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of Orthogonal Polynomials

Luciano Abadias, Pedro J. Miana and Natalia Romero

To Laura and Pablo

Abstract. In this paper, we obtain L1-weighted norms of classical or-
thogonal polynomials (Hermite, Laguerre and Jacobi polynomials) in
terms of the zeros of these orthogonal polynomials; these expressions
are usually known as quadrature rules. In particular, these new formu-
lae are useful to calculate directly some positive defined integrals as
several examples show.
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1. Introduction

A unified approach to classical orthogonal polynomials (Laguerre, Hermite
and Jacobi polynomials) is via Rodrigues’ formula, i.e.,

Qn,ω(t) =
1

ω(t)μn

dn

dtn
(ωQn)(t), t ∈ (a, b), (1.1)

where ω is a weight in the range of definition (a, b), Q is a polynomial and
μn is a constant depending of n ≥ 0. The following table shows how to
obtain Laguerre, Hermite and Jacobi polynomials (L(α)

n , Hn, and P
(α,β)
n ,

respectively) taking different values of ω, Q and μn:

Orthogonal polynomial, Qn,ω μn ω Q (a, b)

Laguerre polynomial, L
(α)
n n! tαe−t t (0, ∞)

Hermite polynomial, Hn (−1)n e−t2
1 (−∞, ∞)

Jacobi polynomial, P
(α,β)
n (−1)n2nn! (1 − t)α(1 + t)β (1 − t2) (−1, 1)
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The zeros of the orthogonal polynomials Qn,ω associated to the distribution
ω(t)dt on the interval [a, b] are real and distinct and are located in the interior
of the interval [a, b], see [14, Theorem 3.3.1]. Note that Z(Qn,ω) = Z(wQn,ω)
on the interval (a, b) where Z(f) is the set the zeros of the function f .

The well-known Gauss–Jacobi quadrature rule states that∫ b

a

p(t)ω(t)dt =
n∑

j=1

λjp(tj), tj ∈ Z(Qn,ω),

where p is an arbitrary polynomial of degree 2n−1 and parameters (λj)1≤j≤n

are known as Christoffel numbers. The distribution ω(t)dt and the integer n
uniquely determine these numbers (λj)j , see for example [14, Theorem 3.4.1;
Chapter XV]. It is difficult to state the origin of this theorem but Jacobi
must have been aware of it in 1826 [10].

There exists a great number of papers and monographies about location
of zeros of orthogonal polynomials and different types of quadrature rules:
details of Gauss–Jacobi quadrature rule may be found, for example, in [8,
13] and [14, Chapter XV]. Szegö polynomials and Szegö quadrature formula
on the unit circle are studied for the Fejér kernel in [12]. Connections with
orthogonal polynomials on the line and Padé approximants are also obtained
in [12]. In [9], a number of formulae are derived for the numerical evaluation of
singular integrals in the interval (−1, 1). These formulae are based on Gauss–
Legendre quadrature rule. Later in [4], authors propose to approximate the
Hilbert transform of smooth functions using the zeros of Hermite polynomials.
In the nice paper [7], various concepts of orthogonality on the real line are
reviewed in connection with quadrature rules. Finally, Gaussian and other
positive quadrature rules are investigated to deduce some conditions about
the existence of prescribed abscissa in [3].

In this paper, we prove a formula similar to Gauss–Jacobi quadrature
rule (also named as Gaussian quadrature rule) to obtain L1-weighted norm of
classical orthogonal polynomials. This kind of result has not been considered
before in the literature. In [5,6], the error of the Gaussian quadrature rule is
estimated in an L1-weighted norm, only in the Jacobi setting.

A first approach to our problem is the following theorem. Again, the set
of zeros of orthogonal polynomials plays an important role.

Theorem 1.1. For n ≥ 1, functions Qn,ω satisfy

‖Qn,ω ω‖1 :=

∫ b

a

|Qn,ω(t)|ω(t)dt = 2
μn−1

|μn|
n∑

j=1

(−1)j+1ω(tj)Q(tj)Qn−1,ωQ(tj),

where tj ∈ Z(Qn,ω) and a < t1 < · · · < tn < b.

Proof. We call t0 = a and tn+1 = b. From Rodrigues’ formula, we obtain that
∫ b

a
|Qn,ω(t)|ω(t)dt =

n∑
j=0

∫ tj+1

tj

| 1

μn

dn

dtn
(ωQn)(t)| dt =

n∑
j=0

(−1)j

|μn|
∫ tj+1

tj

dn

dtn
(ωQn)(t) dt

=

n∑
j=0

(−1)j

|μn|
dn−1

dtn−1
(ωQn)(t)

∣∣∣tj+1

tj

= 2

n∑
j=1

(−1)j+1

|μn|
dn−1

dtn−1
(ωQn)(tj)
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where we have used that | 1
μn

dn

dtn
(ωQn)|(t) = (−1)j 1

|μn|
dn

dtn
(ωQn)(t) for tj <

t < tj+1, and the function ωQn and its derivatives of order less than n vanish
at the endpoints a and b in the three cases (Laguerre, Hermite, and Jacobi
polynomials considered in the Introduction). Now, we apply the formula (1.1)
to get that∫ b

a

|Qn,ω(t)|ω(t)dt = 2
μn−1

|μn|
n∑

j=1

(−1)j+1ω(tj)Q(tj)Qn−1,ωQ(tj),

and we conclude the result. �

In fact, this result may be improved using some recurrence relations; we
show that∫ b

a

|Qn,ω(t)|ω(t)dt = 2cn,ω

n∑
j=1

(−1)j+1ω(tj)Qn−1,ω(tj),

in Corollaries 2.4, 3.4 and 4.7 (where cn,ω is a parameter which depends on
ω and n).

In this paper, we are interested to estimate and calculate the following
L1-weighted norms

‖ ti

i!
Qn,ωω‖1 =

∫ b

a

|t|i
i!

|Qn,ω(t)|ω(t)dt, n, i ∈ N ∪ {0}, (1.2)

in the setting of classical orthogonal polynomials Qn,ω. These L1-weighted
norms are commonly used in applied and mathematical analysis and related
to Sobolev norms (see Remark 2.5). Although a unified presentation might
be considered (see Theorem 1.1 and compare Lemmata 2.2, 3.2 and 4.4),
we dedicate different sections to results concerning about each family. The
aim of this point of view is twofold: first, the situation of the number 0 with
respect to the set Z(Qn,ω) is essential and different in each case; and second,
it allows to handle easily constants and parameters involved in every case.

The main line of reasoning is to study a family of functions defined by

qn,ω :=
1
kn

ωQn,ω where the constant kn is given by the orthogonal condition,

∫ b

a

Qn,ω(t)Qm,ω(t)ω(t)dt = knδn,m, n,m ∈ N ∪ {0}, (1.3)

and δn,m is the Kronecker distribution. The exact value of kn in each case is
presented in the next table:

Orthogonal polynomial, Qn,ω kn

Laguerre polynomial, L
(α)
n

Γ(n+α+1)
n!

Hermite polynomial, Hn 2nn!
√

π

Jacobi polynomial, P
(α,β)
n

2α+β+1Γ(n+α+1)Γ(n+β+1)
(2n+α+β+1)Γ(n+α+β+1)n!

These functions qn,ω are fundamental in classical orthogonal expansions
([11, Chapter 4] and [14, Chapter IX]). Recently, the authors have treated
them to introduce Laguerre expansions for C0-semigroups in [1] and Hermite
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expansions for C0-groups and cosine function in [2]. In fact, to get sharp
estimations of ‖qn,ω‖1 is the motivating starting point of this paper: sharp
estimations allow to assure convergence of vector-valued orthogonal expan-
sions, see more details in [1,2].

The paper is organized as follows. The second section deal with La-
guerre polynomials, the third section with Hermite polynomials and the last
one with Jacobi polynomials. Three recurrence relations, differential equa-
tions and other known relations for orthogonal polynomials are verified by
functions qn,ω. We apply the Cauchy–Schwarz inequality to estimate (1.2)
in Propositions 2.1, 3.1 and 4.2. Then, we integrate by parts to express∫

ti

i!
qn,ω(t)dt by linear combinations of functions qk,ωk

(Lemmata 2.2, 3.2

and 4.4). A straightforward consequence of this identity is the equality
∫ b

a

ti

i!
qn,ω(t)dt = 0, 0 ≤ i ≤ n − 1,

which may be also shown from the orthogonal relation (1.3).
As consequences of previous results, Theorems 2.3, 3.3 and 4.5 are main

results of this paper, where the exact value of (1.2) is obtained for 0 ≤ i ≤
n − 1. For i = 0 or i = n − 1, these theorems are improved in Corollaries 2.4,
3.4 and 4.7. These formulae provide a fast and efficient way to calculate some
defined integrals, as Examples 2.6, 3.5 and 4.8 show, and may be of interest
to general and specific public including mathematical software companies.

2. Laguerre Polynomials

Generalized Laguerre polynomials {L
(α)
n }n≥0 (α > −1) are given by

L(α)
n (t) =

n∑
k=0

(−1)k

(
n + α

n − k

)
tk

k!
, t ≥ 0;

in particular L
(α)
0 (t) = 1, L

(α)
1 (t) = −t + α + 1 and L

(α)
2 (t) =

t2

2
− (α + 2)t+

(α + 2)(α + 1)
2

. Polynomials {L
(α)
n }n≥0 are solutions of second-order differ-

ential equation
ty′′ + (α + 1 − t)y′ + ny = 0, (2.1)

and satisfy the following recurrence relations

nL(α)
n (t) = (n + α)L(α)

n−1(t) − tL
(α+1)
n−1 (t);

tL(α+1)
n (t) = (n + α)L(α)

n−1(t) − (n − t)L(α)
n (t),

see for example [11,14]. Note that Lα
n(t) = L

(α+1)
n (t) − L

(α+1)
n−1 (t) and we

iterate to get that

L(α)
n (t) =

n∑
k=0

(−1)kL
(α+1+k)
n−k (t), t ≥ 0. (2.2)
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Now, we consider the following Laguerre functions {�
(α)
n }n≥0 defined by

�(α)
n (t) :=

n!
Γ(n + α + 1)

tαe−tL(α)
n (t), t ≥ 0,

for α �= −1,−2,−3, . . . , and n ∈ N∪{0}. Recently, these functions have been
studied in [1], and the following identity

�(α)
n (t) = �

(α)
n−1(t) − �

(α+1)
n−1 (t), t ≥ 0, (2.3)

holds, see [1, Proposition 2.3 (i)]. The family {�
(α)
n }n≥0 is a total set in Lp(R+)

for α > − 1
p , with 1 ≤ p < ∞ [1, Theorem 3.1 (ii)]. Furthermore, the optimal

estimate of ‖�
(α)
n ‖1 has a key role on the study of vector-valued Laguerre

expansions. In [1, Remark 2.10], we prove that

Mα

n
α+1

2

≤ ‖�(α)
n ‖1 ≤ Cα

n
α
2

, n ∈ N,

for α > −1 and Cα,Mα > 0.

Proposition 2.1. For n, i ∈ N, and α > −(i + 1), the inequality
∫ ∞

0

ti

i!
|�(α)

n (t)|dt ≤ Cα
2ii

α
2 − 1

4

n
α
2

,

holds with Cα a constant which does not depend on n or i.

Proof. We apply the Cauchy–Schwarz inequality to get that
∫ ∞

0

ti

i!
|�(α)

n (t)|dt =
n!

i! Γ(α + n + 1)

∫ ∞

0

ti+αe−t|L(α)
n (t)|dt

≤ n!

i! Γ(α + n + 1)

(∫ ∞

0

t2i+αe−tdt

) 1
2

(∫ ∞

0

tαe−t|L(α)
n (t)|2dt

) 1
2

=

(
n! Γ(2i + α + 1)

(i!)2 Γ(α + n + 1)

) 1
2

,

where we have used that functions t 
→
(

n!
Γ(α+n+1)

) 1
2

t
α
2 e

−t
2 L

(α)
n (t) form a

Hilbertian basis on L2(R+).

Since lim
n→∞

Γ(n + α)
Γ(n)nα

= 1, we deduce that

n! Γ(2i + α + 1)
(i!)2 Γ(α + n + 1)

≤ Cα
(2i)!(2i + 1)α

nα(i!)2
≤ Cα

22iiα− 1
2

nα
,

where we have applied Stirling’s formula and Cα is a constant dependent on
α and independent of i and n. We conclude the result. �

Lemma 2.2. For n ∈ N and 0 ≤ i ≤ n− 1, the Laguerre functions �
(α)
n satisfy

∫
ti

i!
�(α)
n (t)dt =

i∑
k=0

(−1)k

(i − k)!
ti−k�

(α+1+k)
n−1−k (t).
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Proof. We integrate by parts i-times to get that∫
ti

i!
�(α)
n (t)dt =

1
Γ(α + n + 1)

∫
ti

i!
dn

dtn
(tn+αe−t)(t) dt

=
1

Γ(α + n + 1)

i∑
k=0

(−1)k

(i − k)!
ti−k dn−k−1

dtn−k−1
(tn+αe−t)(t)

=
i∑

k=0

(−1)k

(i − k)!
ti−k�

(α+1+k)
n−1−k (t),

and we conclude the result. �

Theorem 2.3. Let n ∈ N∪{0}, 0 ≤ i ≤ n−1 and α > −1. Then the Laguerre
functions �

(α)
n satisfy

∫ ∞

0

ti

i!
|�(α)

n (t)|dt = 2
n∑

m=1

(−1)m+1
i∑

k=0

(−1)k

(i − k)!
ti−k
m �

(α+1+k)
n−1−k (tm), (2.4)

with tm ∈ Z(L(α)
n ) = {t1 < · · · < tn}.

Proof. We write by t0 = 0 and tn+1 = +∞. Note that L
(α)
n (0) =

(
n+α

n

)
> 0,

|L(α)
n (t)| = (−1)mL

(α)
n (t) for tm < t < tm+1 and then

∫ ∞

0

ti

i!
|�(α)

n (t)|dt =
1
i!

n∑
m=0

(−1)m

∫ tm+1

tm

ti�(α)
n (t) dt.

We apply Lemma 2.2 to deduce that
∫ ∞

0

ti

i!
|�(α)

n (t)|dt =
n∑

m=0

(−1)m
i∑

k=0

(−1)k

(i − k)!
ti−k�

(α+1+k)
n−1−k (t)

∣∣∣tm+1

tm

= 2
n∑

m=1

(−1)m+1
i∑

k=0

(−1)k

(i − k)!
ti−k
m �

(α+1+k)
n−1−k (tm),

and we have used that lim
t→0+

ti−k�
(α+1+k)
n−1−k (t) = 0 = lim

t→∞ ti−k�
(α+1+k)
n−1−k (t). �

Corollary 2.4. For α > −1 and n ∈ N, the Laguerre functions �
(α)
n satisfy

‖�(α)
n ‖1 = 2

n∑
m=1

(−1)m+1�
(α)
n−1(tm),

∫ ∞

0

tn−1|�(α)
n (t)|dt =

2
(α + n)

n∑
m=1

(−1)m+1tnm�
(α)
n−1(tm),

with tm ∈ Z(L(α)
n ) = {t1 < · · · < tn}.

Proof. To obtain the first equality, take i = 0 in the Eq. (2.4) and we use that
�
(α+1)
n−1 (tm) = �

(α)
n−1(tm) for tm ∈ Z(L(α)

n ) by equality (2.3). Taking i = n − 1
in (2.4), we get that
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∫ ∞

0

tn−1

(n − 1)!
|�(α)

n (t)|dt = 2

n∑
m=1

(−1)m+1
n−1∑
k=0

(−1)k

(n − 1 − k)!
tn−1−k
m �

(α+1+k)
n−1−k (tm)

=
2

Γ(α+n+1)

n∑
m=1

(−1)m+1tα+n
m e−tm

n−1∑
k=0

(−1)kL
(α+1+k)
n−1−k (tm)

=
2

(n − 1)!(α + n)

n∑
m=1

(−1)m+1tnm�
(α)
n−1(tm),

where we have applied the equality (2.2). �

Remark 2.5. Note that the first equality in Corollary 2.4 improves the in-
equality

‖�(α)
n ‖1 ≥ max

t∈Z(L
(α)
n )

|�(α)
n−1(t)|, n ≥ 1,

shown in [1, Theorem 2.4 (iv)]. On other hand, the equality

dk

dtk
�(α)
n (t) = �

(α−k)
n+k (t), t ≥ 0,

holds for k ≥ 1 [1, Proposition 2.3 (vi)] and then, we obtain the following
Sobolev norms∫ ∞

0

∣∣∣∣ dk

dtk
�(α)
n (t)

∣∣∣∣ dt =
∫ ∞

0

|�(α−k)
n+k (t)|dt = 2

n+k∑
m=1

(−1)m+1�
(α−k)
n+k−1(tm),

for α > k − 1 and tm ∈ Z(L(α−k)
n+k ).

Example 2.6. We consider �
(0)
2 (t) = 1

2e−t(t2 − 4t + 2). By Corollary 2.4, we
conclude that∫ ∞

0

1
2
e−t|t2 − 4t + 2|dt = 2e−2

(
e
√

2(
√

2 − 1) + e−√
2(1 +

√
2)

)
;∫ ∞

0

1
2
e−tt|t2 − 4t + 2|dt = 2e−2

(
e
√

2(5
√

2 − 7) + e−√
2(5

√
2 + 7)

)
.

Now, we take �
(2)
1 (t) = 1

6 t2(3−t)e−t to check that
1
6

∫ ∞

0

t2|3 − t|e−tdt = 9e−3.

Finally, we take �
(1)
2 (t) = 1

6 t(t2 − 6t + 6)e−t to get that
1
6

∫ ∞

0

t|t2 − 6t + 6|e−tdt = e−3+
√

3(4
√

3 − 6) + e−3−√
3(4

√
3 + 6),

1
6

∫ ∞

0

t2|t2 − 6t + 6|e−tdt = 2e−3
(
e
√

3
(
14

√
3 − 24

)
+ e−√

3
(
14

√
3 + 24

))
.

3. Hermite Polynomials

Hermite polynomials are polynomial solutions of second-order differential
equation

y′′ − 2ty′ + 2ny = 0. (3.1)
First, Hermite polynomials are the following ones:

H0(t) = 1; H1(t) = 2t; H2(t) = 4t2 − 2; H3(t) = 4t(2t2 − 3).
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In the following, we consider a family of Hermite functions in R defined
by

hn(t) :=
1

2nn!
√

π
e−t2Hn(t), t ∈ R,

for n ∈ N ∪ {0}. They have been studied in detail in [2, Section 2] and, in
particular, the following identity

h(k)
n = (−1)k2k(n + 1) · · · (n + k)hn+k, (3.2)

is proved in [2, Proposition 2.3 (iii)]. The family {hn}n≥0 is a total set in
Lp(R), with 1 ≤ p < ∞, and the optimal estimate of ‖hn‖1 has a great im-
portance on the study of vector-valued Hermite expansions, see more details
in [2]. By standard techniques, the known bound

‖hn‖1 ≤ 1√
n!2n

, n ∈ N,

is shown, see for example [2, Remark 2.5]. In the next proposition, we consider
L1-weighted norms.

Proposition 3.1. For n, i ∈ N, the Hermite functions hn satisfy∫ ∞

−∞

|t|i
i!

|hn(t)|dt ≤ 1√
2n n! i!

√
π

.

Proof. We apply the Cauchy–Schwarz inequality to obtain that

∫ ∞

−∞

|t|i
i!

|hn(t)|dt ≤ 2

i!
√

2nn!
√

π

(∫ ∞

0

t2ie−t2dt

) 1
2

(
1

2

∫ ∞

−∞

e−t2 |Hn(t)|2
2nn!

√
π

dt

) 1
2

=
2

i!
√

2nn!
√

π

(
Γ(i + 1

2
)

2

) 1
2

(
1

2

) 1
2

≤ 1√
2nn! i!

√
π

,

where we have used that functions t 
→ e
−t2
2 Hn(t)√
2nn!

√
π

(for n ≥ 0) form a

Hilbertian basis on L2(R). �

The proof of the next lemma runs parallel to the proof of Lemma 2.2
and we do not include it here.

Lemma 3.2. Take n ∈ N and 0 ≤ i ≤ n−1. Then the following identity holds:
∫

ti

i!
hn(t) dt = − 1

n!

i∑
k=0

(n − 1 − k)!
2k+1(i − k)!

ti−khn−1−k(t).

Theorem 3.3. Let be n ∈ N, 0 ≤ i ≤ n − 1 and Z(Hn) = {t1 < . . . < tn}.
(i) If i is even, then the Hermite functions hn satisfy

∫ ∞

−∞

ti

i!
|hn(t)|dt =

1
n!

n∑
m=1

(−1)m+n
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm).
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(ii) If i is odd and n even, then they satisfy

∫ ∞

−∞

|t|i
i!

|hn(t)|dt =
1
n!

n
2∑

m=1

(−1)m+1
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm)

+
(−1)

n
2 (n − 1 − i)!

n!2i
hn−1−i(0)

+
1
n!

n∑
m= n

2 +1

(−1)m
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm);

and in the case that n is odd,

∫ ∞

−∞

|t|i
i!

|hn(t)|dt =
1
n!

n−1
2∑

m=1

(−1)m
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm)

+
1
n!

n∑
m= n+3

2

(−1)m+1
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm).

Proof. (i) We write t0 = −∞ and tn+1 = +∞ to get that

∫ ∞

−∞

ti

i!
|hn(t)|dt =

1
i!

n∑
m=0

(−1)m+n

∫ tm+1

tm

tihn(t)dt

=
1
n!

n∑
m=0

(−1)m+n+1
i∑

k=0

(n − 1 − k)!
2k+1(i − k)!

ti−khn−1−k(t)

∣∣∣∣∣
tm+1

tm

=
1
n!

n∑
m=1

(−1)m+n
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm),

where we have applied the Lemma 3.2 and lim
t→±∞ ti−khn−1−k(t) = 0.

(ii) Since n is even, then we prove that

∫ ∞

−∞

|t|i
i!

|hn(t)|dt =
1

i!

n
2 −1∑
m=0

(−1)m+1

∫ tm+1

tm

tihn(t)dt +
(−1)

n
2 −1

i

∫ 0

t n
2

tihn(t)dt

+
(−1)

n
2

i!

∫ t n
2 +1

0

tihn(t)dt +
1

i!

n∑
m= n

2 +1

(−1)m

∫ tm+1

tm

tihn(t)dt.

By Lemma 3.2, we deduce that

∫ t n
2 +1

0

tihn(t)dt = − 1
n!

i∑
k=0

i!(n − 1 − k)!
2k+1(i − k)!

ti−k
n
2 +1hn−1−k(tn

2 +1)

+
i!(n − 1 − i)!

2i+1n!
hn−1−i(0),
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and then

(−1)
n
2

i!

∫ t n
2 +1

0

tihn(t)dt +
1
i!

n∑
m= n

2 +1

(−1)m

∫ tm+1

tm

tihn(t)dt

= (−1)
n
2

(n − 1 − i)!
2i+1n!

hn−1−i(0)

+
1
n!

n∑
m= n

2 +1

(−1)m
i∑

k=0

(n − 1 − k)!
2k(i − k)!

ti−k
m hn−1−k(tm).

Analogously, we get the identities for the first two summands and we conclude
the result.

Finally, we consider the case that n is odd; in this case tn+1
2

= 0 and
we get that

∫ ∞

−∞
|t|i
i!

|hn(t)|dt =
1

i!

n−1
2∑

m=0

(−1)m

∫ tm+1

tm

tihn(t)dt+
1

i!

n∑
m= n+1

2

(−1)m+1

∫ tm+1

tm

tihn(t)dt

=
1

n!

n−1
2∑

m=1

(−1)m
i∑

k=0

(n − 1 − k)!

2k(i − k)!
ti−k
m hn−1−k(tm)

+(−1)
n+1

2
(n − 1 − i)!

2i+1n!
hn−1−i(0)

+(−1)
n−1

2
(n − 1 − i)!

2i+1n!
hn−1−i(0)

+
1

n!

n∑
m= n+3

2

(−1)m+1
i∑

k=0

(n − 1 − k)!

2k(i − k)!
ti−k
m hn−1−k(tm)

=
1

n!

n−1
2∑

m=1

(−1)m
i∑

k=0

(n − 1 − k)!

2k(i − k)!
ti−k
m hn−1−k(tm)

+
1

n!

n∑
m= n+3

2

(−1)m+1
i∑

k=0

(n − 1 − k)!

2k(i − k)!
ti−k
m hn−1−k(tm),

and we conclude the result. �

Corollary 3.4. For n ∈ N, the Hermite functions hn satisfy

‖hn‖1 =
1
n

n∑
m=1

(−1)m+nhn−1(tm),

∫ ∞

−∞

t2n

(2n)!
|h2n+1(t)|dt =

1
(2n + 1)!

2n+1∑
m=1

(−1)m+1
2n∑

k=0

1
2k

t2n−k
m h2n−k(tm);

∫ ∞

−∞

|t|2n−1

(2n − 1)!
|h2n(t)|dt =

1
(2n)!

n∑
m=1

(−1)m+1
2n−1∑
k=0

1
2k

t2n−1−k
m h2n−1−k(tm)

+
(−1)n

(2n)! 22n−1
√

π
+

1
(2n)!

2n∑
m=n+1

(−1)m
2n−1∑
k=0

1
2k

t2n−1−k
m h2n−1−k(tm);

with tm ∈ Z(Hn) = {t1 < . . . < tn}.
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Example 3.5. Let us consider functions h1, h2 and h3 defined by

h1(t)=
1√
π

te−t2 , h2(t)=
1

4
√

π
e−t2(2t2 − 1), h3(t) =

1
12

√
π

e−t2t(2t2 − 3).

Then, we apply Theorem 3.3 and Corollary 3.4 to get that

4
√

π

∫ ∞

−∞
|h2(t)|dt =

∫ ∞

−∞
|2t2 − 1|e−t2dt = 2

√
2e

−1
2 ;

4
√

π

∫ ∞

−∞
|t h2(t)|dt =

∫ ∞

−∞
|t(2t2 − 1)|e−t2dt = 4e

−1
2 − 1;

12
√

π

∫ ∞

−∞
|h3(t)|dt =

∫ ∞

−∞
|t(2t2 − 3)|e−t2dt = 1 + 4e

−3
2 ;

12
√

π

∫ ∞

−∞
|t h3(t)|dt =

∫ ∞

−∞
|t2(2t2 − 3)|e−t2dt = 3

√
6e

−3
2 ;

12
√

π

∫ ∞

−∞
|t2h3(t)|dt =

∫ ∞

−∞
|t3(2t2 − 3)|e−t2dt = 2

(
7e

−3
2 − 1

2

)
.

4. Jacobi Polynomials

Jacobi polynomials P
(α,β)
n where

P (α,β)
n (t) :=

n∑
j=0

1
2n

(
n + α

n − j

)(
n + β

j

)
(t − 1)j (t + 1)n−j

, t ∈ R,

for n ∈ N and α, β ∈ R, are polynomials solutions of second-order differential
equation

(1 − t2)y′′(t) + (β − α − (α + β + 2)t)y′(t) + n(n + α + β + 1)y(t) = 0. (4.1)

Note that P
(α,β)
n (1) =

(
n + α

n

)
.

Other interesting identities are the following ones,

P (α,β)
n (t) = (−1)nP (β,α)

n (−t),

d

dt
P (α,β)

n (t) =
n + α + β + 1

2
P

(α+1,β+1)
n−1 (t), t ∈ R.

First Jacobi polynomials are P
(α,β)
0 (t) = 1; and P

(α,β)
1 (t) = 1

2 (α + β + 2)t +
1
2 (α − β). For α = β = 0, polynomials P

(0,0)
n are the known as Legendre

polynomials, see for example [14, Chapter 4].
In the following, we define Jacobi functions p

(α,β)
n by

p(α,β)
n (t) : =

(2n + α + β + 1)Γ(n + α + β + 1)n!
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

(1 − t)α(1 + t)βP (α,β)
n (t)

=
(−1)n(2n+α+β+1)Γ(n+α+β+1)

2n+α+β+1Γ(n + α+1)Γ(n+β + 1)
dn

dtn
((1−t)n+α(1+t)n+β)(t),

for n ∈ N ∪ {0} and t ∈ (−1, 1). The following lemma contains some results
for Jacobi functions p

(α,β)
n which are similar to some equalities for Jacobi

polynomials P
(α,β)
n .
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Lemma 4.1. For n ∈ N and α, β ∈ R, the following equalities hold.

(i)

(
p(α,β)

n

)(k)

=
(−1)k

2k

Γ(n + α + β + 1)
Γ(n + α + β + 1 − k)

p
(α−k,β−k)
n+k , k ∈ N.

(ii)

p
(α+1,β+1)
n−1 (t) =

(n + α + β)(n + α + β + 1)
(2n + α + β)(2n + α + β − 1)

p
(α,β)
n−1 (t)

+
(n + α + β + 1)(α − β)

(2n + α + β)(2n + α + β + 2)
p(α,β)

n (t)

− (n + α + 1)(n + β + 1)
(2n + α + β + 2)((2n + α + β + 3)

p
(α,β)
n+1 (t).

(iii)

(n + α + 1)(n + β + 1)
(2n + α + β + 3)

p
(α,β)
n+1 (t) = − (2n + α + β + 2)(n + α + β)n

(2n + α + β)((2n + α + β − 1)
p
(α,β)
n−1 (t)

+
1

2(2n + α + β)
(
(2n + α + β + 2)(2n + α + β)t + α2 − β2

)
p(α,β)

n (t).

(iv)

p
(α+1,β+1)
n−1 (t) =

(n + α + β)(2n + α + β + 1)
(2n + α + β)(2n + α + β − 1)

p
(α,β)
n−1 (t)

+
1
2

(
α − β

2n + α + β
− t

)
p(α,β)

n (t).

Proof. To show the first part, note that

d

dt
p(α,β)

n (t) =
(−1)n(2n + α + β + 1)Γ(n+α+β+1)

2n+α+β+1Γ(n + α + 1)Γ(n + β + 1)

dn+1

dtn+1
((1−t)n+α(1+t)n+β)(t)

= −n + α + β

2
p
(α−1,β−1)
n+1 (t).

We iterate this equality to get
(
p
(α,β)
n

)(k)

.

The part (ii) is straightforward consequence of a formula similar to Ja-
cobi polynomials, [14, (4.5.5)]. The part (iii) is obtained from the recurrence
formula for Jacobi polynomials, [14, (4.5.1)]. To finish, the part (iv) is ob-
tained from part (ii) and (iii). �

Proposition 4.2. For n, i ∈ N, α, β > −1, the Jacobi functions p
(α,β)
n satisfy

the inequality
∫ 1

−1

|t|i|p(α,β)
n (t)|dt ≤ Cα,β

√
n

i1+γ
,

where Cα,β is a independent constant of n and i and γ = min(α, β).
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Proof. We denote by c
(α,β)
n =

(2n + α + β + 1)Γ(n + α + β + 1)n!
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

. By the

Cauchy–Schwarz inequality, we get that

∫ 1

−1

|t|i|p(α,β)
n (t)|dt ≤ c(α,β)

n

(∫ 1

−1

t2i(1 − t)α(1 + t)βdt

) 1
2

(∫ 1

−1

(1 − t)α(1 + t)β |P (α,β)
n (t)|2dt

) 1
2

≤
√

c
(α,β)
n

(
Cα

∫ 0

−1

t2i(1 + t)βdt + Cβ

∫ 1

0

t2i(1 − t)αdt

) 1
2

≤ Cα,β

√
c
(α,β)
n

(
(2i)!

Γ(2i + β + 2)
+

(2i)!
Γ(2i + α + 2)

)
) 1

2

where we have used that functions t 
→
√

c
(α,β)
n (1− t)

α
2 (1+ t)

β
2 P

(α,β)
n (t) form

a Hilbertian basis on L2(−1, 1).

Since lim
n→∞

Γ(n + α)
(n − 1)!nα

= 1, we deduce that
(2i)!

Γ(2i + β + 2)
≤ Cβ

1
iβ+1

,

then

c(α,β)
n ≤ Cα,β

n(n − 1)!nα+β+1n!
(n − 1)!2 nα+1nβ+1

≤ Cα,β n

and we conclude the result. �

Remark 4.3. In [14, (7.34.1)], the equivalence
∫ 1

−1
|p(α,β)

n (t)|dt ∼ √
n when

n → ∞ is stated.

The proof of next lemma is similar to the proof of Lemma 2.2 and we
avoid it here.

Lemma 4.4. For n ∈ N and 0 ≤ i ≤ n − 1, the Jacobi functions p
(α,β)
n satisfy

∫
ti

i!
p(α,β)

n (t)dt = −
i∑

k=0

2k+1Γ(n + α + β + 1)
Γ(n + k + α + β + 2)

ti−k

(i − k)!
p
(α+1+k,β+1+k)
n−1−k (t).

Theorem 4.5. Take n ∈ N, 0 ≤ i ≤ n − 1; α, β > −1 and Z(P (α,β)
n ) = {t1 <

· · · < tn0 < tn0+1 < tn} with 0 ∈ [tn0 , tn0+1).

(i) In the case that i is even, the Jacobi functions p
(α,β)
n satisfy

∫ 1

−1

|t|i
i!

|p(α,β)
n (t)|dt

=
n∑

m=1

(−1)m+n
i∑

k=0

2k+2Γ(n + α + β + 1)
Γ(n + k + α + β + 2)

ti−k
m

(i − k)!
p
(α+1+k,β+1+k)
n−1−k (tm).
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(ii) In the case that i is odd, they satisfy

∫ 1

−1

|t|i
i!

|p(α,β)
n (t)|dt

=
n0∑

m=1

(−1)m+n+1
i∑

k=0

2k+2Γ(n + α + β + 1)
Γ(n + k + α + β + 2)

ti−k
m

(i − k)!
p
(α+1+k,β+1+k)
n−1−k (tm)

+(−1)n0+n 2i+2Γ(n + α + β + 1)
Γ(n + i + α + β + 2)

p
(α+1+i,β+1+i)
n−1−i (0)

+
n∑

m=n0+1

(−1)m+n
i∑

k=0

2k+2Γ(n + α + β + 1)
Γ(n + k + α + β + 2)

ti−k
m

(i − k)!
p
(α+1+k,β+1+k)
n−1−k (tm).

Proof. (i) The proof is similar to the proof of Theorem 3.3 (i) due to P
(α,β)
n (1)

> 0; in this case, we apply Lemma 4.4.
(ii) Suppose that n is even. Again, we denote by t0 = −1 and tn+1 = 1.

Then, we show that

∫ 1

−1

|t|i
i!

|p(α,β)
n (t)|dt =

1

i!

n0−1∑
m=0

(−1)
m+1

∫ tm+1

tm

t
i
p
(α,β)
n (t)dt +

(−1)n0+1

i

∫ 0

tn0

t
i
p
(α,β)
n (t)dt

+
(−1)n0

i!

∫ tn0+1

0
t
i
p
(α,β)
n (t)dt +

1

i!

n∑
m=n0+1

(−1)
m

∫ tm+1

tm

t
i
p
(α,β)
n (t)dt.

By Lemma 4.4, we deduce that

∫ tn0+1

0

ti

i!
p(α,β)

n (t)dt = −
i∑

k=0

2k+1Γ(n+α+β+1)

Γ(n + k + α + β + 2)

ti−k
n0+1

(i − k)!
p
(α+1+k,β+1+k)
n−1−k (tn0+1)

+
2i+1Γ(n + α + β + 1)

Γ(n + i + α + β + 2)
p
(α+1+i,β+1+i)
n−1−i (0)

and then

(−1)n0

i!

∫ tn0+1

0

tip(α,β)
n (t)dt +

1
i!

n∑
m=n0+1

(−1)m

∫ tm+1

tm

tip(α,β)
n (t)dt

= (−1)n0
2i+1Γ(n + α + β + 1)
Γ(n + i + α + β + 2)

p
(α+1+i,β+1+i)
n−1−i (0)

+
n∑

m=n0+1

(−1)m
i∑

k=0

2k+2Γ(n + α + β + 1)
Γ(n + k + α + β + 2)

ti−k
m

(i − k)!
p
(α+1+k,β+1+k)
n−1−k (tm).

Analogously, we get the identities for the first two summands and we conclude
the result.

Finally, the case when n is odd is similar to the previous one. �

Remark 4.6. In the case that α = β, then p
(α,α)
2n is a even function and p

(α,α)
2n−1

is odd. In this last case, 0 ∈ Z(P (α,α)
2n−1 ) and n0 = n − 1.
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Corollary 4.7. For α, β > −1 and n ∈ N, the Jacobi functions p
(α,β)
n satisfy

‖p(α,β)
n ‖1 =

4
(n+α+β+1)

(n+α+β)
(2n+α+β)

(2n+α+β+1)
(2n+α + β−1)

n∑
m=1

(−1)m+np
(α,β)
n−1 (tm),

with tj ∈ Z(P (α,β)
n ) = {t1 < · · · < tn}.

Proof. By Theorem 4.5, we get that∫ 1

−1

|p(α,β)
n (t)|dt =

n∑
m=1

(−1)m+n 22Γ(n + α + β + 1)
Γ(n + α + β + 2)

p
(α+1,β+1)
n−1 (tm)

=
4

(n + α + β + 1)
(n + α + β)
(2n + α + β)

(2n + α + β + 1)
(2n + α + β − 1)

n∑
m=1

(−1)m+np
(α,β)
n−1 (tm)

where we have applied Lemma 4.1 (iv). �

Example 4.8. For p
(0,0)
2 (t) = 5

4 (3t2 − 1), we conclude that∫ 1

−1

5
4
|3t2 − 1|dt =

10
√

3
9

;
∫ 1

−1

5
4
|t(3t2 − 1)|dt =

25
24

.

In the case that p
(0,0)
3 (t) = 7

4 (5t3 − 3t), we get that
∫ 1

−1

7
4
|(5t3 − 3t)|dt =

91
40

;
∫ 1

−1

7
4
|t(5t3 − 3t)|dt =

42
25

√
3
5
.

Now, we consider p
(1,0)
2 (t) = 3

4 (−5t3 + 3t2 + 3t − 1) and we obtain that∫ 1

−1

3
4
| − 5t3 + 3t2 + 3t − 1|dt =

72
125

√
6;

∫ 1

−1

3
4
|t(−5t3 + 3t2 + 3t − 1)|dt =

18921
25000

.

Acknowledgements

Authors thank M. Alfaro, O. Ciaurri, F. Marcellán, M. Rezola, L. Roncal
and J. L. Varona for some advices, comments and references to improve the
final version of the paper.

References

[1] Abadias, L., Miana, P.J.: C0-semigroups and resolvent operators approximated
by Laguerre expansions. pp. 1–26 (2013). ArXiv:1311.7542

[2] Abadias, L., Miana, P.J.: Hermite expansions of C0-groups and cosine func-
tions. J. Math. Anal. Appl. 426, 288–311 (2015)

[3] Beckermann, B., Bustamante, J., Mart́ınez-Cruz, R., Quesada, J.M.: Gaussian,
Lobatto and Radau positive quadrature rules with a prescribed abscissa. Cal-
colo 51, 319–328 (2014)

[4] Bonis, M.C.de , della Vecchia, B., Mastroianni, G.: Approximation of
the Hilbert transform on the real line using Hermite zeros. Math. Com-
put. 71, 1169–1188 (2001)

http://arxiv.org/abs/1311.7542


L. Abadias et al. MJOM

[5] Criscuolo, G., Scuderi, L.: Error bound for product quadrature rules in L1-
weighted norm. Calcolo 31, 73–93 (1994)

[6] Devore, R.A., Ridgway, L.: Scott: Error bounds for Gaussian quadrature
and weighted-L1 polynomial approximation. Siam J. Numer. Anal. 21, 400–
412 (1984)

[7] Gautschi, W.: Orthogonal polynomials and quadrature. Electron. Trans. Nu-
mer. Anal. 9, 65–76 (1999)

[8] Greenwood, R.E., Miller, J.J.: Zeros of the Hermite polynomials and weights
for Gauss’ mechanical quadrature formula. Bull. Am. Math. Soc. 54(8), 765–
769 (1948)

[9] Hunter, D.B.: Some Gauss-Type Formulae for the evaluation of Cauchy prin-
cipal values of integrals. Numer. Math. 19, 419–424 (1972)
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