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Abstract 

In this paper, we propose an industrial dynamics model to analyze the interactions between the price-
performance sensitivity of demand, the sources of innovation in a sector, and certain features of the 
corresponding pattern of industrial transformation. More precisely, we study market concentration in 
different technological regimes and demand conditions. The computational analysis of our model 
shows that market demand plays a key role in industrial dynamics. Thus, although for intermediate 
values of the price-performance sensitivity, our results show the well-known relationships in the 
literature between technological regimes and industry transformation, we find surprising outcomes 
when demand is strongly biased either towards price or performance. Hence, for different 
technological regimes, a high performance sensitivity of demand tends to concentrate the market. On 
the other hand, under conditions of high price sensitivity, the industry generally tends to atomize. That 
is to say, for extreme values of the price-performance sensitivity of demand, we find concentrated or 
atomized market structures no matter the technological regime we are in. These results highlight the 
importance of considering the role of demand in the analysis of industrial dynamics.  

Keywords:  Industrial Dynamics, Demand, Technological Regimes, Evolutionary Economics. 
JEL-Code: O33; B52 
 
 

1 Introduction 

 
Over the last three decades, the realm of industrial dynamics has progressed significantly (Malerba, 

2007). One of the most active lines of research has tried to find causal links between technological 

regimes and the dynamics of innovative industries (Nelson and Winter, 1982; Dosi, 1988; Malerba and 

Orsenigo, 1993, 1996; Marsili, 2001). This body of works has drawn upon the fact that technological 

learning in different industrial activities differs in the following factors:  

(i) The level of technological opportunities. It is a well-known fact that different activities and 

sectors enjoy a different scope and ease for technological progress. 

(ii) The degree of cumulativeness in the production of new knowledge. This aspect defines to what 

extent technical solutions are incrementally built upon those already achieved by a firm. 

(iii) The appropriability conditions. That is, the factors which determine the ease with which 



innovation results are protected against competitors. Marsili (1999, 2001) sharpens the notion of 

appropriability by drawing upon previous contributions by Keith Pavitt and others (Pavitt et al., 

1989). Thus, Marsili distinguishes between two types of appropriability mechanisms: firstly, 

those factors that preserve innovators from being imitated by competitors from inside and 

outside the industry (patents, secrecy, tacitness); secondly, those technological characteristics 

which make it difficult for external firms to enter the sector. We may refer to the former 

appropriability conditions as barriers to imitation, and to the latter as technological entry 

barriers or barriers for innovative entry. 

The aforementioned aspects define different types of technological regimes.  

 

From a formal-theoretical perspective, Sidney G. Winter (1984) proposed, in his classical paper on 

technological regimes and industrial dynamics, that the entrepreneurial vs routinized mode of 

innovation in an industry - i.e. the specific character of the technological regime - could determine the 

evolution pattern of the industry in very specific ways. These relationships have also been explored 

theoretically and empirically by Dosi et al. (1995), and Breschi, Malerba and Orsenigo (2000). Both the 

theoretical and the empirical contributions point to certain relationships between entrepreneurial 

regimes (open and permeable techno-institutional conditions favoring the emergence of new agents) and 

patterns of industry evolution akin to creative destruction (characterized by a high number of firms, a 

low industry concentration and a key role played by new entrants vs incumbent innovators). On the other 

hand, it has been suggested that routinized regimes (those showing techno-institutional conditions 

favoring incumbent innovators) could lead to creative accumulation patterns (characterized by higher 

concentration levels, a lower number of firms and consolidated incumbents leading innovation). 

 

Undoubtedly, the literature on technological regimes and sectoral dynamics has shed new light on the 

reasons for the uneven evolution of industrial activities in modern economies. Nevertheless, recent 

contributions by Malerba (2006), Klepper and Malerba (2010), Bresnahan and Yin (2010) or Dosi and 

Nelson (2010) suggest that, although we have achieved significant advances along these lines, it may be 

time to explore the interplay between knowledge-related aspects of innovation and demand-driven 

mechanisms of market competition. To this regard, in this paper we propose an evolutionary model of 

industrial dynamics to analyze market concentration and leadership shifts in different technological 

regimes and demand conditions. 



 

Our model lies in the tradition of Nelson and Winter (1982) – see also Metcalfe (1998), Dosi (2001) or 

Silverberg and Verspagen (2005) – and it incorporates entry/exit mechanisms, innovation, imitation, 

competition, strategic learning and firm growth in an innovative industry. We assume that price-setting 

(for-profit) firms compete in questions of price and product performance. They improve their products 

through R&D-based innovation activities, and they do so both by carrying out inner activities of 

knowledge creation, and by imitating their competitors to assimilate their existing knowledge. Firms 

also update their R&D investment routines through a learning mechanism with a stochastic component. 

An important feature of our model is that we conceive global demand transformation as a gradual 

process driven by users/consumers' learning and by firms' competitiveness (in price and performance). 

Thus, the process of demand transformation indicates the rhythm of the output and capacity growth of 

firms. 

 

It is worth pointing out that our model’s analysis incorporates the notion of a technological regime to 

characterize different learning and innovation conditions in different sectors. The level of technological 

opportunities, cumulativeness, and appropriability conditions - in the form of both barriers to imitation 

and barriers to innovative entry (Marsili, 1999) - appear in the model. On the demand side, the price-

performance sensitivity of demand plays a key role in the model. This factor is explicitly mentioned by 

Klepper and Malerba (2010; p.1516) and, drawing upon the taxonomical study of Keith Pavitt, by Dosi 

and Nelson (2010; p.87). In fact, these authors distinguish between sectors whose demand is price-

sensitive (agrofood, consumer durables), performance-sensitive (medical instruments, industrial 

machinery), or mixed (electronics or chemicals).  

 

As we will see, the computational analysis of the model shows that market demand plays a key role in 

industrial dynamics. Thus, although for intermediate values of the price-performance sensitivity of 

demand our results reproduce well-known relationships in the literature - entrepreneurial vs. routinized 

regimes leading to creative destruction vs. creative accumulation -, we find surprising outcomes when 

demand is strongly biased either towards price or performance. Hence, for very different technological 

regimes, a high performace sensitivity of demand tends to concentrate the market. On the contrary, 

under conditions of high price sensitivity, the industry tends to atomize. Therefore, our model seems to 

indicate that the well-known relationships between industrial dynamics and technological regimes 



(found in the literature) might only emerge under certain demand conditions. 

 

Our paper is organized as follows: we present our model in Section 2. In Section 3, we offer a general 

overview of the model feedbacks and theoretical mechanisms. In Section 4, we focus on the 

computational analysis of the model to clarify the role of demand in alternative technological regimes. 

Here we find that the well-known relationships between technological regimes and industrial dynamics 

only emerge under certain demand conditions in the model. Finally, we summarize our conclusions. 

 

2 The Model 

2.1 The Competitiveness of Firms 

Let us assume that there are n ),...,1( ni = firms competing in an innovative industry with price1
itp

 and 

product performance itx  (quality, reliability, size, speed, precision). Regarding prices, we will assume 

that firms set prices by applying a mark-up over their unit cost (the greater their market power, the 

higher the mark-up). With  )( itsm  being a function including the mark-up set by each firm depending on 

its market share2 and  itc  the total cost per output unit, we suppose that: 

0  ,1)0( ,1)(   ,)( >′=≥= mmsmcsmp itititit  

 

For simplicity, we will consider the following pricing routine (Almudi et al., 2012; Fatas-Villafranca 

and Saura, 2004): 

 

  ,)1( ititit csp +=
                                (1)        

             
 

From (1), it is straightforward that firm i 's unit profit is 

 

ititit cs=π
                                             (2) 

 

                                                           
1We use physical capital as numerary. 
2See Ariga et al. (1999) for interesting empirical evidence on market shares as determinants of firms’ mark-ups. 



Regarding performance )( itx , we will establish, later, how firms improve their products through R&D-

based technological innovations. For now, given the vector ),,( itit xp  we define the level of 

competitiveness of firm i (as perceived by the consumers/users in the market) as follows: 
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Parameter α  represents the price-performance sensitivity of demand. In equation (3) we assume that any 

firm i is more competitive in the market, the better its product performance, and the lower its price. In 

addition, let us note that competitiveness in price (and performance) is measured in relation to the 

average price (and performance) in the market. 

 

2.2 Demand Transformation and Production 

There is demand-driven production and firm growth in our model. Regarding the demand-side of the 

market, we shall consider that the total market demand ( )d

tQ is constant. For simplicity we normalize it 

with a value of 1. That is3: 

1== QQ
d

t  
 
 

Likewise, with its  being the proportion of global demand supplying firm i  at moment t  - that is, its 

market share – we see that the instantaneous demand of firm i will be: 
 
 

                        itit

d

it sQsQ ==
                  (4)             

   
 

That is to say, the demand of firm i coincides with its market share. If we now consider that the 

consumers/users interact with and observe each other, and spread and share information regarding the 

prices and performances of the different products, we can suppose that there is a gradual process of 

                                                           
3 We make this simplifying assumption to focus on the analysis of the market competitive process. In Almudi et al. (2012) we 
consider growth and analyze its effects on industrial dynamics.  



demand transformation. Consumers will retire their demand from certain firms and give it to those with 

a higher level of itγ . In a recent paper, Fatas-Villafranca et al. (2011) propose explicit evolutionary 

microfoundations to capture this kind of processes, and obtain a typical replicator dynamics expression. 

Along these lines, and drawing also on Metcalfe (1998), we propose that the process of demand 

transformation in the model can be represented as: 
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Equation (5) establishes that those firms with competitiveness levels higher than the (share-weighted) 

average levels will experience positive demand growth rates, and increase their market share. 

Additionally, we assume that each firm's rate of growth fits the growth rate of its demand given by (5). 

Therefore, if we suppose that all firms produce in accordance with a technology: 
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From the above-mentioned it is clear that:4 
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4 That is, there is a constant stock of physical capital  1=K  , and we suppose that firms hire the capital they need to satisfy 
demand at any given moment. So, if a firm gains market share, it will hire additional units of capital, but if it loses share, it 

will stop hiring those units it no longer needs.  Moreover, as  jtQQ =  and ,jtKK =  it is clear that, .
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2.3 R&D Spending 

We shall suppose that in each time period, firms will spend on R&D a proportion ]1,0[∈itr  of the 

profits obtained in the previous time period. Therefore, firm i 's R&D spending at any time will be:  

 

                                            itititit QrR π=+1                                  (7)
 

 

Clearly, itr  is a firm-specific operating routine. According to Silverberg and Verspagen (2005), deciding 

the most convenient level of itr  has traditionally been considered to be a highly uncertain strategic 

choice. Therefore, instead of assuming that itr  is calculated by applying any optimizing procedure, we 

will consider that firms adapt this routine by trying to imitate the behavior of their most successful rival 

in a percentage β
. 

We assume that there is a random component )( itε
 
introducing a certain lack of 

precision in the perception of the target to imitate. More precisely, we will consider that firms update itr  

according to the following expression5: 

         (8) 

),0( ],1,0[  , )(1 σεβεβ Nrrrr ititittitit ∼∈−++= ∗
+  

 

We denote by ∗
tr  the R&D routine of the most profitable firm at any time ( tMaxt iti

rr },{arg
*

π= ), and β  is a 

learning parameter. Let us note that parameter β  somehow determines a higher or lower strategic 

stability of the firms in the sector. Parameter σ  can be interpreted as both an indicator of 

strategic/informational fuzziness – as firms will be visualising target ∗
tr  

less precisely, the higher the 

value of σ –, as well as in terms of volatility, given that the most profitable firm will alter its behavior 

more abruptly, the higher the value of σ . Highly innovative industries are affected by high levels of 

uncertainty. This justifies that even the most profitable firm at any given time can consider changing 

their behavior, modifying ∗
tr . 
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Finally, firm i 's unit cost will be: 
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2.4 Product Innovation 

Expression (10) below is, basically, an innovation equation inspired in Nelson (1982), where itR  is the 

spending on R&D and itz  is R&D productivity. 
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The expression ),,( Maxmodemin uuuΓ  is the density function of a triangular probability distribution. It is 

clear that parameter Maxu is an indicator of the level of technological opportunities in the industry. The 

greater this parameter, the higher the probability that the R&D productivity of any firm will show large 

and positive shocks.  

In equation (10), we are assuming that the productivity of R&D depends on the acquisition of new 

knowledge which comes from two complementary sources: inner research activities – with a firm-

idiosyncratic innovative output captured by itu
 in (10) - and, imitation, through which firms assimilate 

existing knowledge already produced by their competitors in the industry. This element is captured by 

the gap-expression in (10). It is straightforward to interpret the parametric value of φ  as an indicator of 

the higher or lower appropriability of new knowledge in the industry. More precisely, through this 

parameter we capture the barriers to imitation in the sense of Marsili (1999). So, the higher the value of 

,φ  the lower the barriers to imitation, and low values of φ  will correspond to high imitation barriers in 

the industry (secrecy, tacitness, patents).  



 

Finally, let us mention that parameter η  captures the degree of cognitive cumulativeness in the industry 

(Rosenberg, 1976). In fact, equation (10) incorporates two mechanisms that may be associated with 

cumulativeness:  

  Firstly, the factor η
itx  . Clearly, the higher the value of parameter η  is, the more the technical solutions 

to innovative problems are incrementally built upon knowledge already achieved by the firm (this 

previous knowledge is enclosed in 
itx ). Following Rosenberg (1976), we believe that this self-

reinforcing aspect of cognitive processes is very important. In fact, we will assume high cognitive 

cumulativeness )1( =η  as an almost permanent assumption in our model6. To this regard, we draw upon 

previous contributions by Romer (1990) or, in the evolutionary tradition, Fatas-Villafranca et al. (2009). 

  Secondly, the factor 
itR  introduces in (10) a success-breeds-success mechanism coming from the way 

in which R&D activities are funded in the model7 . The significance of this mechanism has been 

highlighted by Malerba and Orsenigo (1993, 1996). 

 

2.5 Exit and entry of firms 

Any firm i whose capital Kit falls below a minimum quantity8 exits the market. On the other hand, new 

firms can enter the market. At every time step, we assume that there is a certain probability that, at the 

most, one new firm enters the sector9. Likewise, we assume that such a probability is higher, the greater 

the maximum profit is in the sector. To be specific, we consider that the probability of this event 

occurring is: 

 

                                                           
6 We are grateful for the referees’ comments regarding cumulativeness in eq.(10). Although we shall concentrate on the case 

of high cumulativeness, an exhaustive exploration of the role of [ ]1,0∈η opens up lines for future research. To illustrate this 

point, we will explore some aspects of our model related to low cumulativeness in subsection 4.1.2 and in the Appendix 2. 

7 Another extension of our model would involve introducing a parameter in eq.(10) to control the impact of the success-

breeds-success mechanism in R&D funding. We are also grateful to the referees for this suggestion. We shall leave this 
extension for future research, since it implies reflecting on the R&D to size relationship, or the possible existence of 
diminishing returns to R&D. See Klepper (1996) or Cohen and Klepper (1996). 

8 The minimum capital in our computational experiments is 10-6.  
9 Every time a firm enters or exits the market, the sum of all capitals is normalized to 1. 
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where Et is a random variable that represents the number of new entrants (either 0 or 1) at time t, and 

Max
tπ represents the maximum profit achieved by a firm at t. It is worth noting that parameter λ  can be 

interpreted as an indicator of the entry barriers in the industry. Although the notion of entry barriers is 

rather general, we will consider here interpretations of this parameter from a knowledge-based approach. 

In this regard, parameter λ  may include the so-called technological entry barriers (Marsili, 2001). Let 

us recall that high technological entry barriers in a sector can arise from the new entrants’ need to 

manage different fields of knowledge (Winter, 1987). Additionally, the need to combine technological 

capabilities and complementary assets to gain access to certain sectors may also reinforce the barriers to 

innovative entry (Teece, 1986). In any case, regarding our model, the higher the value of λ , the stronger 

the entry barriers in the industry.  

Additionally, we suppose that the new entrant will have an initial capital given by:  

 

   
),0(U maxEntry

1 KKn ∼+                 
(12) 

where
maxEntryK  is an exogenous parameter, and U denotes the continuous uniform probability 

distribution. Let us note that, after assigning the initial capital to the new entrant, all capitals are 

normalized, so they all add up to one. Thus, at all times, any firm’s capital is equal to its market share.  

Finally, we assume that the new entrant randomly chooses one of the existing incumbent firms to 

replicate its level of performance, and its R&D to profits ratio. We shall suppose that the probability of 

an incumbent being selected for replication is proportional to its market share. 

 

3 Overview of the Dynamics 

Before looking at the computational analysis, we shall briefly consider the feedbacks and theoretical 

mechanisms of the model. Fig. 1 schematically represents the dynamics of the model. The variables that 

are more closely related to costs and prices are placed on the left, whilst the variables more closely 



related to the processes of innovation and performance improvement appear towards the right. 

 

 

Fig. 1. Overview of the interactions between the variables in the model. A solid black arrow from X to Y denotes that 

an increment in variable X implies an immediate increment in variable Y. A dashed black arrow implies that the 

positive influence is not immediate, but is delayed by one time step. A solid grey arrow from X to Y denotes an 

immediate negative influence, i.e. that an increment in variable X implies an immediate decrement in variable Y.   

 

Firstly, we notice that the dynamics of the model are characterized by the trajectories of the fundamental 

variables ,its ,itr itx . From these fundamental trajectories we can obtain the trajectories of the other 

variables. Fig. 1 shows positive feedbacks in black and negative ones in grey. The dashed lines represent 

the variables affected after a delay.  

 

As we know, firms compete on prices and product performance. Both factors make up a firm’s 

competitiveness. The greater this is, the greater a firm’s growth in terms of market share. Therefore, its 



profits and R&D investment will also increase. This will allow it to improve its product performance at a 

greater speed. Besides this, as firms gain more market share, they will also set higher prices which, in 

turn, will make them lose competitiveness and growth capacity. Likewise, an increase in spending on 

R&D increases unit costs which will also increase their prices and reduce competitiveness and, 

consequently, their capacity to grow. Furthermore, as a firm improves its performance, it will tend to 

approach the maximum performance level at any given time, and so the possibilities of improvement 

here may also be reduced. The lower part of Fig.1 shows the mechanism for strategic learning, with 

which firms determine the higher or lower intensity of their R&D investment.  

 

Finally, the mechanism of a firm’s entry introduces new issues into the scheme in Fig.1. New innovative 

entrants appear on the scene contributing to reshape the sectorial structure. The probability of these 

entrants appearing is higher, the greater the maximum profit rate; and lower, the higher the entry 

barriers.  

 

Let us note that, in this scheme, there are six parameters playing a central role, i.e.: the price-

performance sensitivity of demand α ; the two parameters of R&D strategic updating σβ ,  ; parameter 

Maxu  giving the level of technological opportunities in the sector; parameter φ  which offers an idea of 

the barriers to imitation; and parameter λ  which captures the entry barriers in the industry10.  

 

It is worth noting that much of the heterogeneity and dynamic richness of this model comes from its 

stochastic components. To illustrate this point, let us focus on the deterministic version of the model, 

where uMax = σ = 0 and λ = 1. It can be proved (see Appendix 1) that the only stationary11 situations in 

such a deterministic model are those where all firms present in the market become indistinguishable 

from each other. This does not mean that all firms in a model run will necessarily converge to the same 

characteristics; some of them may perish on the way. What it means is that a necessary (and sufficient) 

condition for stationarity is that all surviving firms end up sharing the market equally, by selling an 

identical product (i.e. with the same performance) at exactly the same price. 

Such a deterministic and familiar state of affairs contrasts with the results obtained when stochastic 
                                                           
10 Let us point out the importance of differentiating between barriers to imitation and technical entry barriers. Thus, (e.g.) in 
the aircraft-engine industry we find high technical entry barriers, together with low barriers to imitation (Marsili, 1999).    

11 Our concept of stationarity implies that sit = sit+1 and rit = rit+1, for all i = 1, …,n and for all t. 



innovation is possible and new firms can enter the market. In such a case, the market never settles: firms 

enter and exit the market, and small firms can make dramatic innovations that allow them to rise above 

their competitors. Under certain conditions, these innovative firms may even challenge the market 

leader, and make it fall. Depending on various factors, leaderships may last for only a few time periods, 

or they may continue for a long time; the market may be dominated by only a few consolidated firms, or 

it may be shared among many small firms. In such stochastic settings, even though there is a constant 

turnover of firms, neat dynamic patterns emerge, which have clearly defined properties that depend on 

the particular parameterisation of the model.  

 

Due to the complexity and stochastic nature of the model, we cannot offer closed-form solutions for the 

properties of the observed dynamic patterns, but we can approximate them with confidence and rigour 

using extensive computer simulations. All the simulation runs reported in this paper can be replicated 

using the applet provided in the supplementary material (see http://luis.izqui.org/models/indyterrod/). 

 In Table 1, we present the parametric values we will combine12.  

   

α 0.1 0.5 0.9 
λ 0.1 0.5 0.9 
uMax 0.1 0.5 0.9 

φ 0.1 0.5 0.9 

β 0.1 0.5 0.9 
σ 0.1 0.3 

Table 1.- Parametric Values for Computational Analysis 

 

Thus, we explore 486 different parametric settings. Parameter 
maxEntry

K  turned out not to be particularly 

significant within a sensitive range, so we fixed its value at 0.05. For each combination of the parameter 

values shown in Table 1, we ran 1000 simulations until time step 30 000, and compiled various statistics 

(such as the Herfindhal index and the number of firms) at the end of each simulation run. Thus, the 

analysis presented below summarises a total of 486 000 simulation runs. Naturally, our hope is that the 

sample distributions of the statistics observed at time 30 000 are representative of the general dynamics 

of the model for each parameter setting. To make sure this is the case, we compared the sample 

distributions observed at time 30 000 with those observed at time 20 000. In all cases, the difference 

                                                           
12 Let us remember that throughout our work, in general, we will suppose high cumulativeness in eq.(10), that is, 1=η . 



between these two sample distributions was not significant in the context of our study, so we are 

reasonably confident that all the values reported in this paper are representative of the general dynamics 

of the system.  

As for initial conditions, the initial number of firms n0 and the initial performance level x0 were both set 

to a value of one; and the initial ratio of R&D over profits was r0 = 0.3. We are confident that the effect 

of these initial conditions on the results reported in this paper is minimal, since the distributions of each 

of these variables (nt, rt and xt) at times 20 000 and 30 000 were similar, and different from the initial 

conditions, for all parameterisations.13 

In this way, we obtain simulation outputs in the form of series of relevant variables for the analysis of 

the structure and evolution of our modelled industry (i.e. number of firms; index of industrial 

concentration; entry/exit pattern; etc). In the next Section we present the results obtained through 

simulations. 

 

4 Industry Dynamics, Demand and Technological Regimes 

The analysis of our results shows the special relevance of parameter α (the price-performance sensitivity 

of demand) for the dynamics and structure of the sector. As we will analyze in the following two 

Sections (4.1 and 4.2), we can state that, although with demand conditions where consumers value price 

and performance similarly (α=0.5), the model reproduces the expected relationships between 

technological regimes and patterns of industry transformation (see Table 2 and Section 4.1), it can be 

affirmed that, as a general property of the model, these relationships are strongly conditioned by the 

demand profile (see Fig. 8 and 9). Hence, in different technological regimes, a high performance 

sensitivity of demand (α=0.1) tends to concentrate the market, whilst high values of α (α=0.9; i.e. high 

price sensitivity of demand) fragment the market (see Section 4.2).  

Consequently, we can find that, for example, drawing on the classical Winter (1984) distinction between 

entrepreneurial vs routinized regimes, in an entrepreneurial regime (see Table 2 for specification), if the 

demand is very sensitive to performance, the pattern of creative destruction fades, with certain features 

of creative accumulation appearing (e.g. high market concentration). In the same way, in a routinized 

                                                           
13 All our simulation results can be replicated using the applet provided at:   http://luis.izqui.org/models/indyterrod. By 
running this applet, the reader can easily check that the stationary distributions we report in this paper emerge regardless of 
the initial conditions. That is, neat patterns for the limiting distributions emerge, which depend on the specific parametric 
settings, but not on the departure point.  



regime, if the price sensitivity of the demand is high, certain features of creative accumulation disappear 

and new patterns -more typical of creative destruction- emerge.  

In the next two sections, we analyze in detail the role of demand in industrial dynamics. We first focus 

on intermediate demand profiles (α=0.5; Section 4.1) and afterwards we explore the case of extreme 

values for the price-performance sensitivity of demand (α=0.1; α=0.9; Section 4.2). 

 

4. 1. Intermediate values for the price-performance sensitivity of demand 

Let us consider that the price-performance sensitivity of demand adopts an intermediate value (i.e. 

α=0.5). Given this value of α, we will analyze the relationships between distinct parametric 

configurations - characterizing alternative technological regimes – and alternative patterns of industrial 

transformation. In accordance with the definition of technological regime, we characterize the different 

regimes in terms of three parameters: Maxu (level of technological opportunities), λ (entry barriers) and φ 

(barriers to imitation). We will assume – as an almost permanent assumption- high cumulativeness in eq. 

(10), that is, .1=η Relaxing this assumption leaves extensions for future research (see Appendix 2). 

Now, let us recall that, traditionally, we have seen two different basic types of technological regimes in 

the literature (see Winter, 1984): the entrepreneurial regime, leading to creative destruction patterns of 

industry evolution; and the routinized regime, which generates creative accumulation dynamics. In 

Table 2, we summarize the characteristic features of these two basic types. 

 

TECHNOLOGICAL REGIME (Setting)  PATTERN OF INDUSTRY EVOLUTION   

Routinized  

• High/Low technological opportunities  
• High entry barriers 
• High appropriability 

 
(e.g. Computer Mainframes) 

Creative accumulation  

• Few firms  
• High market concentration 
• Low entry rate  

  

 Entrepreneurial  

• High/Low technological opportunities 
• Low entry barriers 
• Low appropriability 

 
(e.g. Biotechnology) 

Creative destruction  

• Many firms 
• Low market concentration 
• High entry rate 

Table 2.- Technological Regimes and Industry Evolution 

 



Observing Table 2, it is interesting to test whether our model can reproduce the habitual relationships 

with intermediate demand conditions (α=0.5). We shall see that this is indeed the case. 

 

4.1.1.- Routinized Technological Regime 

As indicated by Winter (1984), a routinized regime is one that favours innovation by established firms. 

Thus, we set up a parametric scenario which represents the difficulty to enter into the sector due to high 

entry barriers. In addition, here knowledge is hardly shared internally (strong appropriability 

conditions). We reproduce these conditions in our model by making  λ=0.9, φ=0.1.  

Regarding the level of technological opportunities, we shall begin with an intermediate level. Later on, 

we shall vary the value of uMax and confirm that the higher the level of technological opportunities, the 

clearer the differences between the dynamics emerging from routinized vs entrepreneurial regimes are. 

Finally, we point out that the assumption of high cumulativeness (η=1) strengthens the routinized 

character of the regime we will simulate.  

Thus, as our starting point, the parametric scenario for our simulations corresponds to:  

 }.3.0,1.0{};9.0,5.0,1.0{;5.0;1.0;9.0;5.0 ====== σβφλα Maxu   

The values of the Herfindhal index and the number of firms at t=30 000, obtained for the different 

parametric configurations of the routinized regime, appear in Fig. 2.  



 

Fig. 2. Box-plots of the Herfindhal index (above) and the number of firms (below) at time step 30 000, for α = 0.5, λ = 

0.9, ϕ = 0.1, uMax = 0.5, and different values of σ and β. Each box-plot represents data from 1000 simulation runs.
 

 

Creative Accumulation 

In these conditions, the emergent structure of the sector is highly concentrated (average Herfindhal 

Index around 0.72) and tends to stabilize around a small number of firms (about 4). These features are 

peculiar to a creative accumulation pattern (see Table 2).  

 

If we explore the processes underlying the emergence of the results in Fig. 2, we can see14 that the 

evolution in the sector can be described as a succession of eras of firms, each one with a structure of the 

“oligopoly with a dominant firm” kind; and the dominant firm changes with time. 

 

                                                           
14These processes can be reproduced by using the applet: http://luis.izqui.org/models/indyterrod. 



In these processes (typical of creative accumulation), for long periods of time, a firm which survives 

much longer than the others will become market leader with a high market share (the average market 

share of the leader is greater than 0.8 (s.d. < 0.003)); it is also leader in product performance (the 

average relative performance of the leader (xleader / xMax) is greater than 0.998 (s.d. < 0.001)). During 

each era, the corresponding leader is continually challenged by new entrants which survive for a while. 

On average, each dominant firm co-exists alongside 3 or 4 smaller ones (see Fig. 2).  

 

Clearly, the leaders enjoy certain competitive advantages. One such advantage is a greater market share, 

which allows them to invest more in R&D - eq. (7) – and develop their products more quickly. The 

advantage in performance has two positive effects: firstly, it creates a favorable situation for the leader 

to capture market share - eq. (5); in addition, it reinforces the accumulative innovation process - eq. (10). 

Regarding prices, the greater mark-up applied by the leader increases its price (eqs. (1), (9)). Leadership 

will be maintained while the combination of performance and prices offers sufficient competitiveness to 

the leader - eq. (3).  

 

It is worth pointing out that being the leader has its drawbacks. A highly concentrated market generates 

a high maximum profit rate, which attracts new potential entrants (eqs. (2), (11)). The visibility (high 

market share) of the leader causes many of the entrants to copy its performance. Although most of these 

entrants do not manage to maintain their relative performance, entrants occasionally appear with such a 

combination of price and performance that they can stay in the market. Sometimes, but not often, some 

of these entrants may overtake the leader and start a new era. In Fig. 3, we show the number of 

leadership shifts during a certain simulation interval (for 10 000 periods of time). 

 



 

Fig. 3. Box-plots of the number of leadership shifts between time step 20 001 and time step 30 000, for α = 0.5, λ = 0.9, 

ϕ = 0.1, uMax = 0.5, and different values of σ and β. Each box-plot represents data from 1000 simulation runs. 

 

According to Fig. 3, when β is low, the era shifts are much less common. Additionally, we will see later 

that the number of leadership shifts is lower in the routinized regime than in the entrepreneurial regime. 

Once again, this result is expected in a creative accumulation pattern of change. 

We show in Fig. 4 how the results change when modifying the level of technological opportunities:  
 

 

Fig. 4. Box-plots of the Herfindhal index at time step 30 000 for α = 0.5, λ = 0.9, ϕ = 0.1 and different values of uMax. 

Each box-plot represents data from 6000 simulation runs (1000 runs for each combination of values of β = {0.1, 0.5, 

0.9} and σ = {0.1, 0.3}). 

 



Fig. 4 shows that the higher the level of technological opportunities, the higher the degree of 

concentration in the sector tends to be. The effects of uMax indicate that, under conditions of a routinized 

regime, a high level of technological opportunities reinforces the pattern of creative accumulation. 

Likewise, as we shall see below, it is interesting to compare Fig. 4 and Fig. 7 (below); this comparison 

shows that the higher the value of uMax, the clearer the difference between the concentration levels 

emerging from routinized versus entrepreneurial regimes. 

 

To summarize, we can state that under the conditions typical of routinized regimes, and considering an 

intermediate value of the price-performance sensitivity of demand, we have found the expected patterns 

of creative accumulation. This emphasizes the plausibility of our model.  

 

4.1.2.- Entrepreneurial Technological Regime 

Entrepreneurial regimes are characterized by open and permeable learning conditions favouring the 

emergence of new innovative firms. Therefore, now, we set up a parametric scenario in which it is easy 

to enter because of the low entry barriers, and knowledge is spread easily (weak appropriability 

conditions). Likewise, the level of technological opportunities can be wider or narrower. As we will see, 

under conditions of high technological opportunities, the levels of market concentration emerging from 

this regime will differ in a stronger way from the ones in the routinized regime. In addition, although for 

coherence and due to the space limitations, we run the model in high cumulativeness conditions (η=1), 

we present in Appendix 2 the results for entrepreneurial regimes with low cumulativeness (η=0.1).15  

We shall start by considering the parametric scenario for our simulations: 

 }.3.0,1.0{};9.0,5.0,1.0{;5.0;9.0;1.0;5.0 ====== σβφλα Maxu   

The values of the Herfindhal index and the number of firms at t=30 000, obtained for different 

parametric configurations of the entrepreneurial regime, appear in Fig. 5. 

                                                           
15 The results of Appendix 2 show that, regarding low cumulativeness, the creative destruction character holds perfectly in 
the dynamics. With a provisional rough approximation, we can see that the cumulativeness parameter does not seem to have 
an excessive effect on the limit results in this case (see Appendix 2 and Fig. 5). However, future research should offer an 
exhaustive analysis of the role of cumulativeness in the model.   



 

Fig.5. Box-plots of the Herfindhal index (above) and the number of firms (below) at time step 30 000, for α = 0.5, λ = 

0.1, ϕ = 0.9, uMax = 0.5, and different values of σ and β. Each box-plot represents data from 1000 simulation runs. 

 

Creative Destruction 

Under these conditions the emergent structure of the sector is not concentrated (average Herfindhal 

Index around 0.1) and tends to stabilize around a large number of firms. These features are 

representative of a creative destruction pattern (see Table 2).  

 

The industrial dynamics16 can also be described as a succession of eras of firms, each one with a 

“dominant firm” structure, where the dominant firm can change over time. However, in contrast to the 

routinized regime, the structure of the sector is not concentrated, and so the leader has a market share 

only slightly higher than that of the others. The average market share of the leader is below 0.2 (s.d. < 

                                                           
16 See applet in: http://luis.izqui.org/models/indyterrod. 



0.001), whilst its average relative performance (xleader / xMax) is greater than 0.999 (s.d. < 0.0001)). 

 

Owing to the high level of openness in the sector, the leader is continually threatened by new entrants – 

many more than those in the routinized regime. These new entrants reach a performance relatively close 

to that of the leader, and fix lower prices owing to their smaller size. The combination of both factors 

explains that, in the entrepreneurial regime, the leader loses a lot of market share to the new entrants.  

 

The relatively homogeneous character of market shares in this regime, together with low entry barriers 

and the low appropriability of innovations, generate a pattern of industry evolution which is more 

turbulent than that observed in routinized conditions. Hence, many firms enter, challenge and imitate 

each other with relative ease, while knowledge is widely spread and shared, homogenizing 

performances. 

  

All these effects are reflected in the fact that, in the entrepreneurial regime, the number of leadership 

shifts is higher than in the routinized regime (compare Fig. 3 and 6). It is also interesting to see that high 

values of both, β and σ, increase the number of leadership shifts (see Fig. 6).  

 

 

 

 

 

 

 



 

Fig. 6. Box-plots of the number of leadership shifts between time step 20 001 and time step 30 000, for α = 0.5, λ = 0.1, 

ϕ = 0.9, uMax = 0.5, and different values of σ and β. Each box-plot represents data from 1000 simulation runs 

 

We shall now analyze how the results are altered when the level of technological opportunities is 

modified }).9.0,5.0,1.0{( =Maxu
 

 

 

Fig. 7. Box-plots of the Herfindhal index at time step 30 000 for α = 0.5, λ = 0.1, ϕ = 0.9 and different values of uMax. 

Each box-plot represents data from 6000 simulation runs (1000 runs for each combination of values of β = {0.1, 0.5, 

0.9} and σ = {0.1, 0.3}) 

 

 



From Fig. 7, when opportunities are limited ( 1.0=Maxu ), the sector becomes very fragmented and 

significantly dispersed.  On the other hand, when the level of technological opportunities in the sector is 

high 9.0=Maxu , the concentration in the sector tends to increase, but never reaches high levels of 

industrial concentration. 

It is noteworthy that, in a context of high technological opportunities (high value of Maxu ), the 

differences in market concentration between the entrepreneurial regime and the routinized regime are 

much clearer (compare Fig. 7 with Fig. 4). Thus, as Maxu  grows, the differences (in terms of the 

Herfindhal index) between the industry structures emerging from the routinized vs entrepreneurial 

conditions become greater. 

 

To sum up, we can state that our model generates the standard results in the literature when the price-

performance sensitivity of demand takes its intermediate level. We obtained creative accumulation 

patterns emerging from routinized regimes, and creative destruction emerging from the entrepreneurial 

regimes. Nevertheless, as we will see in section 4.2, the standard results seem to fade under biased 

demand profiles, with new results appearing. Therefore, we could affirm that the well-known results in 

the literature only emerge under certain demand conditions in our model. To see this, we study the case 

of α=0.1 y α=0.9 in section 4.2. 

 

4.2. Extreme values for the price-performance sensitivity of demand 

In this section, we show that the role of demand is crucial in explaining the sectorial dynamics. To be 

specific, we find that if consumers value product performance highly, α=0.1, the sector tends to become 

concentrated; on the contrary, if consumers are highly price-sensitive, α=0.9, then the sector tends to 

atomize (see Fig. 8 and Fig. 9). This is so, no matter which technological regime we are in. To be 

specific, as can be seen in Fig. 8 and Fig. 9, for α=0.1, the average Herfindhal index for most parametric 

configurations is greater than 0.75, and the number of firms is below 10. Likewise, for α=0.9, the 

average Herfindhal index for most parametric settings is close to “0” (almost perfect competition) and, 

in general, over 70 firms survive.  

 



 

Fig. 8. Average Herfindhal index at time step 30 000, for different values of α, λ, uMax, and ϕ (these are the four 

parameters that explain the greatest amount of variability in the Herfindhal index17). Thus, each bar represents the 

average Herfindhal index at time step 30 000 calculated over 6000 simulation runs (1000 runs for each combination of 

values of β = {0.1, 0.5, 0.9} and σ = {0.1, 0.3}). All standard errors are below 0.005. 

 

                                                           
17 The selection of the 4 most explanatory parameters (out of the 6 considered) has been carried out comparing the 15 
different ANOVA models of 4 parameters and all their interactions. The model including α, λ, uMax, ϕ and their interactions 
was the model with the lowest sum of squared errors. Incidentally, all factors and their interactions are significant at 0.0001 
in this model, but care must be taken when interpreting this result, since the assumption of normality does not hold here. 



 

Fig. 9. Average number of firms at time step 30 000, for different values of α, λ, uMax, and ϕ. Thus, each bar represents 

the average number of firms at time step 30 000 calculated over 6000 simulation runs (1000 runs for each combination 

of values of β = {0.1, 0.5, 0.9} and σ = {0.1, 0.3}). All standard errors are below 1.  

 

Taking into account the mechanisms of the model seen in Fig. 1, we shall try to interpret these results. 

We begin by asking why a high performance sensitivity of demand (low α) leads, in most cases, to a 

high concentration of the sector. To understand this, the extreme case {α=0.1, λ=0.9, uMax =0.9} is 

particularly useful -see Fig. 8 and 9–, a parameterization shared by 18 000 simulation runs in our study. 

As we can see, the Herfindhal index tends to be very close to 1, with only one surviving firm in most 

cases. In fact, it can be shown that in the 18 000 simulation runs, the founding firm of the sector always 

survives and dominates the market. This is so because this firm enjoys certain competitive advantages 

which make it unbeatable in an environment where demand places a high value on product performance 



level (i.e. α=0.1). Thus, a first advantage is its higher market share (which is 1 in the initial period), 

allowing it to invest more in R&D - eq. (7) - and develop its product performance more quickly. The 

advantage in performance has two positive effects: on the one hand, it enables the leader to capture and 

maintain a higher market share - eq. (5); on the other hand, it reinforces the accumulative process of 

innovation - eq. (10) -, which is an advantage due to the high level of technological opportunities (uMax 

=0.9). Although other firms enter, attracted by the high profit rate of the sector – eq. (11) -, they do not 

manage to seize the leadership position from the founder. 

This all happens in the extreme case {α=0.1, λ=0.9, uMax=0.9}. However, it is a very generalized result. 

It is worth pointing out that as entry barriers diminish and/or the level of technological opportunities is 

reduced, the advantage of the founding firm is eroded, and the level of concentration in the sector is 

reduced (see Fig. 8 and 9). However, the levels of industrial concentration are, in general, very high – 

and the number of firms, low18.  

 

Now, let us look at the effects of considering demand to be extremely sensitive to price (i.e. α=0.9). In 

this case, as seen in Fig. 8 and 9, the dynamics of the sector lead to a high degree of fragmentation, and 

the average number of firms is high. In fact, except for λ=0.9 and uMax =0.9, the average Herfindhal 

index is below 0.1 (and in most cases below 0.05), and the average number of firms is, in general, higher 

than 50 (in some cases this figure can be over 300).  

 

Once again, to understand the mechanism underlying these results, we consider the scheme in Fig. 1 

again and focus on the extreme case {α=0.9, λ=0.1, uMax =0.1}. Both Fig. 8 and Fig. 9 show that, for this 

case, the average Herfindhal index is close to zero (almost perfect competition) and, on average, over 

300 firms survive. 

In this scenario, the firm founding the sector quickly finds itself threatened by new entrants which, with 

their small size, set low prices and possess a performance level close to the maximum at that time – eq. 

(11). In a context in which consumers are very sensitive to price, new entrants wear away the market 

share of the leading firm – eq. (3). Likewise, the low level of technological opportunities (uMax =0.1) 

favors the homogenization of the sector – eq. (10) -, and even more so, the lower the barriers to imitation 

                                                           
18 Although the level of concentration decreases for the case of very low technological opportunities and very low entry 
barriers, we should ask ourselves whether it is realistic to consider a sector which innovates very little in product and where 
demand is very performance senstitive. This special case is probably the least relevant one from an empirical point of view. 



(high values of φ). The final result is a high degree of fragmentation of the sector with firms offering 

products which are more similar, the lower the degree of appropriability of the sector. Once again, the 

extreme case helps us to understand how the model works, but the result of low concentration when 

demand is highly price-sensitive is a general one (see Fig. 8). 

 

All the aforementioned, leads us to reflect on the importance of considering demand aspects in the 

analysis of industrial dynamics, as previously pointed out by Malerba (2006) and others. Malerba states 

that, at least in the Schumpeterian tradition, demand has been considered a rather marginal aspect, with 

the supply side being emphasized instead. Joseph A. Schumpeter himself might have been responsible 

for this, given his consideration of users as passive agents in the innovation process. Our results seem to 

confirm Malerba’s concerns: once demand moves to the forefront (as in our model), not only do new 

results appear but we also find that the known results can be looked at from a new perspective.  

 

5 Concluding Remarks 

We were persuaded to begin this work by the almost generalized feeling that, after three decades of 

advances in the study of industrial dynamics, it might be time to explore the interplay between the well-

studied knowledge-related aspects of innovation, and certain demand-driven mechanisms underlying 

market competition. The increasing number of contributions that have appeared during the last decade, 

expressing the need to examine the interactions between innovation and demand, seem to support this 

idea. With the aim of contributing to this body of works, we have proposed an evolutionary model of 

industrial dynamics capable of analyzing market transformations and concentration in different demand 

conditions and in alternative technological regimes. 

 

The complexity of the subject, together with the variants in formulation and analysis posed by our 

model, leads us to present our model as a first step in a more general research strategy which will be 

extended with time. However, our results already seem to confirm that demand can play a decisive role 

in industrial dynamics. From the computational analysis of our model we have found that, although for 

intermediate values of the price-performance sensitivity of demand the well-known relationships 

between technological regimes and industry evolution generally hold, this is not the case when we 

consider biased demand profiles - whether they be biased towards price or to performance. Hence, in our 



model, a high price sensitivity of demand tends to atomize the industry, no matter the technological 

regime we are in. Likewise, when the demand is clearly performance-sensitive, market concentration 

emerges in remarkably different technological conditions. This result is undoubtedly worthy of deeper 

study at a later date. In fact, we have attempted to formulate as simple a model as possible, in order for 

our results to be easily understandable and to show the way for future generalisations. In this sense, we 

shall finish our work by laying down lines of work which, in our opinion, follow on from our 

fundamental results.  

 

On the one hand, the fact that our results reproduce - under certain conditions - the expected 

relationships between certain technological regimes and corresponding patterns of industrial 

transformation allows us to be confident about the plausibility of our model. Hence, as in previous 

theoretical and empirical contributions (Winter, 1984; Breschi et al., 2000), we have found that, for 

intermediate demand profiles, typical entrepreneurial settings generate creative destruction patterns of 

change, while the alternative routinized configurations engender creative accumulation. On the other 

hand, the most interesting lines of future research derive from the fact that, in our model, somewhat 

surprisingly, the predictable processes of creative destruction and creative accumulation fade as the 

price-performace sensitivity of demand varies. To be specific, we believe that there are at least three 

promising lines which would allow for a deeper look at these results. Hence: 

 

Firstly, a more exhaustive analysis of the roles of cognitive and R&D cumulativeness in the model may 

be enlightening. The formal and computational complexities linked to this possible extension of our 

work are beyond the limited scope of a single paper. However, we have already pointed out how this 

research could start out from the generalizations following on from eq.(10). 

  

Secondly, it would be interesting to explore the robustness of our results, considering alternative 

strategic learning routines, and different investment mechanisms. Once again, the complications 

involved in this theoretical generalization exceed the scope of our present work. 

 

Finally, we would like to point out that advances towards a more general formulation of our model 

would, perhaps, allow us to check the new results with more complex classifications of technological 

regimes. To this regard, the works by Marsili (1999, 2001) are an excellent departure point. 



6 Appendix 1 

Statement: In the deterministic version of the model (i.e. uMax = σ = 0 and λ = 1), stationarity (i.e. sit = 

sit+1 and rit = rit+1, for all i and for all t) implies that all firms present in the market end up becoming 

indistinguishable from each other. Specifically, using n > 1 to denote the number of firms present in the 

market, in the long run (i.e. as time goes to infinity): 

a) sit = si = 1/n, ∀i.  

b) rit = ri = r, ∀i. 

c) cit = ci = n /(n-r), ∀i. 

d) pit = pi = (n +1)/(n-r), ∀i. 

e) Rit = Ri = r/(n(n-r)), ∀i. 

f) xit = xi = xMax, ∀i. 

(The case where there is only one firm in the market is insignificant). 

Proof: The proof is conducted in several steps: 

1. rit+1 = rit, ∀i, ∀t   �  {Eq. (8)}  �  rit = r, ∀i, ∀t. 

2. sit+1 = sit, ∀i, ∀t   �  {Eq. (5)}  �  tit γγ = , ∀i, ∀t. 
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Noting that r·si < 1, we can solve the recursive equation to obtain: 

cit = (1 – (r·si)t) / (1 – r·si) + ci0 (r·si)t 

Thus, taking limits when t goes to infinity: 
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4. Rit+1 = r·si
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Also, note that, for all i, the convergence of prices pit to the corresponding limit pi is monotonous, and 

the series | pit - pi | is geometric and monotonously decreasing (remember that r·si < 1): 

| pit - pi |=  | (1 + si) [ci0 – 1 / (1 – r·si)] | (r·si)t 

In simple words, prices stabilize, i.e. for any time h: 

| pih+1 – pih | > | pit+1 – pit |  ∀t > h. 

6. tit γγ = , ∀i, ∀t    �   jtit γγ = , ∀i, ∀j, ∀t     

Therefore: 

( ) ( ) jt

t

tjt

t

tjt

t

tit

t

tit

it

p

pp

x

xx

p

pp

x

xx γααααγ =
−

−
−

−=
−

−
−

−=
_

_

_

_

_

_

_

_

11  

( )
t

jtit

t

jtit

p

pp

x

xx

__
1

−
=

−
− αα

 

t

jtit
tjtit

p

pp
xxx

_

_

1

−
−

=−
α

α
 

Since xit > 0, ∀i, ∀t, the equation above implies that beyond a certain time T (i.e. when prices stabilize 

and there are no changes in the ranking of prices anymore – see point 5 of the proof) there cannot be 

changes in the ranking of performances either, i.e. ∃ T  such that xiT > xjT   �  xit > xjt , ∀t > T. Thus: 

∃ m, T,  such that  xmt = xt
Max, ∀t > T.  Using Eq. (10), this implies that xt

Max = xMax, ∀t > T.      

Using Eq. (10) again, and noting that  )·1/(·lim 2
iiiit

t
RsrsrR =−=

∞→
and that 1)·1/(·· 2 <− ii srsrφ  (since 

there cannot be changes in the ranking of performances ∀t > T), it can be proved that: 

 lim Max
xxit

t
=

∞→
 

Thus, in the long run: xit = xi = xMax, ∀i. Bearing in mind also that in the long run tit γγ = , we then 

obtain ppi = , ∀i. Thus: 

 )·1/()1()·1/()1( jjjiii psrssrsp =−+=−+=   �   {0 < si < 1}  �   si = sj = s = 1/n , ∀i, j. 

Substituting this last result in the equations derived above, we obtain the 6 propositions (a-f) included in 

the statement. 



7 Appendix 2 

 

 

Fig.10. Box-plots of the Herfindhal index (above) and the number of firms (below) at time step 30 000, for α = 0.5, λ = 0.1, ϕ = 0.9, 

uMax = 0.5, η=0.1  and different values of σ and β. Each box-plot represents data from 1000 simulation runs. 

 

Given the difficulties involved in an exhaustive computational analysis for all the parameters of the 

model19, we have taken high cumulativeness in eq. (10) as an almost permanent assumption. However, it 

seems reasonable to check – even if only provisionally – what would happen to the patterns which 

emerge from entrepreneurial regimes, if we suppose low cumulativeness.  

                                                           
19 Not only for the high number of simulations required for a rigorous analysis of a stochastic model like ours, but also – and 
fundamentally – for the difficulties associated to the global treatment of the information and the extraction of conclusions 
from our simulations. 



In Fig. 10 we present the results obtained for the Herfindhal index and the number of firms at t=30 000, 

for the case of entrepreneurial regimes with η=0.1, considering the level of technological opportunities is 

medium, and the demand has an intermediate profile. This parametric configuration allows us to directly 

compare Fig. 10 with Fig. 5, and thus see how the results change when considering low cumulativeness 

in entrepreneurial regimes.  

As we can see in both figures, the expected results are maintained for the case of low cumulativeness. In 

this case, we also obtain low levels of industry concentration and a high number of firms in the limit 

states. This reinforces the results seen in subsection 4.1.2 regarding the appearance of creative 

destruction patterns in entrepreneurial regimes.  
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