " +�,� 	 0.995; 

3. With probability �, or if the sector is empty, random initialization of traits:,  

��~Beta (�,b); 
��,�~�(0, y),  y 	 ��L�[�\  if  ��L�[�\ exists, or y 	 1 otherwise; 

4. If the new entrant copies: It copies firm , in Sector 2 with a probability which is proportional to 
its market share +J,�L�,  and: 

�� 	 �J; 
��,� 	 �J,�L�; 

5. END; 

 Define Operate_Sector1: 

1. For each firm A in Sector 1: 

1.1. R&D Investment: 

1.1.1. If it is a new imitative entrant: �/,� 	 �J,�; 

1.1.2. otherwise: �/,� 	 ./o/,�L�;   

1.2. Expected unit cost: 

1.2.1. If it is a new imitative entrant: T/,�� 	 T � � mb,c
nb,c; ,   l/,�� 	 lJ,�L�; 

1.2.2. If it is a new entrant but it does not imitate: T/,�� 	 T; 

1.2.3. otherwise: T/,�� 	 T � mb,c
nb,c; ,   l/,�� 	 l/,�L�; 
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1.2.4. END; 

1.3. Delimitation of direct rivals (A ≠ ,): ¥/,� 	 _,: _�J,� " �/,�d ≤ Z/��[�\d; 

1.4. Set Cournot mark-up: R/,� 	 e5∑ �:,cf4:gh:,cf4
e5∑ �:,cf4:gh:,cf4 L�b,c;     , +/,�� 	 �

3�k�(Ic4)  for new firms and 

+/,�� 	 +/,�L� otherwise; 

1.5. Pricing: Q/,� 	 R/,�T/,�� ; 

1.6. New knowledge at t: q/,�~rA+D., with "rA+D." representing a (truncated) Pareto distribution, 
supporting values ¦ 	 0,   	 1 and parameter t (slope of density function). We have t in our 
model as being determined by: 

t 	 �
u∙/[/���/w�5(�Lu)∙k����kjx; 

AyAD�DAGE 	 \cz{|L\b,c
\b,c , that is, assimilation of knowledge from the gap to the frontier; 

.'+'�.Tℎ 	 mb,c
mb,cz{|, that is, knowledge obtained from inner R&D; 

2. END; 

 Define Operate_Sector2: 

1. For each firm �: 

1.1. Re-scaling  ��,�L� to be comparable with the values �J,�, since values ��,�L� range within 

§0, �
3�k�(Ic4)L�¨, whereas the values �J,� range in  §0, �

3�k�(Ic4)¨ , we have an additional firm in 

the current period: 

��,�L�© 	 ��,�L� ∙ 3�k�(Ic4)L�
3�k�(Ic4) ;  

1.2. Selection of understandable machines: ª�,� 	 _,: _��,�L�© " �J,�d ≤ ����[�\d; 

1.3. Buy a machine from A with probability proportional to: (demand for Sector 1 firms) 

���/,� � (1 " ��) �1 " �b,c∑ �:,c:g«�,c
�; 

T�,� 	 Q/,�; 

��,� 	 �/,�; 

��,� 	 �/,�; 
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1.4. Pricing: Q�,� 	 � �
�L��,c� T�,�; 

1.5. Firm  � competitivenes (fitness) in the consumption goods market: 

��,� 	 �) ��,c
�cz{| � (1 " �)) §1 " ��,c

�cz{|¨; 

2. END; 

 Define Apply_ Replicator_Sector1: 

1. For each firm A in Sector 1, update performance by: 
\b,c=4L\b,c

\b,c 	 q/,� " q̅�, q̅� 	 ∑ �J,�qJ,�J ; 
2. END; 

 Define Apply_Replicator_Sector2: 

1. For each � in Sector 2, calculate its market share from the replicator equation: 

 
��,c=4L��,c

��,c 	 ��,� " ��̅,  ��̅ 	 ∑ +x,��x,�x ; 

2. END; 

 Define Exit_Sector1: 

1. For each firm  A in Sector 1: 

1.1. Calculate ex post unit cost: T/,� 	 T � mb,c
nb,c; 

1.2. Calculate profit: o/,� 	 l/,�_Q/,� " T/,�d; 

1.3. Firm A exists the market when  o/,� ≤ 0; 

1.4. Normalize: ∑ �/,�5�/ 	 ∑ �/,�/ 	 1. Note that firm exist alters the relative values of 
technological levels in the sector, both, in the current period, and in the next one; 

1.5. Communicate to Sector 2 the re-scaling in the previous step; 

2. END; 

 Define_Exit Sector2: 

1. Each firm  � in Sector 2 exists the market when: +�,�5� ≤ 0.005; 

2. Normalize: ∑ +/,�5�/ 	 1; 

3. END; 


