000130697 001__ 130697
000130697 005__ 20240130150402.0
000130697 0247_ $$2doi$$a10.1093/plphys/kiab072
000130697 0248_ $$2sideral$$a126266
000130697 037__ $$aART-2021-126266
000130697 041__ $$aeng
000130697 100__ $$aBuey R.M.
000130697 245__ $$aUnexpected diversity of ferredoxin-dependent thioredoxin reductases in cyanobacteria
000130697 260__ $$c2021
000130697 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130697 5203_ $$aThioredoxin reductases control the redox state of thioredoxins (Trxs)-ubiquitous proteins that regulate a spectrum of enzymes by dithiol-disulfide exchange reactions. In most organisms, Trx is reduced by NADPH via a thioredoxin reductase flavoenzyme (NTR), but in oxygenic photosynthetic organisms, this function can also be performed by an iron-sulfur ferredoxin (Fdx)-dependent thioredoxin reductase (FTR) that links light to metabolic regulation. We have recently found that some cyanobacteria, such as the thylakoid-less Gloeobacter and the ocean-dwelling green oxyphotobacterium Prochlorococcus, lack NTR and FTR but contain a thioredoxin reductase flavoenzyme (formerly tentatively called deeply-rooted thioredoxin reductase or DTR), whose electron donor remained undefined. Here, we demonstrate that Fdx functions in this capacity and report the crystallographic structure of the transient complex between the plant-type Fdx1 and the thioredoxin reductase flavoenzyme from Gloeobacter violaceus. Thereby, our data demonstrate that this cyanobacterial enzyme belongs to the Fdx flavin-thioredoxin reductase (FFTR) family, originally described in the anaerobic bacterium Clostridium pasteurianum. Accordingly, the enzyme hitherto termed DTR is renamed FFTR. Our experiments further show that the redox-sensitive peptide CP12 is modulated in vitro by the FFTR/Trx system, demonstrating that FFTR functionally substitutes for FTR in light-linked enzyme regulation in Gloeobacter. Altogether, we demonstrate the FFTR is spread within the cyanobacteria phylum and propose that, by substituting for FTR, it connects the reduction of target proteins to photosynthesis. Besides, the results indicate that FFTR acquisition constitutes a mechanism of evolutionary adaptation in marine phytoplankton such as Prochlorococcus that live in low-iron environments. © The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.
000130697 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130697 590__ $$a8.005$$b2021
000130697 591__ $$aPLANT SCIENCES$$b12 / 239 = 0.05$$c2021$$dQ1$$eT1
000130697 592__ $$a2.331$$b2021
000130697 593__ $$aPhysiology$$c2021$$dQ1
000130697 593__ $$aGenetics$$c2021$$dQ1
000130697 594__ $$a12.7$$b2021
000130697 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130697 700__ $$aFernández-Justel D.
000130697 700__ $$aGonzález-Holgado G.
000130697 700__ $$0(orcid)0000-0001-9047-0046$$aMartínez-Júlvez M.$$uUniversidad de Zaragoza
000130697 700__ $$aGonzález-López A.
000130697 700__ $$0(orcid)0000-0001-5702-4538$$aVelázquez-Campoy A.$$uUniversidad de Zaragoza
000130697 700__ $$0(orcid)0000-0001-8743-0182$$aMedina M.$$uUniversidad de Zaragoza
000130697 700__ $$aBuchanan B.B.
000130697 700__ $$aBalsera M.
000130697 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000130697 773__ $$g186, 1 (2021), 285-296$$pPlant physiol.$$tPlant Physiology$$x0032-0889
000130697 8564_ $$s1199721$$uhttps://zaguan.unizar.es/record/130697/files/texto_completo.pdf$$yVersión publicada
000130697 8564_ $$s2679207$$uhttps://zaguan.unizar.es/record/130697/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130697 909CO $$ooai:zaguan.unizar.es:130697$$particulos$$pdriver
000130697 951__ $$a2024-01-30-14:09:09
000130697 980__ $$aARTICLE