
J. Math. Anal. Appl. 500 (2021) 125137
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Large time behaviour for the heat equation on Z, moments and 

decay rates ✩

Luciano Abadias a,∗, Jorge González-Camus b, Pedro J. Miana a, Juan C. Pozo c

a Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones, Universidad de 
Zaragoza, 50009 Zaragoza, Spain
b Departamento de Matemáticas y Ciencias de la Computación, Facultad de Ciencia, Universidad de 
Santiago de Chile, Santiago, Chile
c Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, 
Santiago, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 November 2020
Available online 15 March 2021
Submitted by A. Lunardi

Keywords:
Discrete Laplacian
Heat equation
Large-time behaviour
Decay of solutions

The paper is devoted to understand the large time behaviour and decay of the 
solution of the discrete heat equation in the one dimensional mesh Z on �p spaces, 
and its analogies with the continuous-space case. We do a deep study of the 
moments of the discrete gaussian kernel (which is given in terms of Bessel functions), 
in particular the mass conservation principle; that is reflected on the large time 
behaviour of solutions. We prove asymptotic pointwise and �p decay results for the 
fundamental solution. We use that estimates to get rates on the �p decay and large 
time behaviour of solutions. For the �2 case, we get optimal decay by use of Fourier 
techniques.
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1. Introduction

Diffusion processes happen constantly around us. Such diffusions processes have been studied along the 
history by many researchers of several scientific branches. For that purpose, many mathematical models 
have been appeared in the literature in the last centuries. One of the main mathematical areas which studies 
these processes is the mathematical analysis, using techniques from PDEs, functional analysis, harmonic 
analysis, among others. In particular, parabolic equations can be used to know the behaviour of diffusion 
for certain “objects” or “things” of distinct nature, as heat, diseases, population growth, and fashions. 
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The dynamic of the evolution models is one of the main feature studied by the mathematician because it 
contributes to know, in particular, the large time behaviour of the diffusion.

The nature of the object that one wants to study defines the framework of the model; for example, it 
seems natural that the model will be different if we want to understand the diffusion of a type of particles 
in a liquid, than if we want to know the evolution of the diffusion of an idea in the society. In the first case, 
the space where the diffusion takes places could be R3, or a subset of it; in the second one case would be a 
network.

The study of parabolic models usually first looks at to the most known classical diffusion equation, the 
heat equation, which was introduced by J. Fourier in 1822, see [17]. Recall that the solution of the heat 
equation on Lp(R)

{
∂tv(t, x) = Δv(t, x), x ∈ R, t > 0,

v(0, x) = f(x), x ∈ R,
(1.1)

is v(t, x) =
∫
R gt(x − y)f(y) dy (assuming f ∈ Lp(R)), where gt(x) := 1√

4πte
−x2

4t is the gaussian kernel and 

Δ = ∂2

∂x2 . Observe that integrating over all of R, we get that the total mass of solutions is conserved for all 
time, that is, ∫

R

v(t, x) dx =
∫
R

v(0, x) dx =
∫
R

f(x) dx.

This fact is known as the mass conservation principle. It is known that the time invariance property is 
reflected in the large time behaviour of solutions; if M =

∫
R f(x) dx, then

t
1
2 (1−1/p)‖v(t) −Mgt‖p → 0, as t → ∞, (1.2)

for 1 ≤ p ≤ ∞, that is, the rate of Lp-convergence from v to Mgt is o
(

1
t
1
2 (1−1/p)

)
as t goes to infinity.

On the other hand, the p-energy for p > 1 is not conservative. It is known that

‖v(t, ·)‖p ≤ C‖f‖qt−
1
2 (1/q−1/p), ‖∇v(t, ·)‖p ≤ C‖f‖qt−

1
2 (1/q−1/p)− 1

2 ,

‖∂tv(t, ·)‖p ≤ C‖f‖qt−
1
2 (1/q−1/p)−1,

for f ∈ Lq(R) and 1 ≤ q ≤ p ≤ ∞. Such inequalities can be generalized to higher derivative orders, see [10, 
Part II, Section 9.3].

Also, one can study the first moment, the vector quantity 
∫
R x v(t, x) dx. If we assume that (1 + |x|)f ∈

L1(R), such moment is also conserved in time. This also allows to get an improvement on the convergence 
rate (1.2); if (1 + |x|)f ∈ L1(R), then

t
1
2 (1−1/p)‖v(t) −Mgt‖Lp(R) ≤ Ct−1/2. (1.3)

However, the second moment ∫
R

x2 v(t, x) dx =
∫
R

x2 f(x) dx + 2t
∫
R

f(x) dx

is time dependent. Moreover, only integral quantities conserved by the solutions of (1.1) are the mass and 
the first moment. Some references where one can find previous known asymptotic results about the solution 
of (1.1) are [9,13,16,31,33].
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This type of large-time asymptotic results has been also studied for several diffusion problems. For 
example in [8,13,19,24,29] the authors studied large-time behaviour and other asymptotic estimates for the 
solutions of different diffusion problems in RN , and similar aspects are studied for open bounded domains 
in [7,18]. Estimates for heat kernels on manifolds have been also studied in [6,21,26]. In [28], the author 
obtains gaussian upper estimates for the heat kernel associated to the sub-Laplacian on a Lie group, and 
also for its first-order time and space derivatives.

The heat equation is governed by the Laplace operator Δ; such differential operator takes several forms 
depending on the spaces where we are working. In this manuscript, we focus on the heat propagation model 
on the infinite one dimensional mesh Z (also called one dimensional infinite lattice). In the following, we 
will refer to the operator who defines such model as the discrete Laplacian, which is given by

Δdf(n) := f(n + 1) − 2f(n) + f(n− 1), n ∈ Z,

for each sequence f defined on Z. The main goal of the paper is to know the decay rates and large time 
behaviour on �p := �p(Z) (1 ≤ p ≤ ∞) for the solution of the non-homogeneous discrete heat problem

{
∂tu(t, n) = Δdu(t, n) + g(t, n), n ∈ Z, t > 0,

u(0, n) = f(n), n ∈ Z.
(1.4)

In the previous equation, u denotes the solution, f the initial data, and g the linear forcing term. It is known 
that if f ∈ �p, and g(t) ≡ g(t, ·) belongs to L1

loc([0, ∞), �p), then (1.4) has a unique mild solution given by

u(t, n) = Wtf(n) +
t∫

0

(Wt−sg(s, ·))(n) ds, (1.5)

where (Wt)t≥0 is the heat semigroup whose infinitesimal generator is Δd; more explicitly, the semigroup 
(Wt)t≥0 is of convolution type, that is

Wtf(n) = (G(t, ·) ∗ f)(n) :=
∑
j∈Z

G(t, n− j)f(j), n ∈ Z,

where the discrete heat kernel is given by G(t, n) := e−2tIn(2t), being In the Bessel function of imaginary 
argument and order n ∈ Z. Moreover, if g ∈ C([0, ∞), �p) then u given by (1.5) is a classical solution of 
(1.4). For more details about discrete heat kernel see [4,22,23], and for the general theory of semigroups see 
[2, Part I, Chapter 3] and [11, Chapter VI, Section 7].

The convolution discrete heat kernel is called the fundamental solution of our diffusion process; it is the 
solution of

{
∂tu(t, n) = Δdu(t, n), n ∈ Z, t > 0,

u(0, n) = δ0(n), n ∈ Z,
(1.6)

where the initial data is the unit impulse symbol δ0 (the Dirac mass on Z). Recall that δ0(0) = 1 and 
δ0(n) = 0 for n 
= 0.

Under our knowledge, H. Bateman was the first author who proposed the solution of (1.6) in [3]. Moreover, 
he studied a broad set of differential-difference equations (heat and wave equations), whose solutions are 
given in terms of special functions; the Bessel function Jn, the Bessel function of imaginary argument 
In, the Hermite polynomial Hn and the exponential function. After that, several papers on the topic have 
appeared. The author in [22,23] study the discrete heat kernel on Zd

h to get large time asymptotics in �p(Zd
h)
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for the solutions of the homogeneous problem. The main tool used in that papers is the semidiscrete Fourier 
transform. Some results in our paper (Theorem 4.3 (i) and (iii) for large time values, Theorem 5.1 (1) (i), 
and the corresponding homogeneous part of Theorem 6.1) have been proved previously in [22,23], but we 
include that because we use different techniques (properties of Bessel functions instead semidiscrete Fourier 
transform), and to make the manuscript self-contained. In [4], the authors do an harmonic study of the 
homogeneous previous problem, studying maximum principles for the discrete fractional Laplacian, weighted 
�p-boundedness of conjugate harmonic functions, Riesz transforms and square functions of Littlewood-Paley. 
They also prove that (Wt)t≥0 is a Markovian C0-semigroup on �p whose generator is Δd (observe that Δd
is a bounded operator on �p). This means that it has the semigroup property (WtWs = Wt+s), the strong 
continuous property (f = W0f = limt→0+ Wtf in �p), it is contractive (‖Wtf‖p ≤ ‖f‖p), it is positive 
(Wtf ≥ 0 whenever f ≥ 0), and it satisfies the mass conservation principle (Wt1 = 1). In [5], the authors 
obtained a series convolution representation for the fractional powers of the discrete Laplacian, and they 
used it to prove regularity properties on discrete Hölder spaces and convergence results from the discrete 
to the continuous case. In [27], a deep study for the discrete wave problem is done. The authors also study 
spectral properties on �p spaces. They get that (Wt)t≥0 is an holomorphic semigroup on �p of angle π, with 
the spectrum σ(Δd) = [−4, 0]. In [30], the author proves pointwise asymptotic results for the solution of 
(1.4). More precisely, he proves that the solution behaves asymptotically as the mean of the initial value. 
Recently, some super-diffusive linear processes in the one-dimensional mesh are proposed in [14] by means 
of d-Laplacians.

As we have said, the main aim in this paper is to study the large time behaviour of solutions of (1.4), 
and also to compare the results obtained to the continuous case. Along the paper, we revisit the results 
commented previously, but now in the discrete setting, and considering the non-homogeneous problem. First, 
in Section 2, we state some known inequalities and identities, mainly for the Bessel function of imaginary 
argument In, which will be applied in next sections. The Section 3 is devoted to the moments of Bessel 
functions In (Theorem 3.3), and in particular of the fundamental solution G(t, n) (Corollary 3.4). It allows 
to get the mass conservation principle, and the first and second order moments to the solution of (1.4)
with null linear forcing term (g ≡ 0), see Remark 3.6. This suggests that it is possible to obtain similar 
asymptotic results to the continuous case. In Section 4 we do a deep study for the large time behaviour 
of the discrete gaussian kernel G(t, n). We get an important technical result (Lemma 4.1) where we study 
pointwise estimates, which will be a key role on the main result of the paper, and we also study �p decay 
rates (Theorem 4.3) and compare to the continuous case ones. The following section, Section 5, is focused on 
studying �p decayment for the solutions of (1.4) assuming �q conditions (1 ≤ q ≤ p ≤ ∞) on the data f and 
on the linear forcing term g (Theorem 5.1). In addition, we get an optimal �2 result by Fourier techniques 
when the data belongs to �1 (Theorem 5.3). In Section 6 we present how the solution of (1.4) converges, 
for large t, to a constant (depending on the mass of the problem) times the discrete gaussian, on �p spaces, 
similarly to what happens in the continuous case ((1.2) and (1.3)), see Theorem 6.1. The most difficult and 
technical item in that result is the corresponding one to the non-homogeneous part.

2. Preliminaries and known results

In this section we show some known identities, inequalities and results that we will use along the paper, 
to make easier the reading.

First, we introduce the following inequality

(1 − r)ηrγ ≤
(

γ

γ + η

)γ

, γ ≥ 0, η > 0, 0 < r < 1, (2.1)

which was a key point in the proof of many results in [4].
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Let α, z ∈ C, then the gamma function satisfies

Γ(z + α)
Γ(z) = zα

(
1 + α(α + 1)

2z + O(|z|−2)
)
, |z| → ∞,

whenever z 
= 0, −1, −2, . . . and z 
= −α, −α− 1, . . ., see [12, Eq.(1)]. Particularly

Γ(z + α)
Γ(z) = zα

(
1 + O

(
1
|z|

))
, z ∈ C+, �α > 0. (2.2)

We denote by In the Bessel function of imaginary argument (also called modified Bessel function of first 
kind) and order n ∈ Z, given by

In(t) =
∞∑

m=0

1
m!Γ(m + n + 1)

(
t

2

)2m+n

, n ∈ Z, t ∈ C.

Since n is an integer, 1
Γ(n) is taken to equal zero if n = 0, −1, −2, . . ., so In is defined on the whole complex 

plane, being an entire function. Now we give some known properties about Bessel functions In which can 
be found in [25, Chapter 5] and [32]. They satisfy that I−n = In for n ∈ Z, I0(0) = 1, In(0) = 0 for n 
= 0, 
and In(t) ≥ 0 for n ∈ Z and t ≥ 0. Also, the function In has the semigroup property (also called Neumann’s 
identity) for the convolution on Z, that is,

In(t + s) =
∑
m∈Z

Im(t)In−m(s) =
∑
m∈Z

Im(t)Im−n(s), t, s ≥ 0,

see [15, Chapter II]. The generating function of the Bessel function In is given by

e
t(x+x−1)

2 =
∑
n∈Z

xnIn(t), x 
= 0, t ∈ C. (2.3)

It also satisfies the following differential-difference equation

∂

∂t
In(t) = 1

2

(
In−1(t) + In+1(t)

)
, t ∈ C. (2.4)

In the following we enumerate some integral representations of the modified Bessel functions which are 
useful along the paper (see [4, Section 8] for example, and references therein); let n ∈ N0 := N ∪ {0} and 
t ∈ C, it follows

In(t) = tn√
π2nΓ(n + 1/2)

1∫
−1

e−ts(1 − s2)n−1/2 ds, (2.5)

In+1(t) − In(t) = − tn√
π2nΓ(n + 1/2)

1∫
−1

e−ts(1 + s)(1 − s2)n−1/2 ds, (2.6)

In+2(t) − 2In+1(t) + In(t) = tn√
π2nΓ(n + 1/2)

×
(

2
t

1∫
e−tss(1 − s2)n−1/2 ds +

1∫
e−ts(1 + s)2(1 − s2)n−1/2 ds

)
. (2.7)
−1 −1
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We also consider the following estimates of the Bessel functions obtained in [4, Section 8],

In(t) = et

(2πt)1/2

(
1 − (n2 − 1/4)

4t + O

(
1
t2

))
, t large, (2.8)

In(t) ∼ tn

2nn! , t → 0, n ∈ N0. (2.9)

Remark 2.1. Note that the property In(0) = 0 for n 
= 0 and I0(0) = 1, can be also obtained from (2.9). This 
implies that G(t, ·) converges pointwise to the Dirac mass δ0 (which is the identity on discrete convolution) 
as t → 0.

From the theory of Confluent Hypergeometric Functions, see [25, Section 9.11], we have

1∫
0

e−4tssγ−α−1(1 − s)α−1 ds = Γ(γ − α)e−4t
∞∑
k=0

(4t)k

k!
Γ(α + k)
Γ(γ + k) , (2.10)

and

In(t) = (2n)!
n!Γ(n + 1

2 )

(
t

2

)n

e−t
∞∑
k=0

Γ(n + k + 1
2 )

(2n + k)!
(2t)k

k! (2.11)

for n ∈ N0 and t ∈ C, see [25, (9.13.14)].
Let T be the one dimensional torus. In the following we identify T with the interval (−π, π], and the 

functions defined on T with 2π-periodic functions on R. So, we consider the Fourier transform

F(f)(θ) =
∑
n∈Z

einθf(n), θ ∈ T , f ∈ �1.

The Fourier transform is extended to �2 and it is an isometry from �2 to L2(T ), with inverse operator

F−1(ϕ)(n) = 1
2π

∫
T

e−inθϕ(θ) dθ.

In the proof of [4, Proposition 1] it is shown that

G(t, n) = e−2t

2π

∫
T

e−inθe2t cos θ dθ,

and therefore

F(G(t, ·))(θ) = e−2t(1−cos θ) = e−4t sin2 θ
2 .

3. Moments of Bessel functions

In the following we study the moments of the gaussian discrete kernel, and we apply that to get the 
moments of the solution of (1.4) with null linear forcing term (g ≡ 0). We compare the results to the 
continuous case.
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Lemma 3.1. Let (pk)k≥0 be the sequence of polynomials given by p0(t) := 1 and

⎧⎪⎨
⎪⎩

p′k(t) :=
k−1∑
j=0

(
2k
2j

)
pj(t),

pk(0) := 0

for k ≥ 1 and t ∈ C. Then the polynomial pk has positive integer coefficients, its degree is k, and pk(t) > 0
for t > 0. For k ≥ 1, we write

pk(t) =
k∑

n=1
ak,nt

n, t ∈ C;

then ak,1 = 1, and

ak,n = 1
n

k−1∑
j=n−1

(
2k
2j

)
aj,n−1

for 2 ≤ n ≤ k; in particular ak,2 = 4k−1 − 1, ak,k = (2k − 1)!!.

Proof. By definition, it is clear that the coefficients of the polynomial pk are natural numbers, its degree is 
k, and pk(t) > 0 for t > 0. For k ≥ 1, we write pk(t) =

∑k
n=1 ak,nt

n with ak,n ∈ N. Then we have

p′k(t) =
k−1∑
j=0

(
2k
2j

)
pj(t) = 1 +

k−1∑
j=1

(
2k
2j

) j∑
n=1

aj,nt
n = 1 +

k−1∑
n=1

tn
k−1∑
j=n

(
2k
2j

)
aj,n.

We integrate to obtain that

pk(t) = t +
k−1∑
n=1

tn+1 1
n + 1

k−1∑
j=n

(
2k
2j

)
aj,n = t +

k∑
n=2

tn
1
n

k−1∑
j=n−1

(
2k
2j

)
aj,n−1.

Now for n = 2, we have that

ak,2 = 1
2

k−1∑
j=1

(
2k
2j

)
aj,1 = 1

2

k∑
j=0

(
2k
2j

)
− 1 = 22k−2 − 1 = 4k − 1,

for k ≥ 2, where we have applied [20, Formula 0.151(2)]. Finally for n = k, by induction method one gets

ak,k = 1
k

(
2k

2(k − 1)

)
ak−1,k−1 = 1

k

(
2k

2(k − 1)

)
(2k − 3)!! = (2k − 1)!!. �

Remark 3.2. Here we show the polynomials pk for values 0 ≤ k ≤ 6:

p0(t) = 1,

p1(t) = t,

p2(t) = t + 3t2,

p3(t) = t + 15t2 + 15t3,

p4(t) = t + 63t2 + 210t3 + 105t4,
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Table 1
Zeros of pk for 2 ≤ k ≤ 6.

pk t0 t1 t2 t3 t4 t5

p2 0 −0.3333
p3 0 −0.0718 −0.9281
p4 0 −0.01680 . . . −0.34615 . . . −1.63703 . . .
p5 0 −0.00465 . . . −0.11705 . . . −0.80786 . . . −2.40376 . . .
p6 0 −0.00099 . . . −0.05743 . . . −0.39502 . . . −1.31451 . . . −3.23203 . . .

Fig. 1. Polynomials pk near to the origin. (For interpretation of the colours in the figure, the reader is referred to the web version 
of this article.)

p5(t) = t + 225t2 + 2205t3 + 3150t4 + 945t5,

p6(t) = t + 1023t2 + 21120t3 + 65835t4 + 51975t5 + 10395t6.

In Table 1, we present approximations of the zeros of pk for 2 ≤ k ≤ 6. We show these polynomials for 
close values to the origin in Fig. 1. Note that pk has k non-positive real zeros. Moreover, these zeros have 
the following interlacing property: if k < j, there is a zero of pj between any two zeros of pk.

In the next theorem, we present the moments (of arbitrary order) of the modified Bessel functions (In)n∈Z.

Theorem 3.3. For k ≥ 0, we have that

∑
n∈Z

n2kIn(t) = etpk(t),
∑
n∈Z

n2k+1In(t) = 0, t ∈ C,

where the polynomials (pk)k≥0 are given in Lemma 3.1.

Proof. Since I−n = In, it is straightforward to check that 
∑
n∈Z

n2k+1In(t) = 0. By the generating formula 

(2.3), we have that

∂j

∂xj

(
e

t(x+x−1)
2

)
=

∑
n∈Z

n(n− 1) · · · (n− j + 1)xn−jIn(t), j ≥ 1.

We take the value x = 1 on previous identity and conclude that

∑
n∈Z

n(n− 1) · · · (n− j + 1)In(t) := etQ(t), t ∈ C,

for a polynomial Q. Now we write
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etPk(t) =
∑
n∈Z

n2kIn(t), t ∈ C,

for some polynomials (Pk)k≥0. Note that P0(0) = 1 and Pk(0) = 0 for k 
= 0. We derive to get

et(Pk(t) + P ′
k(t)) = 1

2
∑
n∈Z

n2k(In−1(t) + In+1)(t) = 1
2
∑
n∈Z

((n + 1)2k + (n− 1)2k)In(t),

for t ∈ C, where we have used (2.4). Since (n + 1)2k + (n− 1)2k = 2
k∑

j=0

(
2k
2j

)
n2j , we obtain that

etP ′
k(t) =

∑
n∈Z

k−1∑
j=0

(
2k
2j

)
n2jIn(t) = et

k−1∑
j=0

(
2k
2j

)
Pj(t),

for t ∈ C. Therefore Pk = pk. �
For the discrete heat kernel (G(t, ·))t∈C, we obtain the following moments.

Corollary 3.4. For k ≥ 0, we have that

∞∑
n=−∞

n2kG(t, n) = pk(2t),
∞∑

n=−∞
n2k+1G(t, n) = 0, t ∈ C,

where the polynomials (pk)k≥0 are given in Lemma 3.1.

Remark 3.5. Note that for the continuous heat (or Gaussian) semigroup (gt)	t>0 we have
∫
R

s2kgt(s) ds = (2k)!
k! tk,

∫
R

s2k+1gt(s) ds = 0, �t > 0,

see [20, Formula 3326]. It is interesting to check that

lim
t→+∞

∑
n∈Z n2kG(t, n)∫
R s2kgt(s) ds

= lim
t→+∞

pk(2t)
(2k)!
k! tk

= (2k − 1)!!2k
(2k)!
k!

= 1.

Finally, we study the moments of the solution of (1.4) with null linear forcing term (g ≡ 0).

Remark 3.6. From Corollary 3.4 it follows that 
∑

n∈ZG(t, n) = 1 (see also [4, Proposition 1]). This fact 
leads to observe the mass conservation principle for the diffusion problem (1.4) with g ≡ 0;

∑
n∈Z

f(n) =
∑
n∈Z

u(t, n), t ≥ 0.

We will see in Section 6 that the mass conservation principle is reflected in the large time behaviour of the 
solution of (1.4). Moreover, the first moment is also conservative; if nf ∈ �1 one gets

∂t
∑
n∈Z

nu(t, n) =
∑
n∈Z

nΔdu(t, n) =
∑
n∈Z

((n− 1) − 2n + (n + 1))u(t, n) = 0,

therefore
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∑
n∈Z

nu(t, n) =
∑
n∈Z

n f(n).

However, similarly to the heat problem on R, by Corollary 3.4 it follows that the second moment is time-
dependent (whenever n2f ∈ �1):

∑
n∈Z

n2u(t, n) =
∑
n∈Z

n2
∑
j∈Z

G(t, n− j)f(j) =
∑
j∈Z

f(j)
∑
n∈Z

((n− j)2 + j2 + 2j(n− j))G(t, n− j)

=
∑
j∈Z

j2f(j) + 2t
∑
j∈Z

f(j).

4. Pointwise and �p estimates of the fundamental solution

In this section we show pointwise and �p decay rates for G(t, n). In the following we denote the first forward 
difference ∇df(n) := f(n +1) −f(n), for n ∈ Z and f : Z → C. The results obtained along the paper where 
this first difference appears would be also right for the backward difference, ∇d,−f(n) := f(n) − f(n − 1), 
for n ∈ Z. The notation ∇d and not ∇d,+ is for convenience, because we will only use during whole the 
paper the forward operator ∇d. It is known that the operators ∇d,± generate markovian C0-semigroups on 
�p, see [1].

The next result shows pointwise asymptotic estimates for t large for the semigroup G(t, n), depending on 

whether R := |n|2
t is greater or less than 1. Some items on next result do not depend on R, but we do such 

a distinction because it is a key technical lemma that we will use in that form in the large time behaviour 
of solutions (Section 6).

Lemma 4.1. Let R = |n|2
t with n ∈ Z \ {0} and t > 0 large enough. Then there is C > 0 (non dependent on 

n and t) such that

(i) |G(t, n)| ≤ C
t1/2 for R ≤ 1, and |G(t, n)| ≤ Ct

|n|3 for R ≥ 1.
(ii) If n ∈ N, |∇dG(t, n)| ≤ C|n|

t3/2 for R ≤ 1, and |∇dG(t, n)| ≤ Ct
|n|4 for R ≥ 1.

(iii) |ΔdG(t, n)| ≤ C
t3/2 for R ≤ 1, and |ΔdG(t, n)| ≤ C

|n|3 for R ≥ 1.

Proof. (i) First note that by (2.6) and I−n = In for n ∈ N, we have that G(t, n) − G(t, n + 1) ≥ 0 and 
G(t, −n) −G(t, −n − 1) ≥ 0 for n ∈ N0; that is, for each t ≥ 0 the sequence G(t, n) is increasing for n ≤ 0
and decreasing for n ≥ 0 (symmetric). Therefore the equation (2.8) implies

|G(t, n)| ≤ G(t, 0) ≤ C

t1/2
, t > 0.

On the other hand, we follow some ideas in the proof of [4, Proposition 3]. Doing a change of variable in 
the integral given in (2.5), we can write G(t, n) in the following way

G(t, n) = 1√
4πtΓ(n + 1/2)

4t∫
0

e−uun−1/2
(

1 − u

4t

)n−1/2

du, n ∈ N0.

Taking into account the inequality (2.1) and identity (2.2) we get

G(t, n) ≤ C
t

(n + 1)3/2Γ(n + 1/2)

4t∫
e−uun−2 du ≤ CtΓ(n− 1)

n3/2Γ(n + 1/2)
≤ Ct

n3 , t > 0, n ≥ 2.

0
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The case n ≤ −1 follows by symmetry.
(ii) We apply (2.6) to get

G(t, n) −G(t, n + 1) = 1
4t3/2

√
πΓ(n + 1/2)

4t∫
0

e−ssn+1/2
(

1 − s

4t

)n−1/2

ds, n ∈ N0. (4.1)

On one hand, by previous identity one gets

G(t, n) −G(t, n + 1) ≤ 1
4t3/2

√
πΓ(n + 1/2)

4t∫
0

e−ssn+1/2 ds

≤ CΓ(n + 3/2)
t3/2Γ(n + 1/2)

≤ Cn

t3/2
, t > 0, n ∈ N.

On the other hand, by equations (4.1), (2.1) and (2.2) we have

G(t, n) −G(t, n + 1) = 8t√
πΓ(n + 1/2)

4t∫
0

e−ssn−2
(

s

4t

)5/2(
1 − s

4t

)n−1/2

ds

≤ Ct

(n + 2)5/2Γ(n + 1/2)

4t∫
0

e−ssn−2 ds

≤ CtΓ(n− 1)
(n + 2)5/2Γ(n + 1/2)

≤ Ct

n4 , t > 0, n ≥ 2.

(iii) By (2.7) we can write that

G(t, n + 2) − 2G(t, n + 1) + G(t, n)

= 1√
πΓ(n + 1/2)t1/2

4t∫
0

e−s

(
s

2t − 1
)
sn−1/2

(
1 − s

4t

)n−1/2
ds

2t

+ 1√
πΓ(n + 1/2)t1/2

4t∫
0

e−ssn+1/2
(

s

4t

)(
1 − s

4t

)n−1/2
ds

2t (4.2)

:= (I) + (II),

for n ∈ N0. First note that for n ∈ N, |(1 − s
4t )

n−1/2|, |( s
2t − 1)| ≤ 1 for 0 ≤ s ≤ 4t. Then

|(I)| ≤ C

Γ(n + 1/2)t3/2

4t∫
0

e−ssn−1/2 ds ≤ C

t3/2
, t > 0.

Secondly, by (2.1) one gets for n ∈ N

|(II)| ≤ C

(n + 1/2)Γ(n + 1/2)t3/2

4t∫
e−ssn+1/2 ds ≤ C

t3/2
, t > 0.
0
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So,

|G(t, n + 2) − 2G(t, n + 1) + G(t, n)| ≤ C

t3/2
, t > 0, n ∈ N.

Furthermore, by (2.8) we can write G(t, 2) − 2G(t, 1) + G(t, 0) = − 1
4
√
πt3/2 + O( 1

t5/2 ), for t large. Then by 

symmetry we conclude |ΔdG(t, n)| ≤ C
t3/2 , for t > 0 and n 
= 0.

To show the second inequality, we consider again (4.2). Take n ≥ 2. Since |( s
2t − 1)| ≤ 1 for 0 ≤ s ≤ 4t, 

we apply (2.1) and (2.2) to get that

|(I)| ≤ C

Γ(n + 1/2)

4t∫
0

e−ssn−2
(

s

4t

)3/2(
1 − s

4t

)n−1/2

ds

≤ C

(n + 1)3/2Γ(n + 1/2)

4t∫
0

e−ssn−2 ds ≤ CΓ(n− 1)
(n + 1)3/2Γ(n + 1/2)

≤ C

(n + 1)3 .

Secondly for n ∈ N, by the same arguments

|(II)| ≤ C

Γ(n + 1/2)

4t∫
0

e−ssn−1
(

s

4t

)5/2(
1 − s

4t

)n−1/2

ds

≤ C

(n + 2)5/2Γ(n + 1/2)

4t∫
0

e−ssn−1 ds ≤ CΓ(n)
(n + 2)5/2Γ(n + 1/2)

≤ C

(n + 1)3 .

So, by symmetry, we conclude that

|ΔdG(t, n)| ≤ C

n3 , t > 0, |n| ≥ 3. �
Remark 4.2. Observe that the items of the above lemma for n = 0 are the following ones. By the proof of 
the item (i), G(t, 0) ≤ C

t1/2 , for t > 0. Furthermore by (2.8) we have

G(t, 0) −G(t, 1) = 1
8
√
πt3/2

+ O

(
1

t5/2

)
, t large,

so

G(t, 0) −G(t, 1) ≤ C

t3/2
, t > 0.

Also, note that |G(t, 1) − 2G(t, 0) + G(t, −1)| = 2|G(t, 1) −G(t, 0)| ≤ C
t3/2 , by the previous comment.

Furthermore, note that for n ≤ −1 we can write |∇dG(t, n)| = |∇dG(t, −n − 1)|, and we also have the 
bounds given in Lemma 4.1.

Note we consider the usual gaussian semigroup (gt)t>0 in the Lebesgue spaces Lp(R). Then it is well-
known that

(i) ‖gt‖p ≤ Cp

t
1
2 (1− 1

p ) ,

(ii) ‖g′t‖p ≤ Cp
1 (1− 1 )+ 1 ,

t 2 p 2
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(iii) ‖g′′t ‖p ≤ Cp

t
1
2 (1− 1

p )+1 ,

for t > 0. To show them, we may check directly ‖ ‖p for any 1 ≤ p ≤ ∞. An alternative (and sharp) proof 
of these inequalities is to check ‖ ‖1 and ‖ ‖∞ norms, and apply Lyapunov inequality: given X a measure 
space and f ∈ L1(X) ∩ L∞(X), then

‖f‖p ≤ ‖f‖
1
p

1 ‖f‖
1− 1

p
∞ ,

for 1 < p < ∞. In the next theorem, we show that the same inequalities hold for the discrete heat semigroup.

Theorem 4.3. Let 1 ≤ p ≤ ∞. Then for t > 0 we have that

(i) ‖G(t, ·)‖p ≤ Cp

t
1
2 (1− 1

p ) .

(ii) ‖∇dG(t, ·)‖p ≤ Cp

t
1
2 (1− 1

p )+ 1
2
.

(iii) ‖ΔdG(t, ·)‖p ≤ Cp

t
1
2 (1− 1

p )+1 .

Proof. (i) From (2.3) and In(t) ≥ 0 for n ∈ Z, t ≥ 0, it follows that

‖G(t, ·)‖1 =
∑
n∈Z

|G(t, n)| = 1.

The proof of item (i) of Lemma 4.1 gives

‖G(t, ·)‖∞ = sup
n∈Z

|G(t, n)| = G(t, 0) ≤ C

t1/2
.

We apply Lyapunov inequality to get

‖G(t, ·)‖p ≤ Cp

t
1
2 (1− 1

p ) .

To show (ii), we know that G(t, n) is symmetric on the variable n ∈ Z, and the equation (2.6) implies 
that it is decreasing on |n|. Since G(t, ·) ∈ �1, then G(t, |n|) → 0 as |n| → ∞, and

‖∇dG(t, ·)‖1 =
∑
n∈Z

|G(t, n + 1) −G(t, n)| = 2G(t, 0) ≤ C

t1/2
.

On the other hand, by equations (4.1), (2.1) and (2.2) one gets that

G(t, n) −G(t, n + 1) ≤ C

tn1/2Γ(n + 1/2)

4t∫
0

e−ssn ds ≤ C

t
,

for n ∈ N; in Remark 4.2 we have shown that G(t, 0) −G(t, 1) ≤ C
t3/2 ≤ C

t for t ≥ 1. The case t ∈ (0, 1) is 
clear by the continuity of G(t, 0) −G(t, 1) on [0, 1]. Therefore

‖∇dG(t, ·)‖∞ = sup |∇dG(t, n)| ≤ C
.

n∈Z t
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So, by the Lyapunov inequality, we conclude

‖∇dG(t, ·)‖p ≤ Cp

t
1
2 (1− 1

p )+ 1
2
.

Finally, to show (iii), note that

‖ΔdG(t, ·)‖1 =
∑
n∈Z

|ΔdG(t, n)| = 2
∞∑

n=1
|ΔdG(t, n)| + 2(G(t, 0) −G(t, 1)).

On one hand, by previous estimates,

G(t, 0) −G(t, 1) ≤ C

t
, t > 0.

On the other hand, it follows from (2.7) that

G(t, n + 2, t) − 2G(t, n + 1) −G(t, n) = 4n+1/2tn−1
√
πΓ(n + 1/2)

1∫
0

e−4tssn+1/2(1 − s)n−1/2 ds

− 4ntn−1
√
πΓ(n + 1/2)

1∫
0

e−4tssn−1/2(1 − s)n−1/2 ds

+ 4n+1tn√
πΓ(n + 1/2)

1∫
0

e−4tssn+3/2(1 − s)n−1/2 ds

:= (I) − (II) + (III),

for n ∈ N0. Then we apply (2.10) to get

(I) = 4n+1/2tn−1e−4t(n + 1/2)√
π

∞∑
k=0

(4t)k

k!
Γ(n + 1/2 + k)
Γ(2n + 2 + k)

≤ 4n+1/2tn−1e−4t
√
π

∞∑
k=0

(4t)k

k!
Γ(n + 1/2 + k)
Γ(2n + 1 + k)

= 4n+1/2e−2t

t
√
π

Γ(n + 1/2)Γ(n + 1)
Γ(2n + 1) In(2t) = C

e−2t

t
In(2t),

where we have used (2.11) in the last line. Also, by (2.10) and (2.11) one gets

(II) = 4ne−2t

t
√
π

Γ(n + 1/2)Γ(n + 1)
Γ(2n + 1) In(2t) = C

e−2t

t
In(2t).

Finally, by (2.10), we obtain that

(III) = 4n+1tne−4t(n + 3/2)(n + 1/2)√
π

∞∑
k=0

(4t)k

k!
Γ(n + 1/2 + k)
Γ(2n + 3 + k)

≤ 4n+4tne−4t(n + 3/2)(n + 1/2)√
π

∞∑ (4t)k

k!
Γ(n + 5/2 + k)
Γ(2n + 5 + k) ,
k=0
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where we have used that 2n + 3 + k

n + 1/2 + k
,

2n + 4 + k

n + 3/2 + k
≤ 8. We apply again (2.11) to get

(III) ≤ 4n+4e−2t(n + 3/2)(n + 1/2)
t2
√
π

Γ(n + 5/2)Γ(n + 3)
Γ(2n + 5) In+2(2t)

≤ C
(n + 2)(n + 1)e−2t

t2
In+2(2t).

In the previous bounds, C is a positive constant non dependent on n. Since 
∑

n∈Z e−2tIn(2t) = 1, and, by 
Corollary 3.4, 

∑
n∈Z n(n − 1)e−2tIn(2t) = 2t, then the norm ‖ΔdG(t, ·)‖1 has the desired bound, that is, 

C/t.
The proof of item (iii) of Lemma 4.1 and Remark 4.2 gives

‖ΔdG(t, ·)‖∞ = sup
n∈Z

|ΔdG(t, n)| ≤ C

t3/2
,

and the Lyapunov inequality concludes the result. �
Remark 4.4. As we have commented in the Introduction, Theorem 4.3, (i) and (iii) have been proved 
in [22,23] for large values of t using semidiscrete Fourier techniques. Moreover, all temporal derivatives 
of (G(t, n))n∈Z (and then even order of finite differences of (G(t, n))n∈Z) are estimated there using this 
technique. It seems natural to conjecture that any finite difference operator of order n (in the sense of 
linear algebra) applied to the discrete heat semigroup has the same decay rate than the n-derivative of the 
continuous heat semigroup, (gt)t>0 in the Lebesgue spaces Lp(R) i.e.,

‖g(n)
t ‖p ≤ Cpt

− 1
2 (1− 1

p )−n
2 ,

for n ≥ 0, see for example [33, Section 2.2].

5. �p-�q theory

Here, we state �p-�q decay rates for the solution of (1.4) assuming certain properties of regularity on the 
data f and on the forcing term g (Theorem 5.1). Such assumptions allow u, given in (1.5), to be a mild 
solution (see Introduction). Also, we present an optimal �2-�1 result (Theorem 5.3).

For convenience, we write the solution as u(t, n) = uf (t, n) + ug(t, n) where

uf (t, n) := Wtf(n) = (G(t, ·) ∗ f)(n), (5.1)

ug(t, n) :=
t∫

0

(Wt−sg(s, ·))(n) ds =
t∫

0

(G(t− s, ·) ∗ g(s, ·))(n) ds. (5.2)

Item (i) of part (1) in the next result appears in [22,23], but we include it to make the paper self-contained.

Theorem 5.1. Let 1 ≤ q ≤ p ≤ ∞.

(1) If f ∈ �q and t > 0, then
(i) ‖uf (t, ·)‖p ≤ Ct

− 1
2

(
1
q− 1

p

)
‖f‖q.

(ii) ‖∇duf (t, ·)‖p ≤ Ct
− 1

2

(
1
q− 1

p

)
− 1

2 ‖f‖q.
(iii) ‖Δduf (t, ·)‖p ≤ Ct

− 1
2

(
1
q− 1

p

)
−1‖f‖q.



16 L. Abadias et al. / J. Math. Anal. Appl. 500 (2021) 125137
(2) Let g(t, ·) ∈ �q, and assume there exists K, γ > 0 such that

‖g(t, ·)‖q ≤ K

(1 + t)γ , t > 0.

Then for t > 0 we have
(i) ‖ug(t, ·)‖p ≤ Ct1−min{1,γ}− 1

2 ( 1
q− 1

p ), γ 
= 1.
(ii) ‖ug(t, ·)‖p ≤ Ct−

1
2 ( 1

q− 1
p ) log(1 + t), γ = 1.

Proof. (1) We choose r ≥ 1 such that 1 + 1
p

= 1
r

+ 1
q
. By Young inequality for discrete convolution and 

Theorem 4.3 one gets

‖uf (t, ·)‖p = ‖G(t, ·) ∗ f‖p ≤ ‖G(t, ·)‖r‖f‖q ≤ Ct−
1
2
(
1− 1

r

)
‖f‖q.

The estimates for the discrete gradient and Laplacian follow similarly.
(2) Let be again r ≥ 1 satisfying 1 + 1

p = 1
q + 1

r . By Young inequality and Theorem 4.3 we have

‖ug(t, n)‖p ≤ C

t∫
0

1
(t− s)1/2(1−1/r)

1
(1 + s)γ ds

= C

( t/2∫
0

+
t∫

t/2

)
1

(t− s)1/2(1−1/r)
1

(1 + s)γ ds := I1 + I2.

For the first integral, we have

I1 ≤ C

t
1
2 (1−1/r)

t/2∫
0

1
(1 + s)γ ds.

On the other hand

I2 ≤ C

(1 + t)γ

t/2∫
0

1
s

1
2 (1−1/r) ds ≤ Ct1−γ− 1

2 (1−1/r).

Finally observe that I2 decays faster than I1 if γ ≥ 1, and I1, I2 decay with the same rate if γ ∈ (0, 1). So 
we conclude the result. �
Remark 5.2. In order to get bounds for ‖∇dug(t, ·)‖p and ‖Δdug(t, ·)‖p in Theorem 5.1 (2), we would have 
to impose certain extra regularity conditions to g.

Next result shows that the previous �2-�1 decay is optimal. We include an alternative proof of the upper 
bound to get a self-contained theorem. The proof is based on standard Fourier techniques in the Hilbert �2
space.

Theorem 5.3. Assume that f ∈ �1 and 
∑

n∈Z f(n) 
= 0. Then for large enough t there exist c, C > 0 such 
that

c

t1/4

∣∣∣∣∑ f(n)
∣∣∣∣ ≤ ‖uf (t, ·)‖2 ≤ C

t1/4
‖f‖1.
n∈Z
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Proof. Let ε > 0 small enough, then

‖uf (t, ·)‖2
2 = ‖Fuf (t, ·)‖2

2 = 1
2π

∫
T

|FG(t, ·)(θ)|2 |Ff(θ)|2 dθ

≥ 1
2π

ε∫
−ε

e−8t sin2(θ/2) |Ff(θ)|2 dθ (5.3)

≥ e−8t sin2(ε/2)

2π

ε∫
−ε

|Ff(θ)|2 dθ.

Since f ∈ �1 then Ff ∈ C(T ) ∩ L2(T ). By the Lebesgue differentiation theorem, we may choose ε0 small 
enough such that

1
2ε

ε∫
−ε

|Ff(θ)|2 dθ ≥ 1
2 |Ff(0)|2 for all ε ∈ (0, ε0].

Substituting the previous inequality in (5.3) we have that for all ε ∈ (0, ε0]

‖uf (t, ·)‖2
2 ≥ εe−8t sin2(ε/2)

2π |Ff(0)|2 .

We choose ε := ε0

t1/2
< ε0 for large enough t. Note that for large t we have 8t sin2( ε0

2t1/2 ) is bounded. 
Therefore

‖uf (t, ·)‖2
2 ≥ εe−8t sin2(ε/2)

2 |Ff(0)|2 = ε0e
−8t sin2( ε0

2t1/2 )

2t1/2
|Ff(0)|2 ≥ c2

t1/2

∣∣∣∣∑
n∈Z

f(n)
∣∣∣∣
2

,

with c a positive constant.
Next, let us prove the upper bound. By Plancherel’s Theorem, we have

‖uf (t, ·)‖2
2 = ‖Fuf (t, ·)‖2

2 = 1
2π

∫
T

|FG(t, ·)(θ)|2 |Ff(θ)|2 dθ

= 1
2π

∫
T

e−8t sin2( θ
2 ) |Ff(θ)|2 dθ ≤ 1

2π ‖Ff‖2
∞

∫
T

e−8t sin2( θ
2 ) dθ

≤ 1
2π ‖f‖

2
1

∫
T

e−8t sin2( θ
2 ) dθ.

Note that by the inverse Fourier transform we can write

G(2t, 0) = 1
2π

∫
T

e−8t sin2( θ
2 ) dθ.

Then by (2.8) we have

‖uf (t, ·)‖2
2 ≤ C2

t1/2
‖f‖2

1,

with C > 0. �
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6. Large time behaviour of solutions

In this section we study the large time behaviour of the solution of (1.4). We prove that the solution 
u = uf + ug (see Section 5) converges asymptotically on �p to a constant (given by the sum of the mass of 
the initial data f and the mass of the linear forcing term g) times the discrete heat kernel (Theorem 6.1). 
In particular, we get the rate of the convergence. Along the section we will assume the following:

(a) f ∈ �1.
(b) There exist K > 0, γ > 1 such that

‖g(t, ·)‖1 ≤ K

(1 + t)γ , t > 0.

Set

Mf :=
∑
n∈Z

f(n), Mg :=
∞∫
0

∑
n∈Z

g(t, n) dt.

We will also assume that Mf 
= 0, since in other case (Mf = 0), by the mass conservation principle, the 
solution uf would be null.

The results in the next theorem related to uf have been proved by semidiscrete Fourier techniques in 
[22,23]. We include it, and we give a different proof. The non homogeneous part (related to ug) is original, 
and the proof is rather involved.

Theorem 6.1. Let 1 ≤ p ≤ ∞. Assume that conditions (a) and (b) hold, and let uf and ug, given by (5.1)
and (5.2).

(i) Then

t
1
2 (1− 1

p )‖uf (t, ·) −MfG(t, ·)‖p → 0, as t → ∞,

and

t
1
2 (1− 1

p )‖ug(t, ·) −MgG(t, ·)‖p → 0, as t → ∞.

(ii) Suppose in addition that nf ∈ �1, then

t
1
2 (1− 1

p )‖uf (t, ·) −MfG(t, ·)‖p = O

(
1

t1/2

)
, t large.

Proof. For convenience in some particular points of the proof and without loss of generality, we prove the 
result for non-negative sequences, since in general case we would write f = f+ − f−, where

f+(n) =
{

f(n), f(n) > 0,

0, f(n) ≤ 0,
and f−(n) =

{
−f(n), f(n) < 0,

0, f(n) ≥ 0,

both are non-negative sequences.
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We start with assertion (ii). We write

uf (t, n) −MfG(t, n) =
∑
j≤−1

(G(t, n− j) −G(t, n))f(j) +
∑
j≥1

(G(t, n− j) −G(t, n))f(j)

=
∑
j≤−1

0∑
k=j+1

∇dG(t, n− k)f(j) −
∑
j≥1

j−1∑
k=0

∇dG(t, n− k − 1)f(j)

=
0∑

k=−∞
∇dG(t, n− k)

k−1∑
j=−∞

f(j) −
∞∑
k=1

∇dG(t, n− k)
∞∑
j=k

f(j)

= (∇dG(t, ·) ∗ F )(n),

where F (k) =
∑k−1

j=−∞ f(j) for k ≤ 0, and F (k) = − 
∑∞

j=k f(j) for k ≥ 1. Note that

‖F‖1 ≤
0∑

k=−∞

k−1∑
j=−∞

|f(j)| +
∞∑
k=1

∞∑
j=k

|f(j)| =
∑
j 
=0

|jf(j)|.

Then by Theorem 4.3 it follows that

‖uf (t, ·) −MfG(·, t)‖p ≤ C‖F‖1

t
1
2 (1− 1

p )+ 1
2
, t > 0.

Now we focus on the first part of assertion (i). We take the sequence (fj)j∈N0 given by

fj(n) =

⎧⎪⎪⎨
⎪⎪⎩

Mf∑
|k|≤j

f(k)
f(n), |n| ≤ j,

0, |n| > j,

whenever f(0) 
= 0. Else, if j0 is the first natural number such that f(j0) and/or f(−j0) are positive, then 
we consider the sequence (fj)j≥j0 . It is an easy computation that

∑
n∈Z

fj(n) = Mf , for all j ∈ N0,

and

‖fj − f‖1 → 0, j → ∞.

We write

‖uf (t, ·) −MfG(t, ·)‖p ≤ ‖G(t, ·)‖p‖fj − f‖1 + ‖G(t, ·) ∗ fj −MfG(t, ·)‖p.

Note that (nfj(n)) belongs to �1 for each j. Then, by the proof of the statement (ii) and Theorem 4.3, it 
follows that

t
1
2

(
1− 1

p

)
‖uf (t, ·) −MfG(t, ·)‖p ≤ C‖fj − f‖1 + Cjt

− 1
2 , t > 0,

where Cj depends on ‖nfj(·)‖1. Therefore,
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lim sup
t→∞

t
1
2

(
1− 1

p

)
‖uf (t, ·) −MfG(t, ·)‖p ≤ C‖fj − f‖1,

and the result follows by taking j → ∞.
Next, let us prove the second part of (i). We can write

Mg =
t∫

0

∑
m∈Z

g(s,m) ds +
∞∫
t

∑
m∈Z

g(s,m) ds, t > 0.

It follows from Theorem 4.3 that

t
1
2 (1− 1

p )

∥∥∥∥∥∥G(t, ·)
∞∫
t

∑
m∈Z

g(s,m) ds

∥∥∥∥∥∥
p

≤ t
1
2 (1− 1

p )‖G(t, ·)‖p
∞∫
t

∑
m∈Z

|g(s,m)| ds → 0, t → ∞.

Therefore in the following we will prove that

t
1
2 (1− 1

p )

∥∥∥∥∥∥
t∫

0

(G(t− s, ·) ∗ g(s, ·))(·) −G(t, ·)
t∫

0

∑
m∈Z

g(s,m) ds

∥∥∥∥∥∥
p

→ 0, t → ∞.

We take 0 < δ < 1
10 , which implies in particular 0 < δ <

1
5 <

1
2 and

δ

1 − δ
<

1
4 . (6.1)

Let t > 0 fixed. We decompose the set (0, t) × Z into two parts

Ω1 := (0, δt) × {m ∈ Z : |m| ≤ �(δt) 1
2 �}, Ω2 := ((0, t) × Z) \ Ω1,

where �(δt) 1
2 � denotes the integer part of the positive number (δt) 1

2 .
Let us start with the set Ω1, and we write

∥∥∥∥∥∥
∫ ∑

(s,m)∈Ω1

(G(t− s, · −m) −G(t, ·))g(s,m) ds

∥∥∥∥∥∥
p

≤
∫ ∑

(s,m)∈Ω1

‖G(t− s, · −m) −G(t, ·)‖p|g(s,m)| ds.

Note that in this set the following inequalities hold

t ≥ t− s ≥ t(1 − δ) > t

2 . (6.2)

For each (s, m) ∈ Ω1, we consider the following sets on Z,

A := {n ∈ Z : |n−m| < 2�(δt) 1
2 �}, B := {n ∈ Z : |n−m| ≥ 2�(δt) 1

2 �},
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and we write the p-norm over Ω1 in the following way

‖G(t− s, · −m) −G(t, ·)‖p ≤
(∑

n∈A

|G(t− s, n−m) −G(t, n)|p
) 1

p

+
(∑

n∈B

|G(t− s, n−m) −G(t, n)|p
) 1

p

.

Now we focus on A. We write

(∑
n∈A

|G(t− s, n−m) −G(t, n)|p
)1/p

≤
(∑

n∈A

|G(t− s, n−m)|p
)1/p

+
(∑

n∈A

|G(t, n)|p
)1/p

:= I1 + I2.

For (s, m) ∈ Ω1 and n ∈ A we have by (6.1) and (6.2) that |n−m|2
t−s < (2�(δt)1/2�)2

t(1−δ) ≤ 4δ
(1−δ) < 1, so it 

follows from Lemma 4.1 that

t
1
2 (1− 1

p )I1 ≤ C
t

1
2 (1− 1

p )

(t− s) 1
2

(∑
n∈A

1
) 1

p

≤ C
t

1
2 (1− 1

p )

t1/2(1 − δ)1/2
(4�(δt) 1

2 �)1/p ≤ Cδ
1
2p .

Analogously, we compute

|n|2
t

≤ (|n−m| + |m|)2
t

≤ 9δ < 1,

and therefore by Lemma 4.1 we get

t
1
2 (1− 1

p )I2 ≤ Cδ
1
2p .

Since 
∫∞
0 ‖g(s, ·)‖1 ds < ∞ we have

t
1
2 (1− 1

p )
∫ ∑

(s,m)∈Ω1

(∑
n∈A

|G(t− s, n−m) −G(t, n)|p
) 1

p

|g(s,m)| ds ≤ Cδ
1
2p → 0, δ → 0.

Next, we consider on Ω1 the part B of the p-norm. Let us write

(∑
n∈B

|G(t− s, n−m) −G(t, n)|p
) 1

p

≤
(∑

n∈B

|G(t− s, n−m) −G(t− s, n)|p
) 1

p

+
(∑

n∈B

|G(t− s, n) −G(t, n)|p
) 1

p

=: I3 + I4.

First, we focus on estimate I3. Observe that if m ≥ 1 there exists ñ ∈ [n −m, n − 1] such that

|G(t− s, n−m) −G(t− s, n)| ≤ |m||∇dG(t− s, ñ)|,

and if m ≤ −1 there exists ñ ∈ [n, n −m − 1] such that
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|G(t− s, n−m) −G(t− s, n)| ≤ |m||∇dG(t− s, ñ)|.

Therefore

I3 ≤ |m|
(∑

n∈B

|∇dG(t− s, ñ)|p
) 1

p

.

The case m = 0 is trivial. Since |m| ≤ �(δt) 1
2 � ≤ 1

2 |n −m|, then we get

|ñ| ≥ |n−m| − |ñ− (n−m)| ≥ |n−m| − (|m| − 1) ≥ |n−m|
2 , (6.3)

and

|ñ| ≤ |n−m| + (|m| − 1) ≤ |n−m| + |n−m|
2 ≤ 3|n−m|

2 , m ≥ 1, (6.4)

and

|ñ| ≤ |n−m− 1| + (|m| − 1) ≤ |n−m− 1| + |n−m|
2 ≤ 5|n−m|

2 , m ≤ −1, (6.5)

where in the last inequality we have used that |n − m − 1| ≤ 2|n − m| since we can assume n 
= m in 
B (note that if n = m, then |n−m|

2 ≥ |m| implies m = 0, and therefore n = 0. This case is trivial since 
|G(t − s, n −m) −G(t − s, n)| would be null). So, equations (6.3), (6.4) and (6.5) show that |ñ| and |n −m|
are comparable.

We divide I3 into two parts I31 and I32, depending on whether |ñ|
(t−s)

1
2

is less or greater than 1. By (6.3), 

the set of summation index on I31 is contained in {n ∈ Z : 1 ≤ |n −m| ≤ 2(t − s)1/2}. Then Lemma 4.1
and (6.2) imply

I31 ≤ C(δt) 1
2

⎛
⎝ ∑

1≤|n−m|≤2(t−s)1/2

|n−m|p

(t− s) 3p
2

⎞
⎠

1/p

≤ C
(δt) 1

2

t
3
2

⎛
⎝ ∑

1≤|n−m|≤2(t−s)1/2

|n−m|p
⎞
⎠

1/p

≤ Cδ
1
2 t−1(t− s)(p+1)/2p ≤ Cδ

1
2 t−

1
2 (1− 1

p ).

Now, by (6.4) and (6.5), the set of summation index on I32 is contained in {n ∈ Z : |n −m| ≥ 2
5 (t − s)1/2}. 

Then Lemma 4.1 and (6.2) imply

I32 ≤ C(δt) 1
2

⎛
⎝ ∑

|n−m|≥ 2
5 (t−s)1/2

(
t− s

|n−m|4
)p

⎞
⎠

1
p

≤ Cδ
1
2 t3/2

⎛
⎝ ∑

|n−m|≥ 2
5 (t−s)1/2

1
|n−m|4p

⎞
⎠

1
p

≤ C
δ

1
2 t3/2

(t− s)(4p−1)/2p ≤ Cδ
1
2 t−

1
2 (1− 1

p ).

So we get that t
1
2 (1− 1

p )I3 ≤ Cδ
1
2 .

Next, let us estimate I4. From the mean value theorem, there exists t̃ ∈ (s, t) such that

I4 = s

(∑
|∂tG(t̃, n)|p

) 1
p

= s

(∑
|ΔdG(t̃, n)|p

) 1
p

.

n∈B n∈B
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Note that in Ω1 we have 0 < s < δt. On the other hand, (6.2) implies t
2 < t − s ≤ t̃ ≤ t, that is, t̃ and t

are comparable. Again, we divide I4 into two cases. We denote by I41 and I42 depending on whether n
t̃1/2 is 

less or greater than 1.
By previous comments, the set of summation index on I41 is contained in {n ∈ Z : |n| ≤ t

1
2 }. Then by 

Lemma 4.1 one gets

I41 ≤ Cδt

⎛
⎜⎝ ∑

|n|≤t
1
2

1
t

3p
2

⎞
⎟⎠

1
p

≤ Cδt−
1
2 (1− 1

p ).

Next we estimate I42. Now the set of summation index on I41 is contained in {n ∈ Z : |n| ≥ t1/2
√

2 }. It 
follows by Lemma 4.1 that

I42 ≤ Cδt

⎛
⎜⎝ ∑

|n|≥ t1/2√
2

1
|n|3p

⎞
⎟⎠

1
p

≤ Cδt

t(3p−1)/2p = Cδt−
1
2 (1− 1

p ).

Therefore t
1
2 (1− 1

p )I4 ≤ Cδ.
Collecting all above terms over B, there is η > 0 such that

t
1
2 (1− 1

p )
∫ ∑

(s,m)∈Ω1

(∑
n∈B

|G(t− s, n−m) −G(t, n)|p
) 1

p

|g(s,m)| ds

≤ Cδη
∞∫
0

∑
n∈Z

|g(s,m)| ds → 0, δ → 0.

Note that the above convergence to zero as δ → 0 is uniformly in t.
Now, we focus on Ω2. Then

t
1
2 (1− 1

p )
∫ ∑

(s,m)∈Ω2

‖G(t− s, · −m) −G(t, ·)‖p|g(s,m)| ds

≤ t
1
2 (1− 1

p )
∫ ∑

(s,m)∈Ω2

‖G(t− s, · −m)‖p|g(s,m)| ds

+ t
1
2 (1− 1

p )
∫ ∑

(s,m)∈Ω2

‖G(t, ·)‖p|g(s,m)| ds

:= I5 + I6.

It follows by Theorem 4.3 that

I6 ≤ C

∫ ∑
(s,m)∈Ω2

|g(s,m)| ds.

Observe that the set Ω1 → (0, ∞) × Z as t → ∞, so Ω2 will have null measure in such case. Since ∫∞ ∑
|g(s, n)| ds < ∞ we conclude
0 n∈Z
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∫ ∑
(s,m)∈Ω2

|g(s,m)| ds → 0, t → ∞,

and therefore I6 also vanishes as t → ∞.
Finally, to estimate I5, we consider the following two cases; either s < δt or s ≥ δt. That is, we write

I5 = t
1
2 (1− 1

p )
δt∫

0

∑
|m|>�(δt)

1
2 �

‖G(t− s, · −m)‖p|g(s,m)| ds

+ t
1
2 (1− 1

p )
t∫

δt

∑
m∈Z

‖G(t− s, · −m)‖p|g(s,m)| ds

=: I51 + I52.

By Theorem 4.3 and (6.2) we have

I51 ≤ Ct
1
2 (1− 1

p )
δt∫

0

∑
|m|>�(δt)

1
2 �

1
(t− s)

1
2 (1− 1

p ) |g(s,m)| ds

≤ C

δt∫
0

∑
|m|>�(δt)

1
2 �

|g(s,m)| ds → 0, t → ∞.

Also by Theorem 4.3 and hypothesis (b) at the beginning of this section, we obtain

I52 ≤ Ct
1
2 (1− 1

p )
t∫

δt

∑
m∈Z

|g(s,m)|
(t− s)

1
2 (1− 1

p ) ds ≤ Ct
1
2 (1− 1

p )−γ

t∫
δt

1
(t− s)

1
2 (1− 1

p ) ds ≤ Ct1−γ → 0,

as t → ∞, and we conclude the proof. �
Remark 6.2. Similarly, in the continuous case, it is known that the solution v of (1.1) satisfies

t
1
2 (1− 1

p )‖v(t, ·) −Mgt‖p → 0, t → ∞,

if f ∈ L1(R), and

t
1
2 (1− 1

p )‖v(t, ·) −Mgt‖p = O

(
1

t1/2

)
, t large,

if (1 + |s|)f ∈ L1(R), where in both cases M =
∫∞
−∞ f(s) ds (see [9, Théorème 4], [13, Lemma 2 and 3] and 

in detail [33, p. 15]).
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