000130736 001__ 130736 000130736 005__ 20240131210810.0 000130736 0247_ $$2doi$$a10.1007/s11856-016-1417-3CES 000130736 0248_ $$2sideral$$a91941 000130736 037__ $$aART-2016-91941 000130736 041__ $$aeng 000130736 100__ $$0(orcid)0000-0003-2453-7841$$aAbadías Ullod, Luciano$$uUniversidad de Zaragoza 000130736 245__ $$aCesàro sums and algebra homomorphisms of bounded operators 000130736 260__ $$c2016 000130736 5060_ $$aAccess copy available to the general public$$fUnrestricted 000130736 5203_ $$aLet X be a complex Banach space. The connection between algebra homomorphisms defined on subalgebras of the Banach algebra l1(N0) and fractional versions of Ces`aro sums of a linear operator T € B(X) is established. In particular, we show that every (C,alpha)-bounded operator T induces an algebra homomorphism — and it is in fact characterized by such an algebra homomorphism. Our method is based on some sequence kernels, Weyl fractional difference calculus and convolution Banach algebras that are introduced and deeply examined. To illustrate our results, improvements to bounds for Abel means, new insights on the (C, alpha)-boundedness of the resolvent operator for temperated alpha-times integrated semigroups, and examples of bounded homomorphisms are given in the last section. 000130736 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E64$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-77710-P$$9info:eu-repo/grantAgreement/ES/UZ/CUD2014-CIE-09 000130736 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000130736 590__ $$a0.796$$b2016 000130736 591__ $$aMATHEMATICS$$b105 / 310 = 0.339$$c2016$$dQ2$$eT2 000130736 592__ $$a1.487$$b2016 000130736 593__ $$aMathematics (miscellaneous)$$c2016$$dQ1 000130736 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000130736 700__ $$aLizama, Carlos 000130736 700__ $$0(orcid)0000-0001-9430-343X$$aMiana, Pedro J.$$uUniversidad de Zaragoza 000130736 700__ $$0(orcid)0000-0002-0988-2527$$aVelasco M. Pilar 000130736 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000130736 773__ $$g216, 1 (2016), 471-505$$pIsr. J. Math.$$tIsrael Journal of Mathematics$$x0021-2172 000130736 8564_ $$s378894$$uhttps://zaguan.unizar.es/record/130736/files/texto_completo.pdf$$yPostprint 000130736 8564_ $$s614505$$uhttps://zaguan.unizar.es/record/130736/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000130736 909CO $$ooai:zaguan.unizar.es:130736$$particulos$$pdriver 000130736 951__ $$a2024-01-31-19:17:01 000130736 980__ $$aARTICLE