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Abstract
Helicobacter pylori is a gram-negative bacterium that infects the luminal surface of the human gastric epithelium. 

Around one half of the world’s population is thought to be infected by this bacterium, which is able to develop diseases 
such as peptic ulcer or gastric cancer. Eradication of Helicobacter pylori is becoming increasingly difficult due to 
resistance to common antibiotics. In previous work we have shown that an essential protein, flavodoxin, constitutes 
a target for the development of novel, specific antibiotics against infection caused by this microorganism, and we 
have described compounds sharing the [(E)-2-R-vinyl]benzene scaffold that exhibit bactericidal properties against 
Helicobacter pylori cultures. Based on the affinity and activity of 24 such compounds we have now developed QSAR 
models for affinity and minimal inhibitory concentration that will guide the improvement of antibacterial compounds 
based in the [(E)-2-R-vinyl]benzene scaffold. The two models show high statistical correlation and predictive capacity. 
Discovering novel chemicals with specific antimicrobial properties against Helicobacter pylori, and presumably not 
affected by existing resistances, will be of great help for the treatment of the diseases associated with this bacterium.
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Introduction
The classical Quantitative Structure-Activity Relationship (QSAR 

as we know them today) emerged in the first half of the 60s with the 
early works of Hansch and Fujita [1], the Free-Wilson method [2], the 
subsequent modification made by Ban [3] and the later approaches 
proposed by Kubinyi [4-10] and Topliss [11]. QSAR, assisted by a 
wealth of organic synthetic techniques, computer technologies and by 
the discovery of many potential therapeutic targets, has since become 
a central tool for chemists, biologists and biochemists in search of 
improving active compounds to use them as drugs for the treatment 
of a variety of diseases.

Helicobacter pylori (Hp) is a gram-negative bacteria that establishes 
life-long infections in the gastric mucosa of infected people [12,13]. 
Nowadays, about 50% of the global population is believed to be infected 
by Hp, with a lower prevalence in Europe and the United States but 
much higher in developing countries [14]. The presence of Hp in the 
human gastric mucosa is related to the development of diseases such 
as type B gastritis, chronic peptic ulcers and gastric neoplasias on 
individuals infected by that microorganism.

The traditional treatment used worldwide to combat Hp, known as 
the triple therapy (one proton pump inhibitor together with two wide 
spectrum antibiotics: clarithromycin and a choice of amoxicillin or 
metronidazole) [15], has unfortunately lost efficacy due to increased 
resistances. No new drugs have been developed in recent years to treat 
Hp infection, but some selective targets (one of them being the protein 
flavodoxin: Hp-Fld) have been identified [16]. Hp-Fld is an electron 
carrier essential for Hp viability [17,18] and it has been used in previous 
works [19,20] as target for the discovery of novel compounds that 
could be potential drugs against Hp. Four different biological responses 
(BR) or biological activities were assayed for those novel compounds, 
which are mainly derived from a common substructure represented in 
Figure 1. From those data we have gathered a database of 24 congeneric 
compounds and their respective biological activity values. We describe 
here two QSAR models for the binding affinity and the therapeutic 
potency of bactericidal compounds based on the [(E)-2-R-vinyl] 

benzene scaffold (Figure 1), which will guide the future improvement 
of Hp-specific bactericides.

Materials and Methods
Data set for QSAR analysis

Four Hp flavodoxin inhibitors were identified in previous work 
[19] and subsequently optimized [20]. Three of them, originally named 
C1, C2 and C4, were shown to display bactericidal activity against Hp. 
Compounds C1 and C2 are structurally related as they contain the 
common [(E)-2-R-vinyl]benzene substructure (Figure 1). In this work, 
those two compounds are referred to as I and II to retain their initial 
numbering. Twenty two additional compounds: 7 and 15 analogues of I 
and II respectively, were selected from [20]. The numbering assigned to 
them in that work [20] is retained here for clarity (Table 1). Compounds 
I, II, plus the additional 22 compounds constitute the database that we 
have used for the development of the QSAR models.

Cluster analysis (CA) was used to assess the structural diversity of 
such compounds by checking that relatively balanced distributions of 
compounds for a given cluster number were obtained, and to design 
the training (80%) and test (20%) series. Agglomerative hierarchical 
clustering was performed starting with each point as a singleton 
cluster and then repeatedly merging the two closest clusters until a 
single all-encompassing cluster remained. The “centroid method” 
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was used to merge objects into clusters, and distance between two 
clusters was defined as the squared Euclidean distance between their 
respective centroids [21]. The clustering was performed using the 
STATGRAPHICS 5.1 program [22].

As described elsewhere [20], the biological response variables (BR) 
tested for each compound were: affinity (Kd) of the compound/Hp-Fld 
complex, minimal inhibitory concentration (MIC), minimal cytotoxic 
concentration (MCC), and therapeutic index (TI=MCC/MIC). 
Normality for each BR (i.e., the fit to a Normal statistical distribution) 
was checked and, in cases where it was not met, some compounds 
were removed to obtain a dataset with Normal distribution. For QSAR 
analyses each BR was expressed as LogBR.

Molecular descriptors

A large number of molecular descriptors (MD) can be used in QSAR 
studies [23] (e.g., the latest version of the DRAGON program [24] 
calculates over 4800 MDs). The specific biological action of drugs may 
be described by a combination of hydrophobic, electronic and steric 
properties. A total of 35 MDs, mostly related to those properties and 
easily interpretable, have been selected for the current work. We have 
considered as hydrophobic descriptor the logarithm of the octanol-
water partition coefficient (Log P) which has been calculated through 
Ghose-Crippen methodology [25,26] implemented in DRAGON 6. 
The four electronic descriptors used: total dipole moment (µ), total 
energy (ET), HOMO eigenvalue and LUMO eigenvalue, were calculated 

Figure 1: [(E)-2-R-vinyl]benzene scaffold shared by Hp-Fld inhibitors I and II 
(emphasized in red).
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Table 1: Observed values for tested BRs in selected compounds.
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by quantum mechanical procedures using the MOPAC 6 software 
[27] with the Austin Model 1 (AM1) semi-empirical Hamiltonian [28] 
after full geometrical optimization of each molecule. Three additional 
descriptors were calculated based on the previous ones: electrophilicity 
index (ω) [29], chemical hardness (η) and softness (s) [30]. The 
polarizability property (Pol) [31] was calculated from the partition 
method implemented in HYPERCHEM 7.51 software [32]. Steric 
and structural parameters were obtained from DRAGON 6 software. 
MDs exhibiting values above 25 were scaled (divided by their standard 
deviations). The QSAR models here developed are based on orthogonal 
MDs exhibiting very low inter-correlation coefficients. This was 
checked by subjecting MDs to an inter-correlation study. Description, 
classification and other statistic parameters of the MDs used are 
summarized in Table 2. The final MDs included in the best QSAR 
models derived were selected using genetic algorithms. The models 
selected were those displaying the best values of statistical parameters 
such as correlation coefficient, standard deviation and Fisher statistics.

QSAR validations

The capability of the QSAR models to predict correctly the BR values 
within a training set was measured by the coefficient of determination 

(R2) and the cross-validation coefficient (q2), here determined by leave-
one-out (LOO) cross-validation. The possibility that the correlation 
found between the selected MDs and each dependent variable were just 
due to statistical chance was ruled out using Y-scrambling [33] (thirty 
iterations were performed). Commonly, models with R2 > 0.75 and q2 > 
0.5 are required [34]. The ability of one of the QSAR models to predict 
correctly the BR values of an external series (not used as training 
set) was measured through the external coefficient of determination 
(0<R2

Ext<1). 

Inhibitor candidates

The sources of the 24 flavodoxin inhibitors selected here for the 
QSAR analysis, their purities, and the chemical characterizations of 
those made to order by Maybridge or synthesized at home, are reported 
in detail in Galano et al. [20].

Biological activity assays

Table 1 shows the results of the biological responses determined 
per compound in Galano et al. [20]. The biological assays performed 
for determining such biological activities are also detailed there. 

DM or BR Mean SD Min Max Description
MW 280.1 63.4 167.2 448.0 Molecular Weight
RBN 2.3 0.6 2.0 4.0 Number of Rotatable Bonds
RBF 0.1 0.02 0.05 0.1 Rotatable Bond Fraction
nAB 8.5 3.4 6.0 17.0 Number of Aromatic Bonds
nHM 0.9 0.9 0.0 3.0 Number of Heavy Atoms
nHet 6.0 1.5 4.0 9.0 Number of Heteroatoms
nX 2.6 1.8 0.0 6.0 Number of Halogen Atoms
X% 11.2 8.0 0.0 27.8 Percentage of Halogen Atoms

nCIC 1.8 1.1 1.0 4.0 Number of Rings (cyclomatic number)
nCIR 2.3 1.7 1.0 7.0 Number of Circuits
MCD 0.5 0.2 0.3 0.8 Molecular Cyclized Degree
RCI 1.1 0.1 1.0 1.2 Ring Complexity Index
ARR 0.5 0.1 0.3 0.6 Aromatic Ratio
nCar 8.4 3.3 6.0 16.0 Number of Aromatic Carbon (sp2)
nCbH 4.6 2.2 0.0 10.0 Number of Unsubstituted Benzene Carbon (sp2)
nCb 3.8 1.6 2.0 6.0 Number of Substituted Benzene Carbon (sp2)

nHDon 0.04 0.2 0.0 1.0 Number of Donor Atoms for H-bonds (N, O)
nHAcc 4.3 1.9 2.0 8.0 Number of Acceptor Atoms for H-bonds (N,O,F)
Qmean 0.12 0.05 0.0 0.2 Mean absolute charge (charge polarization)

Hy -0.62 0.13 -0.8 -0.09 Hydrophilic factor
AMR 63.9 17.7 42.3 93.9 Ghose-Crippen molar refractivity

ALOGP 3.6 1.0 2.0 5.4 Ghose-Crippen oct.-wat. partition coeff. (LogP)
ALOGP2 13.8 7.6 4.1 28.6 Squared Ghose-Crippen oct.-wat. partition coeff.

SAtot 290.6 61.8 206.1 409 Total surface area from P_VSA-like descriptors
Vx 279.6 69.2 190.5 401 McGowan volume
Pol 23.3 7.1 15.3 36.0 Polarizability Ghose-Crippen
TE 3711 941 5199 2298 Total Energy (EV)

HOMO -9.9 0.55 -10.83 -8.3 Orbital HOMO Energy
LUMO -1.7 0.24 -2.3 -1.2 Orbital LUMO Energy

μ 4.4 1.4 1.2 7.1 Total Dipole Moment
η 4.1 0.23 3.4 4.4 Chemical Hardness
U -5.8 0.36 -6.4 -4.8 Electrochemical Potential
s 0.2 0.01 0.2 0.3 Chemical Softness
ω 4.1 0.37 3.4 5.0 Electrophilic Index

Kd (µM) 7.7 9.3 0.4 40.0 Dissociation Constant
MIC (µM) 19.4 43.4 0.5 150.0 Minimal Inhibitory Concentration
MCC (μM) 18.7 29.3 0.01 100.0 Minimal Cytotoxic Concentration

TI 5.9 8.7 0.0 37.7 Therapeutic Index (MCC/MIC)

Table 2: Statistical parameters, value ranges and description of the MDs and BRs analyzed.
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Results 
QSAR study for variants of inhibitors I and II

The observed improvement in the therapeutic index (TI) exhibited 
by some of the derivatives purposely designed in [20] prompted us to 
apply a classical QSAR approach to facilitate further optimizations. 
Twenty four structurally congeneric compounds, including I, II (Table 
1) constituted the starting point. The values of the molecular descriptors 
finally selected for the QSAR models are summarized in Table S1. 

Figure 2: Histograms (1) and normality test plots (2) for each BR analyzed: a) LogKd; b) Log(1/MIC); c) Log(1/MCC); d) LogTI.

Hierarchical CA revealed several clusters (Figure S1) evidencing a 
molecular diversity, which is also reflected in the value ranges of both 
MDs and BRs shown in Table 2.

QSAR model for LogKd: This BR passed the normality test: the 
histogram in Figure 2 displays the typical Gauss bell curve of a Normal 
probability distribution, and the BR values fitted a straight line in the 
Normal probability plot (Figure 2). Typified kurtosis and asymmetry 
parameters also demonstrated compliance with normality (not shown). 
Six outliers (compounds 6, 35, 38, 40 and 45) were detected using 
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standard statistical tests (residuals, standardized residuals, studentized 
residuals and Cook distances) and were removed. The training set, 
defined by CA comprised 15 compounds II, 1-3, 5, 7, 31-33, 36, 37, 39, 
41, 42 and 44. The remainder compounds: I, 4, 34 and 43 constituted 
the test set.

The best model found for LogKd was:

Log Kd=0.02(±0.01)%X + 0.29(±0.12)TE + 1.04(±0.5)η - 2.77(±2.08) 
(1)

(s=0.167; F=25.41; SPRESS=0.237)

The model combines three MDs: %X, TE and η, which exhibit low 
pair correlations (0.265 for %X and TE; 0.359 for %X and η; and 0.002 
for TE and η). The R2 (=0.874) indicates that there is a good correlation 
between the observed LogKd values and the MDs selected. On the 
other hand, q2 (=0.747) and R2

ext (=0.924) values are indicative of good 
internal and external predictability of this model. Besides, Y-scrambling 
suggests there is neither chance correlation nor chance prediction in the 
model (Figure S2). The observed Kd values determined by ITC and the 
predicted values are compared in Table 3. Compound 1 is predicted as 
the most affine one in this series whereas compound 37 is predicted as 
the least affine one, which fully coincides with the experimental results.

QSAR model for Log(1/MIC): This BR did not initially met the 
normality requirement (Figure 2c and 2d), which was confirmed by 
both typified kurtosis and asymmetry values (not shown). Normality 
was obtained by removing compounds 7, 36 and 39. After this, 
compounds 37 and 40-42 and I were eliminated as outliers. Because 
as many as 8 compounds had to be discarded, we preferred to use the 
remaining 16 compounds as training set. Thus, no test set was extracted 
for external validation. The training set, constituted by compounds: II, 
1-6, 31-35, 38 and 43-45 lead to the following model:

Log(1/MIC)=-0.25(±0.08)nCb- -8.48(±3.19)Hy + 1.38(±0.61)ω - 
10.5(±4.21) (2)

(s=0.156; F=16.175; SPRESS=0.198)

The model combines three MDs: nCb-, Hy and ω, exhibiting low 
pair correlations (0.074 for nCb- and Hy; 0.004 for nCb- and ω; and 
0.22 for Hy and ω). A high correlation was also obtained (R2=0.801), 
the q2 (=0.682) value warrants a good internal predictability and the 
Y-scrambling analysis discards both chance correlation and chance 
prediction (Figure S2). The observed Log(1/MIC) values and the 
predicted ones are compared in Table 4. The most potent compounds 
against H. pylori: 43 and 44 were correctly predicted by the model, 
whereas the least potent one: 33 was predicted as the second less potent 
one.

QSAR model for Log(1/MCC): Compound 33 was removed to 
ensure the normality condition (Figure 2e and 2f). Then, compounds 
5, 34 and 45 were removed as outliers. Compounds: I, II, 2-4, 6, 31, 32, 
36-41, 43 and 44 were the training set, and compounds 1, 7, 35 and 42 
were chosen as test set. The orthogonality between the selected MDs 
was checked and all pair wise correlations were <=0.3 (not shown). The 
developed QSAR model is shown in equation 3:

Log(1/MCC)=-0.33(±0.07)nCb- -3.71(±0.70)Hy - 0.31(±0.11)TE - 
3.07(±0.62) (3)

(s=0.302; F=11.583; SPRESS=0.409)

R2 (=0.743) and q2 (=0.53) values are lower than in the previous 
QSAR models and R2

ext (=0.512) is quite low, indicating poorer 
correlation and external predictability for this model. 

QSAR model for Log(TI): We also tried to develop a model for 
Log(TI) but no model with good statistical parameters was found 
(R2<0.75, q2<0.5 and R2

ext<0.75).

Discussion
QSAR models for affinity and inhibitory properties of [(E)-2-
R-vinyl]benzene derivatives

QSAR studies are based on the assumption that similar molecules 
have similar activities, and summarize existing relationships between 
chemical structures and biological activity within a dataset of 
structurally similar chemicals. Therefore, QSARs allow to predict the 
activities of new compounds using regression models relating a set of 
predictor variables to a biological response variable. Predictors may be 
physico-chemical properties or theoretical or structural parameters of 
compounds, while the response variables generally consist of biological 
activities such as binding affinity, potency, etc. We have performed 
classic QSAR analysis on compounds I and II, and analogues thereof, 
all sharing a [(E)-2-R-vinyl]benzene substructure. Several outliers 
were identified and excluded from the database. Reported sources for 
outliers in QSAR studies include flexible binding sites, inappropriate 

Compound Y Obs. Y Pred. Residual
1a -0.37 -0.32 -0.05
2 0.18 0.23 -0.05
3 0.22 0.27 -0.05
5 0.28 0.22 0.06
7 0.26 0.15 0.11
II 0.54 0.77 -0.23
31 0.90 0.85 0.05
32 0.74 0.67 0.06
33 1.00 0.79 0.21
36 0.57 0.67 -0.10
37b 1.20 1.05 0.15
39 1.04 0.78 0.26
41 0.65 0.88 -0.23
42 0.87 0.91 -0.04
44 0.82 0.98 -0.16

aPredicted as the highest affinity compound
bPredicted as the lowest affinity compound

Table 3: Observed and predicted LogKd values.

aPredicted as the highest inhibitory activity compound
bPredicted as the lowest inhibitory activity compound

Table 4: Observed and predicted Log(1/MIC) values.

Compound Y Obs. Y Pred. Residual
1 -0.38 -0.43 0.05
2 -0.38 -0.30 -0.08
3 -0.38 -0.31 -0.07
4 -0.08 -0.07 -0.01
5b -0.88 -0.96 0.08
6 -0.30 -0.52 0.22
II -0.38 -0.37 -0.01
31 -0.68 -0.49 0.19
32 -0.38 -0.23 -0.15
33 -0.90 -0.95 0.05
34 -0.38 -0.28 -0.10
35 -0.38 -0.47 0.09
38 -0.68 -0.45 -0.24
43a 0.28 -0.01 0.29
44a -0.03 -0.01 -0.02
45 -0.03 -0.12 0.09
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calculation of selected MDs, different binding modes, etc. [35,36]. The 
specific reasons why those compounds are outliers are at present not 
known. 

Four different BRs were modeled. For two of them, we found 
either no model with good statistical parameters (QSAR model for 
Log(TI)) or a model that showed a poor correlation and poor external 
predictability (QSAR model for Log(1/MCC)). In contrast, the QSAR 
models for LogKd and for Log(1/MIC)) appear promising. As shown in 
eq. 1, the developed model for LogKd describes the affinity of ligands 
for Hp-Fld by means of electronic and constitutional terms. Equation 
1 suggests that decreasing %X (percentage of halogen atoms) decreases 
LogKd, thus increasing the affinity of the compounds for Hp-Fld. It 
should be noticed that although this term is statistically significant, 
its contribution to the value of the BR is small. Similarly, decreasing 
TE (total energy) or η (chemical hardness) lowers the value of LogKd, 
thus increasing the affinity of the complex. The TE is related to the 
amount and type of bonds present in a given compound. In our 
context, its contribution to affinity suggests that reducing the number 
of heteroatoms and/or shifting from fluorine to iodine along the 
halogen series would increase the affinities of the compounds. On the 
other hand, η, whose contribution to LogKd is greater than that of TE, 
is inversely related to the reactivity of compounds. According to eq. 
1, the lower the η value (e.g. higher the reactivity) the lower the LogKd 
value and hence higher the compound/Hp-Fld affinity. The model 
correctly identifies the more and less affine compounds and its external 
predictability is high.

The QSAR model developed for Log(1/MIC) is given in eq. 2. The 
model suggests that decreasing nCb- (number of substituted benzene 
carbon) will increase the inhibitory activity. This is in perfect agreement 
with the above conclusion drawn from LogKd model which states that 
decreasing the number of bonds (benzene Carbon substitutions in this 
case) could increase the affinity of the compounds and consequently its 
inhibitory potency. Besides, it also could reflect on steric issues related 
to binding to flavodoxin. Meanwhile, the term Hy (hydrophilic factor) 
has also a negative contribution to this BR, which indicates that more 
hydrophobic substituents contribute to a greater inhibitory effect. 
Finally, more electrophilic compounds (greater electrophilicity index: 
ω) also contribute to a greater inhibitory effect, which might indicate 
that the Hp-Fld binding site is an electron-rich site. 

Conclusions
Two QSAR models for target affinity and inhibitory activities of 

[(E)-2-R-vinyl]benzene derivatives have been developed that show high 
statistical correlation and predictive capacity. They provide insights 
about the type of physical-chemical interaction of these inhibitors with 
their possible biological receptor (the flavodoxin protein) as well as 
simple structural information about how to optimize such compounds 
in order to guide the design of variants with improved affinity and 
improved inhibitory effect towards Hp cells. The discovery of novel 
chemicals with such specific antimicrobial properties against Hp is 
urgently needed at present for the treatment of the diseases associated 
with these bacteria.
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