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ABSTRACT

Let X be a complex Banach space. The connection between algebra homo-

morphisms defined on subalgebras of the Banach algebra �1(N0) and frac-

tional versions of Cesàro sums of a linear operator T ∈ B(X) is established.

In particular, we show that every (C,α)-bounded operator T induces an

algebra homomorphism — and it is in fact characterized by such an al-

gebra homomorphism. Our method is based on some sequence kernels,

Weyl fractional difference calculus and convolution Banach algebras that

are introduced and deeply examined. To illustrate our results, improve-

ments to bounds for Abel means, new insights on the (C, α)-boundedness

of the resolvent operator for temperated α-times integrated semigroups,

and examples of bounded homomorphisms are given in the last section.

1. Introduction

Let X be a complex Banach space. Let T be an operator in the Banach algebra

B(X) and denote by T the discrete semigroup given by T (n) := T n for n ∈ N0.

The Cesàro sum of order α > 0 of T , {Δ−αT (n)}n∈N0 ⊂ B(X), is defined by

Δ−αT (n)x =
n∑

j=0

kα(n− j)T (j)x, x ∈ X, n ∈ N0,

where

kα(n) =
Γ(α+ n)

Γ(α)Γ(n+ 1)
, n ∈ N0,

is the Cesàro kernel. It is well-known that Cesàro sums are an important concept

that appears in several contexts and ways in the literature. For instance, in

Zygmund’s book, it appeared in connection with summability of Fourier series

[30, Chapter III, Section 3.11] and in [7] in relation to weighted norm inequalities

for Jacobi polynomials and series. See also [20] and [25]. The starting point for

our investigation is this definition of the fractional sum of the discrete semigroup
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T . Certain fractional sums have been used in recent years to develop a theory of

fractional differences with interesting applications to boundary value problems

and concrete models coming from biological issues; see for example [5] and [19].

Note that this definition coincides or is connected with other fractional sums of

the discrete semigroup T on the set N0; see [4, Section 1] or [6, Theorem 2.5].

Consider φ : N0 → R+ a positive weight, that is, φ(n + m) ≤ Cφ(n)φ(m)

with C > 0, and the weighted Banach algebra �1φ (endowed with their natural

convolution product). Suppose 1
φ(·)T ∈ �∞(B(X)). It is well-known and easy to

show that the semigroup T induces an algebra homomorphism θ : �1φ → B(X)

defined by

θ(f)x :=

∞∑
n=0

f(n)T (n)x, f ∈ �1φ, x ∈ X.

Note that in the case that T is a power bounded operator, i.e., T ∈ �∞(B(X)),

then θ : �1 → B(X). Moreover, this homomorphism is a natural extension of

the Z-transform. See Section 4 and [12] for more information on this concept.

In general, algebra homomorphisms are useful tools to treat different inter-

esting aspects of operator theory: algebraic relations, sharp norm estimations,

subordination operators, or ergodic behaviour (as Katznelson–Tzafriri type

theorems, see [23]).

As mentioned before, it is remarkable that Cesàro sums have appeared in

the literature some time ago but until now, their relation with the theory of

fractional sums and their algebraic structure has not been noted. The first

main purpose of this paper is to show how this connection provides new insight

on properties and characterizations of Cesàro sums, notably concerning their

interplay with algebra homomorphisms.

Cesàro sums are also a basic tool to define (C,α)-bounded operators, a natural

extension of power-bounded operators. We recall that a bounded operator T ∈
B(X) is called (C,α)-bounded (α > 0) if

sup
n

‖ 1

kα+1(n)
Δ−αT (n)‖ <∞.

See [9, 27] for examples and properties of (C,α)-bounded operators. Note that

if T is power bounded, then T is a (C,α)-bounded operator for every α >

0. However, there are operators that do not satisfy the power-boundedness

condition, but supn≥1
1
n‖Δ−1T (n)‖ < ∞, as the well-known Assani example
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shows

T =

(
−1 2

0 −1

)
,

see [13, Section 4.7]; recently other examples have appeared in [9, 11, 27, 28, 29].

The following natural question then arises: (Q) Can T induce an algebra

homomorphism from a proper subalgebra A ⊂ �1 to B(X)?

The second purpose of this paper is to show that, surprisingly, the answer

to (Q) is positive for every bounded operator such that their Cesàro sums are

properly bounded (which includes (C,α)-bounded operators). More precisely,

we construct appropriate subalgebras τα(kα+1) ⊂ �1 and then we prove that

the following assertions are equivalent:

(i) T is (C,α)-bounded operator.

(ii) There exists a bounded algebra homomorphism θ : τα(kα+1) → B(X)

such that θ(e1) = T.

In the limit case α = 0, the following assertions are equivalent:

(a) T is power bounded.

(b) There exists a bounded algebra homomorphism θ : �1 → B(X) such

that θ(e1) = T.

(c) For any 0 < α < 1, there exist a bounded algebra homomorphism

θα : τα(kα+1) → B(X) such that θα(e1) = T and sup
0<α<1

‖θα‖ <∞.

This paper is organized as follows: In order to construct a suitable Banach

algebra and the corresponding homomorphism, we introduce in Section 2 the

notion of α-th fractional Weyl sum as follows:

W−αf(n) =
∞∑
j=n

kα(j − n)f(j), n ∈ N0;

see Definition 2.2 below. We state their main algebraic properties in Proposition

2.4. Then, we introduce Banach algebras τα(φ) as the completion of the space of

sequences c0,0 under the norm qφ(f) :=

∞∑
n=0

φ(n)|Wαf(n)| (Theorem 2.11). The

weight sequences φ need to verify some summability conditions (Definition 2.8)

to prove that the space τα(φ) is a Banach algebra. It is remarkable that such

Banach algebras extend those defined for α ∈ N0 and φ = kα+1 in [17, Section

4]. Therefore, they are considered to study subalgebras of analytic functions on

the unit disc contained in the Korenblyum and (analytic) Wiener algebra.
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Section 3 contains an interesting characterization for the Cesàro sum of pow-

ers of a given (C,α)-bounded operator T ∈ B(X) solely in terms of a certain

functional equation (Theorem 3.3). The obtained characterization corresponds

to an extension of the well-known functional equation for the corresponding

discrete semigroup T , namely

T nTm = T n+m, n,m ∈ N0.

Theorem 3.5 gives a complete answer to question (Q) by defining a bounded

algebra homomorphism θ : τα(φ) → B(X) given explicitly by

θ(f)x :=

∞∑
n=0

Wαf(n)Δ−αT (n)x, f ∈ τα(φ), x ∈ X.

This homomorphism enjoys remarkable properties. The existence of bounded

homomorphisms in these new Banach algebras completely characterizes the

growth of Cesàro sums in Corollary 3.6; in particular, bounded homomorphisms

from algebras τα(kα+1) characterize (C,α)-boundedness (Corollary 3.7). Such

a connection seems to be new as well as the functional equation found in the

beginning of this section.

The Z-transform technique may be traced back to De Moivre around the year

1730. In fact, De Moivre introduced the more general concept of “generating

functions” to probability theory. It is interesting to compare the Z-transform

(discrete case) to the Laplace transform (continuous case); see for example [12,

Section 6.7]. In Section 4, we use the Widder space C∞
W ((ω,∞), X ; m) where

m is Borel measure on R+, introduced in [8], to give a new characterization

of summable vector-valued sequences in terms of the Z-transform in Theorem

4.1. We complete the approach given in Section 3 involving the Z-transform

and resolvent operators in Theorem 4.4.

Finally, in Section 5 we suggest several applications, counterexamples and fi-

nal comments on this paper. A straightforward application is obtaining the Abel

means by subordination to the Cesàro sums, as Theorem 5.1 shows. This point

of view allows the improvement of some previous results given in [26]. Some

results presented in this paper are inspired by similar ones obtained for α-times

integrated semigroups; see [16]. In Section 5.2, we show a natural connection

between both concepts. In Section 5.3, we present some counterexamples of

algebra homomorphisms defined on certain Banach algebras which cannot be

extended to some larger algebras. A future research line, the extension of the
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celebrated Katznelson–Tzafriri to (C,α)-bounded operators, is commented on

in Section 5.4.

Notation. We denote by {en}n∈N0 the set of canonical sequences given by

en(j) = δn,j where δn,j is the known Kronecker delta, i.e., δn,j = 1 if n = j

and 0 otherwise. Let X be a Banach space and �p(X) the set of vector-valued

sequences f : N0 → X such that

∞∑
n=0

‖f(n)‖p < ∞, for 1 ≤ p < ∞; and c0,0(X)

the set of vector-valued sequences with finite support. When X = C we write

�p and c0,0 respectively. It is well-known that �1 is a Banach algebra with the

usual (commutative and associative) convolution product

(f ∗ g)(n) =
n∑

j=0

f(n− j)g(j), n ∈ N0.

We write f∗n = f ∗ f∗(n−1) for n ≥ 2, f∗1 = f and f∗0 = e0; in particular

en = e∗n1 for n ∈ N0. Consider φ : N0 → R+ a positive sequence, and �1φ
is the Banach spaced formed by complex sequences f : N0 → C such that∑

n∈N0
φ(n)|f(n)| <∞.

Throughout the paper, we use the variable constant convention, in which C

denotes a constant which may not be the same from line to line. The constant

is frequently written with subindexes to emphasize some parameters.

2. Weyl differences and convolution Banach algebras

In this section, we define certain spaces of sequences that correspond to an

extension in two different directions of those considered in the recent paper [17,

Definition 4.2]. We consider a positive order of regularity in Weyl differences

(Definition 2.2) and different order of growth of Weyl differences (Definition

2.8). These spaces correspond to Banach subalgebras of the space �1 and are

important to obtain a further characterization via homomorphisms for Cesàro

sums in the next section.

We consider the usual difference operator Δf(n) = f(n+1)−f(n), for n ∈ N0,

its powers Δk+1 = ΔkΔ = ΔΔk, for k ∈ N, and we write Δ0f = f and Δ1 = Δ.

It is easy to see that

Δkf(n) =

k∑
j=0

(−1)k−j

(
k

j

)
f(n+ j), n ∈ N0
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(see for example [12, (2.1.1)]), and then Δm : c0,0 → c0,0 for m ∈ N0. In

addition, for α > 0, we consider the well-known scalar sequence (kα(n))∞n=0

defined by

kα(n) :=
Γ(n+ α)

Γ(α)Γ(n+ 1)
=

(
n+ α− 1

α− 1

)
, n ∈ N0.

In Zygmund’s classical monograph, the numbers kα(n) are called Cesàro num-

bers of order α ([30, Vol. I, p.77]) and written kα(n) = Aα−1
n . However, the

notation as function kα will facilitate the understanding of this paper. The

kernels kα may equivalently be defined by means of the generating function

(2.1)

∞∑
n=0

kα(n)zn =
1

(1− z)α
, |z| < 1, α > 0,

and satisfy the semigroup property, that is, kα ∗ kβ = kα+β for α, β > 0.

Furthermore, the following equality holds: for α > 0,

(2.2) kα(n) =
nα−1

Γ(α)

(
1 +O

(
1

n

))
, n ∈ N

([30, Vol. I, p.77 (1.18)]) and kα is increasing (as a function of n) for α > 1,

decreasing for 1 > α > 0 and k1(n) = 1 for n ∈ N ([30, Theorem III.1.17]). It

is straightforward to check that kα(n) ≤ kβ(n) for β ≥ α > 0 and n ∈ N0. The

Gautschi inequality states that

(2.3) x1−s <
Γ(x+ 1)

Γ(x + s)
< (x+ 1)1−s, x ≥ 1, 0 < s < 1

([18]), which implies that

(n+ 1)α−1

Γ(α)
< kα(n) <

nα−1

Γ(α)
, n ∈ N, 0 < α < 1.

Note that when α = 0 we have

k0(n) := lim
α→0+

kα(n) = e0(n), n ∈ N0.

Lemma 2.1: For α > 0, there exists Cα > 0 such that

kα(2n) ≤ Cαk
α(n), n ∈ N0.

In particular for 0 < α < 1, the following inequality holds:

kα+1(2n) < 2αkα+1(n)

(
1 +

1− α

2(1 + α)

)α

, n ∈ N0.
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Proof. The proof of the first inequality is straightforward by the inequality

(2.2). To show the second inequality, we use the known doubling equality for

the Gamma function

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z), �z > 0,

to obtain that

kα+1(2n) =
Γ(α+ 1 + 2n)

Γ(α+ 1)Γ(2n+ 1)

= 2αkα+1(n)
Γ(α2 + 1

2 + n)Γ(α2 + 1 + n)

Γ(α+ 1 + n)Γ(12 + n)
, n ≥ 1.

We apply the Gautschi inequality (2.3) to get that

Γ(α2 + 1
2 + n)

Γ(12 + n)
<

(
α

2
+

1

2
+ n

)α
2

,

Γ(α2 + 1 + n)

Γ(α+ 1 + n)
< (α+ n)

−α
2 ,

for 0 < α < 1 and we conclude that

kα+1(2n) < 2αkα+1(n)

(
1 +

1− α

2(α+ n)

)α
2

≤ 2αkα+1(n)

(
1 +

1− α

2(1 + α)

)α

,

for n ≥ 1 and 0 < α < 1.

The Cesàro sum of order α of a sequence f is defined by

Δ−αf(n) := (kα ∗ f)(n) =
n∑

j=0

kα(n− j)f(j), n ∈ N0, α > 0.

Again we prefer to follow the notation Δ−αf(n) instead of Sα−1
n used in [30].

Note that Δ−α−βf = kβ ∗ (Δ−αf) and then Δ−αΔ−β = Δ−(α+β) = Δ−βΔ−α

for α, β > 0; for more details see again [30, Vol. I, pp. 76–77]. Note also that

lim
α→0+

Δ−αf(n) = f(n) for all n ∈ N0 with α > 0.

We write W = −Δ, Wm = (−1)mΔm for m ∈ N. The operator W has an

inverse in c0,0, W
−1f(n) =

∞∑
j=n

f(j) and its iterations are given by the sum

W−mf(n) =

∞∑
j=m

Γ(j − n+m)

Γ(j − n+ 1)Γ(m)
f(j) =

∞∑
j=n

km(j − n)f(j), n ∈ N0,
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for each scalar-valued sequence f such that

∞∑
n=0

|f(n)|nm <∞; see for example

[17, p. 307]. These facts and the clear connection with the Weyl fractional

calculus motivate the following definition:

Definition 2.2: Let f : N0 → X and α > 0 be given. The Weyl sum of order α

of f , W−αf , is defined by

W−αf(n) :=

∞∑
j=n

kα(j − n)f(j), n ∈ N0,

whenever the right-hand side makes sense. The Weyl difference of order α of f ,

Wαf , is defined by

Wαf(n) :=WmW−(m−α)f(n) = (−1)mΔmW−(m−α)f(n), n ∈ N0,

for m = [α] + 1, whenever the right-hand side makes sense. In particular,

Wα : c0,0 → c0,0 for α ∈ R.

Remark 2.3: Note that the definition of Wα is dependent on m = [α] + 1, but

we can write

Wαf(n) =WmW−(m−α)f(n) =W lW−(l−α)f(n), n ∈ N0,

for l > m = [α] + 1 with l ∈ N, whenever the right-hand side makes sense, since

W−1 is the inverse operator of W and Proposition 2.3 (v) holds.

Observe that if α ∈ N0, the Weyl difference of order α coincides with the

definition given in [17, Section 4]. Some general properties are shown in the

following proposition:

Proposition 2.4: Let f ∈ c0,0(X). The following assertions hold:

(i) For α, β > 0, W−αW−βf =W−(α+β)f =W−βW−αf.

(ii) For α > 0 and n ∈ N0, we have lim
α→0+

W−αf(n) = f(n).

(iii) For α > 0, WαW−αf =W−αWαf = f.

(iv) For α > 0 and n ∈ N0, we have lim
α→0+

Wαf(n) = f(n).

(v) For all α, β ∈ R we have WαW βf =Wα+βf =W βWαf.

Proof. (i) It is clear using the Fubini theorem and the semigroup property

kα+β = kα ∗ kβ for α, β > 0.
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(ii) It is sufficient to apply that f has finite support and lim
α→0+

kα(j) = e0(j)

for j ∈ N0.

(iii) We write m = [α] + 1. Applying part (i), for n ∈ N0, we have that

WαW−αf(n) =WmW−(m−α)W−αf(n) =WmW−mf(n) = f(n),

since W−m is the inverse of Wm in c0,0(X), see [17, Section 4]. On the other

hand,

W−αWαf(n) =W−(α+1−m)W−(m−1)WmW−(m−α)f(n)

=W−(α+1−m)W 1W−(m−α)f(n)

=W−(α+1−m)W−(m−α)f(n)−
∞∑
j=n

kα+1−m(j − n)W−(m−α)f(j + 1)

=W−1f(n)−
∞∑

j=n+1

kα+1−m(j − n− 1)W−(m−α)f(j)

=W−1f(n)−W−1f(n+ 1) = f(n),

where we use part (i).

(iv) It is sufficient to apply that f has finite support and lim
α→0+

k1−α(j) = 1

for j ∈ N0.

(v) It is simple to check using the previous results.

Example 2.5: (i) Let λ ∈ C\{0} be given and define pλ(n) := λ−(n+1) for

n ∈ N0. An easy computation shows that the sequence pλ is a pseudo-

resolvent, that is, it satisfies the Hilbert equation

(μ− λ)(pλ ∗ pμ)(n) = pλ(n)− pμ(n), n ∈ N0.

Moreover, the following identity holds:

pλ ∗ (λe0 − e1) = e0, λ ∈ C\{0}.

We claim that the functions pλ are eigenfunctions for the operator Wα

for α ∈ R and |λ| > 1. In fact, we have, by (2.1), that

W−αpλ(n) = λ−(n+1)
∞∑
j=0

kα(j)λ−j =
λα

(λ− 1)α
pλ(n), n ∈ N0.

By Proposition 2.4 (iii), we obtain that

Wαpλ =
(λ− 1)α

λα
pλ, |λ| > 1,
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proving the claim.

(ii) Let α ≥ 0 and n ∈ N0 be given. We define

hαn(j) :=

{
kα(n− j), j ≤ n,

0, j > n.

The functions hαn are denoted by Γα−1
n for α ∈ N0 in [17, Section 4].

Note that hαn ∈ c0,0 for n ∈ N0. Moreover, hαn ∈ span{ej | 0 ≤ j ≤ n},
hα0 = e0, h

α
1 = αe0 + e1, h

0
n := limα→0+ h

α
n = en, and

(2.4) hαn(j) = kα(n−j) =
n∑

l=0

kα(n−l)el(j) =
n∑

l=0

kα(n−l)e∗l1 (j), 0 ≤ j ≤ n.

Then for all β ≥ 0 it is easy to check that W−βhαn = hα+β
n , i.e.,

W−βhαn(j) =

∞∑
i=j

kβ(i − j)hαn(i) = hα+β
n (j), j ∈ N0.

Using Proposition 2.4 (iii), we obtain that

W βhαn(j) = hα−β
n (j), j ∈ N0,

for 0 ≤ β ≤ α and n ∈ N0.

The following remark shows an interesting duality between the operator Δ−α

and W−α. Similar results may be found in [1, Section 4] and [2, Theorem 4.1

and 4.4].

Remark 2.6: Let f, g ∈ c0,0. We consider the usual duality product 〈 , 〉 given

by

〈f, g〉 :=
∞∑

n=0

f(n)g(n).

By the Fubini theorem, we get that 〈W−αf, g〉 = 〈f,Δ−αg〉 and consequently

〈f, g〉 = 〈Wαf,Δ−αg〉 = 〈Δ−αf,Wαg〉.

Note that these last three equalities also hold for the usual inner product in

c0,0.

The next lemma includes an equality which is an important tool for further

developments in this paper. The proof runs parallel to the proof of the integer

case given in [17, Lemma 4.4] and, therefore, we do not include it here.
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Lemma 2.7: Let f, g ∈ c0,0 and α ≥ 0 be given. Then

Wα(f ∗ g)(n) =
n∑

j=0

Wαg(j)
n∑

p=n−j

kα(p− n+ j)Wαf(p)

−
∞∑

j=n+1

Wαg(j)
∞∑

p=n+1

kα(p− n+ j)Wαf(p).

The following definition is inspired by [16, Definition 1.3]:

Definition 2.8: Let α > 0 be given. We say that a positive sequence φ belongs

to the class ωα,loc if there is a constant cφ > 0 such that

(2.5)

(
j∑

n=0

+

j+p∑
n=p+1

)
kα(n)φ(j + p− n) ≤ cφφ(j)φ(p), 1 ≤ j ≤ p.

We denote by ωα the set of nondecreasing sequences φ ∈ ωα,loc which are of

exponential type and satisfy inf
n≥0

(kα+1(n))−1φ(n) > 0.

Examples of sequences in the set ωα are the following ones:

(i) Any nondecreasing sequence φ satisfying max(kα+1(n), φ(2n)) ≤Mφ(n)

for some M > 0 and for each n ≥ 0 (in particular, φ(n) = nβ(1 + nμ)

with β + μ ≥ α and β, μ ≥ 0 and φ(n) = kγ(n) with γ ≥ α+ 1).

(ii) φ(n) = kα+1(n)ρ(n), where ρ is a positive weight.

(iii) φ(n) = kν+1(n)eλn for all ν, λ > 0 and n ∈ N.

By the property kα(n) ∼ nα−1

Γ(α)
(see formula (2.2)), equivalent examples may

be given in terms of nα−1. The particular case φ(n) = kα+1(n) will play a

fundamental role in this paper. Observe that in this case we obtain explicitly

the value of the constant cφ in (2.5).

Lemma 2.9: For 0 < α < 1, the following inequality holds:(
j∑

n=0

+

j+p∑
n=p+1

)
kα(n)kα+1(j + p− n)

≤
(
2α+1

(
1 +

1− α

2(1 + α)

)α

− 1

)
kα+1(j)kα+1(p), 1 ≤ j ≤ p.
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Proof. For 1 ≤ j ≤ p and α > 0, we have that

j∑
n=0

kα(n)kα+1(j + p− n) ≤ kα+1(j + p)

j∑
n=0

kα(n) = kα+1(j + p)kα+1(j),

j+p∑
n=p+1

kα(n)kα+1(j + p− n) ≤ kα+1(j − 1)

j+p∑
n=p+1

kα(n)

≤ kα+1(j)
(
kα+1(j + p)− kα+1(p)

)
.

As kα+1 is an increasing sequence, we have kα+1(j + p) ≤ kα+1(2p) for j ≤ p

and we apply Lemma 2.1 to conclude the proof.

Proposition 2.10: Let 0 < α ≤ β and φ ∈ ωα,loc be given. The following

properties hold:

(i) ωβ,loc ⊂ ωα,loc and ωβ ⊂ ωα.

(ii) (kα ∗ φ)(2n) ≤ cφφ
2(n) for all n ∈ N.

(iii) kα(n) ≤ cφφ(n) ≤ an for all n ∈ N and some a > 0.

(iv) k2α(2n) ≤ cφ2(n) for all n ∈ N0 and some c > 0.

(v) φ(n+ 1) ≤ Cφ(n) for some C > 0 independent of n ∈ N.

(vi) kβ ∈ ωα,loc if and only if β ≥ α+ 1.

Proof. (i) Since kβ(n) ≥ kα(n) for all n ∈ N0, then ωβ,loc ⊂ ωα,loc and ωβ ⊂ ωα

for β ≥ α > 0.

(ii) It is enough to take j = p in (2.5) in order to obtain the inequality.

(iii) By part (ii), we have that

kα(n)φ(n) ≤ (kα ∗ φ)(2n) ≤ cφφ
2(n), n ∈ N,

and we get the first inequality. For n ∈ N, we apply the inequality (2.5) n− 1

times to obtain that

cφφ(n) = cφk
α(0)φ(n− 1 + 1) ≤ c2φφ(1)φ(n− 1) ≤ (cφφ(1))

n
.

(iv) We combine parts (ii), (iii) and the semigroup property of kernels kα to

conclude that

cφφ
2(n) ≥ (kα ∗ φ)(2n) ≥ c′(kα ∗ kα)(2n) = c′k2α(2n), n ∈ N0,

for some c′ > 0.
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(v) Take j = 1 and p = n ∈ N in (2.5) to get

φ(n+ 1) = kα(0)φ(n+ 1) ≤
1∑

m=0

kα(m)φ(n + 1−m) ≤ cφφ(1)φ(n), n ∈ N.

(vi) If kβ ∈ ωα,loc then we can apply (2.2) and part (ii) to get

(kα ∗ kβ)(2n) = kα+β(2n) ∼ 2α+β−1 n
α+β−1

Γ(α+ β)
≤ c

n2(β−1)

Γ2(β)
, n ∈ N.

We conclude that β ≥ α+ 1. Note that kα+1 ∈ ωα,loc and then kβ ∈ ωα,loc for

β ≥ α+ 1. By application of part (i) we conclude the proof.

For α ≥ 0, and φ ∈ ωα,loc, we define the application qφ : c0,0 → [0,∞) given

by

qφ(f) :=

∞∑
n=0

φ(n)|Wαf(n)|, f ∈ c0,0.

Note that for α = 0 the above application corresponds to the usual norm in �1φ.

In the case of φ = kα+1, we write qα instead of qkα+1 and q0 = ‖ ‖1 for α ≥ 0.

By (2.2), the norm qα is equivalent to the norm q̃α given by

q̃α(f) := |f(0)|+
∞∑
n=1

nα|Wαf(n)|.

The last formula was considered for the case α ∈ N0 in [17, Definition 4.2].

Part of the following result extends [17, Theorem 4.5]. Their proof is similar

to those given in [16, Proposition 1.4]. We include it in the following for the

sake of completeness.

Theorem 2.11: Let α > 0 and φ ∈ ωα,loc be given. The application qφ defines

a norm in c0,0 which satisfies

qφ(f ∗ g) ≤ Cφ qφ(f) qφ(g), f, g ∈ c0,0,

where the constant Cφ > 0 is independent of f and g.

We denote by τα(φ) the Banach algebra obtained as the completion of c0,0

in the norm qφ. In the case that φ ∈ ωα, then

(i) the operator Δ is linear and bounded on τα(φ), in other words Δ ∈
B(τα(φ)),

(ii) τα(φ) ↪→ τα(kα+1) ↪→ �1, and limα→0+ qα(f) = ‖f‖1, for f ∈ c0,0,

(iii) for 0 < α < β, τβ(kβ+1) ↪→ τα(kα+1),
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(iv) for 0 < α < 1,

qα(f ∗ g) ≤
(
2α+1

(
1 +

1− α

2(1 + α)

)α

− 1

)
qα(f) qα(g), f, g ∈ τα(kα+1).

Proof. It is clear that qα is a norm in c0,0. Now, applying Lemma 2.7 we have

qφ(f ∗ g)

≤
( ∞∑

n=0

n∑
j=0

n∑
p=n−j

+

∞∑
n=0

∞∑
j=n+1

∞∑
p=n+1

)
φ(n)kα(p− n+ j)|Wαg(j)||Wαf(p)|

=

( ∞∑
j=0

∞∑
n=j

n∑
p=n−j

+
∞∑
j=1

j−1∑
n=0

∞∑
p=n+1

)
φ(n)kα(p− n+ j)|Wαg(j)||Wαf(p)|

=

( ∞∑
j=0

∞∑
p=0

p+j∑
n=max(j,p)

+

∞∑
j=1

∞∑
p=1

min(j,p)−1∑
n=0

)
φ(n)kα(p− n+ j)|Wαg(j)||Wαf(p)|

≤ φ(0)|Wαg(0)||Wαf(0)|+ cφ

∞∑
j=1

∞∑
p=1

φ(j)φ(p)|Wαg(j)||Wαf(p)|

≤ Cφ qφ(f) qφ(g)

where we use Fubini’s Theorem twice and the inequality (2.5) to show the first

inequality.

Now let φ ∈ ωα be given.

(i) It is clear that Δ is a linear operator. Moreover,

qφ(Δ(f)) =

∞∑
n=0

φ(n)|Wαf(n)−Wαf(n+ 1)| ≤ qφ(f) +

∞∑
n=1

φ(n− 1)|Wαf(n)|

≤ 2qφ(f),

for f ∈ τα(φ).

(ii) It is clear that τα(φ) ↪→ τα(kα+1) ↪→ �1. Moreover, by the Monotone

Convergence Theorem and Proposition 2.4 (ii), we have

lim
α→0+

qα(f) = lim
α→0+

∞∑
n=0

kα+1(n)|Wαf(n)| =
∞∑
n=0

|f(n)| = ‖f‖1, f ∈ c0,0.
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(iii) Let f ∈ c0,0, and 0 < α < β be given. Then

qα(f) =

∞∑
n=0

kα+1(n)|Wαf(n)| =
∞∑

n=0

kα+1(n)|
∞∑
j=n

kβ−α(j − n)W βf(j)|

≤
∞∑
j=0

|W βf(j)|
j∑

n=0

kβ−α(j − n)kα+1(n) =

∞∑
j=0

kβ+1(j)|W βf(j)| = qβ(f),

where we have applied Proposition 2.4 (v) and the semigroup property of kα.

(iv) This inequality follows from Lemma (2.8).

Example 2.12: Note that {hαn}n∈N0 ⊂ τα(φ) where φ ∈ ωα,loc. By Example

2.5 (ii) we have qφ(h
α
n) = φ(n) for all n ∈ N0. Then the series

∞∑
n=0

Wαf(n)hαn

converges on τα(φ) for every f ∈ τα(φ). By Proposition 2.10 (iii)

|f(m)| ≤
∞∑

n=m

kα(n−m)|Wα(f)(n)| ≤ cφ

∞∑
n=m

φ(n)|Wα(f)(n)|

≤ cφqφ(f), m ∈ N0,

whenever kα or φ is a non-decreasing function, i.e., for α ≥ 1 or φ ∈ ωα. We

conclude that f =
∞∑
n=0

Wαf(n)hαn on τα(φ).

Let φ ∈ ωα be such that φ(n) ≤ Can for some a > 1. Then pλ ∈ τα(φ) for

|λ| > a, where the sequences pλ are defined in Example 2.5 (i), and

qφ(pλ) ≤ C
|λ− 1|α

|λ|α(|λ| − a)
, |λ| > a.

In the particular case φ = kγ , we have pλ ∈ τα(kγ) for |λ| > 1 and, for γ ≥ α+1,

we obtain

(2.6) qkγ (pλ) =
|λ− 1|α|λ|γ−α−1

(|λ| − 1)γ
, |λ| > 1,

where we have applied Example 2.5 (i) and the formula (2.1).

3. Cesàro sums and algebra homomorphisms

In this section and the following, we display our main results. The algebra

structure of Cesàro sums are presented in several ways: A functional equation

(Theorem 3.3), an algebra homomorphism (Theorem 3.5) and a characterization

by means of pseudo-resolvents (Theorem 4.4). Note that this approach in fact



Vol. 216, 2016 ALGEBRA HOMOMORPHISMS 487

characterizes the growth of Cesàro sums, as Corollary 3.6 and Corollary 3.7 for

(C,α)-bounded operators show. We recall the following definition:

Definition 3.1: Given a bounded operator T ∈ B(X), the Cesàro sum of order

α > 0 of T , {Δ−αT (n)}n≥0 ⊂ B(X), is defined by

Δ−αT (n)x := (kα ∗ T )(n)x =

n∑
j=0

kα(n− j)T jx, x ∈ X, n ∈ N0.

Note that we keep the notation T (n) = T n for n ∈ N0.

Example 3.2: The canonical example for a Cesàro sum of order α in Banach

algebras τα(φ) (in particular in �1) is the family {hαn}n∈N0 given in Example

2.5(ii). Note that {hαn}n∈N0
⊂ τα(φ) with φ ∈ ωα,loc, see Example 2.12. If we

denote E(n) = e∗n1 , then by equation (2.4) we get hαn = Δ−αE(n) for n ∈ N0.

The following theorem characterizes sequences of operators which are Cesàro

sums of some order α > 0 for a fixed operator T .

Theorem 3.3: Let α > 0 and T, {Tn}n∈N0 ⊂ B(X). The following assertions

are equivalent:

(i) Tn = Δ−αT (n) for n ∈ N0.

(ii) T1 = T + αI and the following functional equation holds:

(3.1) TnTm =
n+m∑
u=m

kα(n+m−u)Tu−
n−1∑
u=0

kα(n+m−u)Tu n ≥ 1, m ∈ N0.

Proof. Assume (i). We prove the identity (3.1). Indeed, for n ∈ N and m ∈ N0,

we have

TnTm =

n∑
j=0

m∑
i=0

kα(n− j)kα(m− i)T j+i =

n∑
j=0

m+j∑
u=j

kα(n− j)kα(m+ j − u)T u

=

n∑
j=0

m+j∑
u=0

kα(n− j)kα(m+ j − u)T u −
n∑

j=1

j−1∑
u=0

kα(n− j)kα(m+ j − u)T u

=

n∑
j=0

kα(n− j)Tm+j −
n∑

j=1

j−1∑
u=0

kα(n− j)kα(m+ j − u)T u.
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Observe that

n∑
j=1

j−1∑
u=0

kα(n− j)kα(m+ j − u)T u =
n−1∑
u=0

n∑
j=u+1

kα(n− j)kα(m+ j − u)T u

=

n−1∑
u=0

n−1∑
l=u

kα(l − u)kα(m+ n− l)T u

=

n−1∑
l=0

kα(m+ n− l)

l∑
u=0

kα(l − u)T u

=

n−1∑
l=0

kα(m+ n− l)Tl,

and the equality (3.1) follows. This proves the claim. Conversely, assume (ii).

Define

Sn :=

n∑
j=0

kα(n− j)T j, n ∈ N0.

It is clear that S0 = T0 = I (the equality T0 = I is easily deduced from the

hypothesis) and S1 = T +αI = T1. Inductively, we suppose that Sn = Tn. Then

using that Sn satisfies (3.1), we have

Sn+1 + kα(1)Sn − kα(n+ 1)I = SnS1 = TnT1 = Tn+1 + kα(1)Sn − kα(n+ 1)I.

Then we conclude that Tn+1 = Sn+1, and consequently Tn = Δ−αT (n) for all

n ∈ N0.

Remark 3.4: If {Tn}n∈N0 ⊂ B(X) is a sequence of bounded operators which

satisfies the equality (3.1), then the operator defined by T := T1 − αI is called

the generator of {Tn}n∈N0 . By Theorem 3.3, Tn = Δ−αT (n) where T (n) = T n

for n ∈ N0. In particular, note that {hαn}n∈N0 satisfies (3.1) in τα(φ) (see

Example 3.2), and the generator is the element e1.

The following theorem is one of the main results of this paper.

Theorem 3.5: Let α > 0 and T ∈ B(X) be such that ‖Δ−αT (n)‖ ≤ Cφ(n)

for n ∈ N0 with φ ∈ ωα,loc and C > 0. Then there exists a bounded algebra

homomorphism θ : τα(φ) → B(X) given by

θ(f)x :=
∞∑

n=0

Wαf(n)Δ−αT (n)x, x ∈ X, f ∈ τα(φ).
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Furthermore, the following properties hold:

(i) θ(hαn) = Δ−αT (n) for all n ∈ N0. In particular, θ(e0) = I and θ(e1) = T .

(ii) For each f ∈ τα(φ) such that Δf ∈ τα(φ) we have

Tθ(Δf)x = (I − T )θ(f)x− f(0)x, x ∈ X.

(iii) If

sup
n∈N0

(kβ−α ∗ φ)(n)
ψ(n)

<∞,

for some 0 < α < β and ψ ∈ ωβ,loc, then τ
β(ψ) ↪→ τα(φ) and

θ(f)x =
∞∑

n=0

W βf(n)Δ−βT (n)x, x ∈ X, f ∈ τβ(ψ).

(iv) If ‖T ‖ ≤ a for some a > 0, then θ(f)x =
∑∞

n=0 f(n)T
n(x), for f ∈

τα(φ) ∩ �1an . In particular, θ(pλ) = (λ− T )−1 for each |λ| > a.

Proof. Note that the map θ is well-defined, linear and continuous. Moreover,

‖θ(f)x‖ ≤ Cqα(f)‖x‖, for all f ∈ τα(φ) and x ∈ X. To see that θ is an algebra

homomorphism it is sufficient to prove that θ(f ∗ g) = θ(f)θ(g) for f, g ∈ c0,0.

Indeed, by Lemma 2.7, we get that

θ(f ∗ g)x =

∞∑
n=0

Wα(f ∗ g)(n)Δ−αT (n)x

=

∞∑
n=0

n∑
j=0

Wαg(j)

n∑
p=n−j

kα(p− n+ j)Wαf(p)Δ−αT (n)x

−
∞∑
n=0

∞∑
j=n+1

Wαg(j)

∞∑
p=n+1

kα(p− n+ j)Wαf(p)Δ−αT (n)x.
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We apply the Fubini theorem to get that

θ(f ∗ g)x =

∞∑
j=0

Wαg(j)

j∑
p=0

Wαf(p)

p+j∑
n=j

kα(p− n+ j)Δ−αT (n)x

+

∞∑
j=0

Wαg(j)

∞∑
p=j+1

Wαf(p)

p+j∑
n=p

kα(p− n+ j)Δ−αT (n)x

−
∞∑
j=1

Wαg(j)

j∑
p=1

Wαf(p)

p−1∑
n=0

kα(p− n+ j)Δ−αT (n)x

−
∞∑
j=1

Wαg(j)

∞∑
p=j+1

Wαf(p)

j−1∑
n=0

kα(p− n+ j)Δ−αT (n)x.

Therefore

θ(f ∗ g)x =

∞∑
j=1

Wαg(j)

j∑
p=1

Wαf(p)

(p+j∑
n=j

−
p−1∑
n=0

)
kα(p− n+ j)Δ−αT (n)x

+Wαg(0)Wαf(0)x

+

∞∑
j=0

Wαg(j)

∞∑
p=j+1

Wαf(p)

(p+j∑
n=p

−
j−1∑
n=0

)
kα(p− n+ j)Δ−αT (n)x

=

∞∑
j=1

Wαg(j)

j∑
p=1

Wαf(p)Δ−αT (p)Δ−αT (j)x+Wαg(0)Wαf(0)x

+

∞∑
j=0

Wαg(j)

∞∑
p=j+1

Wαf(p)Δ−αT (p)Δ−αT (j)x

= θ(f)θ(g)x,

where we have used the identity (3.1). This proves the claim. We now verify

that the properties (i)-(iv) hold.

(i) Note that Wαhαn = en (see Example 2.5 (ii)), and then θ(hαn) = Δ−αT (n)

for n ∈ N0. As e0 = h0 and e1 = hα1 − αhα0 , it is clear that θ(e0) = I and

θ(e1) = T .
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(ii) Let f ∈ τα(φ) be such that Δf ∈ τα(φ) and x ∈ X. We have that

Tθ(Δf)x = T

( ∞∑
n=0

Wαf(n+ 1)Δ−αT (n)x−
∞∑
n=0

Wαf(n)Δ−αT (n)x

)

=

∞∑
n=0

Wαf(n+ 1)
(
Δ−αT (n+ 1)x− kα(n+ 1)x

)
− T

∞∑
n=0

Wαf(n)Δ−αT (n)x

= (I − T )θ(f)x−Wαf(0)Δ−αT (0)x−
∞∑

n=0

Wαf(n+ 1)kα(n+ 1)x

= (I − T )θ(f)x−
∞∑
n=0

Wαf(n)kα(n)x

= (I − T )θ(f)x− f(0)x,

where we have applied that TΔ−αT (n) = Δ−αT (n + 1) − kα(n + 1) and
∞∑

n=0

Wαf(n)kα(n) = f(0) for f ∈ τ(φ).

(iii) Suppose that

sup
n∈N0

(kβ−α ∗ φ)(n)
ψ(n)

<∞

for some 0 < α < β and ψ ∈ ωβ,loc. Then it is straightforward to check that

τβ(ψ) ↪→ τα(φ) and

∞∑
n=0

Wαf(n)Δ−αT (n)x =

∞∑
n=0

W βf(n)Δ−βT (n)x, f ∈ τβ(ψ), x ∈ X,

where we have applied Proposition 2.4 (v) and Remark 2.6.

(iv) Let a > 0 be such that ‖T ‖ ≤ a. Then σ(T ) ⊂ {z ∈ C | |z| ≤ a}. For

f ∈ τα(φ) ∩ �1an , we apply Remark 2.6 to get

θ(f)x =

∞∑
n=0

f(n)T n(x), x ∈ X.

In particular pλ ∈ τα(φ) ∩ �(an) for |λ| > a and

θ(pλ)x =
1

λ

∞∑
n=0

T n

λn
x = (λ− T )−1x for x ∈ X.
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Corollary 3.6: Let α > 0, φ ∈ ωα and θ : τα(φ) → B(X) be an algebra

homomorphism. Then there exists T ∈ B(X) such that

θ(f)x =

∞∑
n=0

Wαf(n)Δ−αT (n)x, f ∈ τα(φ), x ∈ X ;

in particular, θ(hαn) = Δ−αT (n) for n ∈ N0 and θ(pλ) = (λ−T )−1 for |λ| > ‖T ‖.

Proof. Take T := θ(e1). Note that e1 = hα1 − αhα0 (see Example 2.5 (ii)), and

hαn = Δ−αE(n) for n ∈ N0 where E(n) = e∗n1 (see Example 3.2). By Example

2.12, f =

∞∑
j=0

Wαf(n)hαn for f ∈ τα(φ). We apply the continuity of θ to get

θ(hαn)x =

n∑
j=0

kα(n− j) (θ(e1))
j
x = Δ−αT (n)x

and hence

θ(f)x =

∞∑
n=0

Wαf(n)θ(hαn)x =

∞∑
n=0

Wαf(n)Δ−αT (n)x,

for x ∈ X . By Theorem 3.5 (iv), we conclude the proof.

By Theorem 3.5 and Corollary 3.6, we obtain the following characterizations

of (C,α)-bounded and power-bounded operators:

Corollary 3.7: Let T ∈ B(X) and α > 0 be given. The following assertions

are equivalent:

(i) T is a (C,α)-bounded operator.

(ii) There exists a bounded algebra homomorphism θ : τα(kα+1) → B(X)

such that θ(e1) = T.

In the limit case, the following assertions are equivalent:

(a) T is power bounded.

(b) There exists a bounded algebra homomorphism θ : �1 → B(X) such

that θ(e1) = T.

(c) For any 0 < α < 1, there exist bounded algebra homomorphisms θα :

τα(kα+1) → B(X) such that θα(e1) = T and sup
0<α<1

‖θα‖ <∞.

Proof. Due to the previous results, we only have to check that (c) implies (b).

Indeed, since the map θα is an algebra homomorphism, then θα(en) = T n,

θα(f) is well defined for f ∈ c0,0 and is independent of α. Let C > 0 be such
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that sup0<α<1 ‖θα‖ < C. We define θ(f) := θα(f) for f ∈ c0,0 and some given

α ∈ (0, 1). Then ‖θ(f)‖ = ‖θα(f)‖ ≤ C qα(f) for f ∈ c0,0. By Theorem 2.11

(ii), we get that ‖θ(f)‖ ≤ C‖f‖1, for f ∈ c0,0. The result now follows by an

argument of density.

4. The Z-transform and resolvent operators

Let f : N0 → X be a scalar sequence on a Banach space X . We recall that the

Z-transform of a given sequence f : N0 → X is defined by

(4.1) f̃(z) =

∞∑
n=0

f(n)z−n,

for all z such that this series converges. The set of numbers z in the complex

plane for which the series (4.1) converges is called the region of convergence of

f̃ . The uniqueness of the inverse Z-transform may be established as follows:

suppose that there are two sequences f , and g with the same Z-transform, that

is,
∞∑
n=0

f(n)z−n =

∞∑
n=0

g(n)z−n, |z| > R.

It follows from Laurent’s theorem that f(n) = g(n) for n ∈ N0.

Let φ : N0 → (0,∞) be a sequence such that φ(n) ≤ Can for some C > 0

and a > 0. To follow the notation given in [8], we write ω = log(a) where ω

is a bound for the counting measure supported on N0, i.e., ελ ∈ �1φ for λ > ω

where ελ(n) := e−λn and n ∈ N0. Let C
∞((ω,∞), X) be the space of X-valued

functions on (ω,∞) infinitely differentiable in the norm topology of X . For

r ∈ C∞((ω,∞), X), set

‖r‖W,φ,ω := sup

{
‖r(k)(λ)‖
‖βk,λ‖1,φ

∣∣∣ k ∈ N0, λ > ω

}
,

where βk,λ(n) = nke−λn for n ∈ N0 and λ > ω.

The Widder space C∞
W ((ω,∞), X ;φ) is defined by

C∞
W ((ω,∞), X ;φ) = {r ∈ C∞((ω,∞), X) | ‖r‖W,φ,ω <∞}.

Endowed with the norm ‖ · ‖W,φ,ω, the space C∞
W ((ω,∞), X ;φ) is a Banach

space, see more details in [8, Section 1]. A direct consequence of [8, Theorem

1.2] is the following result.
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Theorem 4.1: Let φ : N0 → (0,∞) be a sequence such that φ(n) ≤ Can for

some C > 0 and a > 0. For a vector-valued sequence f : N0 → X the following

assertions are equivalent.

(i) sup
n∈N0

‖f(n)‖
φ(n)

<∞.

(ii) There exists θ : �1φ → X such that θ(λpλ) = f̃(λ) for λ > a.

(iii) f̃ ◦ exp ∈ C∞
W ((log(a),∞), X ;φ).

Proof. (i) =⇒ (ii): The mapping defined by θ(g) :=
∑∞

n=0 g(n)f(n) where

g ∈ �1φ satisfies the required condition. (ii) =⇒ (i): We define h(n) := θ(en)

for n ∈ N0. It is clear that sup
n∈N0

‖h(n)‖
φ(n)

<∞, and

f̃(λ) = θ(λpλ) =
∑
n∈N0

θ(en)λ
n = h̃(λ), |λ| > a,

from which we conclude that h(n) = f(n) for all n ∈ N0. This proves (i). Now

we prove that (ii) =⇒ (iii). Due to [8, Theorem 1.2], we have

θ(εμ) = θ(exp(μ)pexp(μ)) = (f̃ ◦ exp)(μ), μ > log(a),

and (iii) is proved. (iii) =⇒ (ii) Suppose that f̃ ◦ exp ∈ C∞
W ((log(a),∞), X ;φ).

Again by [8, Theorem 1.2], there exists a bounded homomorphism θ : �1φ → X

such that θ(εμ) = (f̃ ◦ exp)(μ) for μ > log(a). Since εμ(n) = e−μn = eμpeμ(n),

we conclude that θ(λpλ) = f̃(λ) for λ > a.

Remark 4.2: Note that Theorem 4.1 is closely connected to [8, Theorem 4.2],

where the representability of functions of the Widder space C∞
W ((ω,∞), X ; m)

through functions of L∞(R+, X ; m) is proved under the assumption that the

Banach space X has the Radon–Nikodym property (RNP). The RNP is a well-

known property in the theory of Banach spaces. This property is also true for

closed subspaces (hereditary property) and is enjoyed by any reflexive space,

any separable dual space, and any �1(Γ) space, where Γ is a set. See definitions

and more details in [3, Section 1.2].
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In the well-known scalar version, namely X = C, the following Z-transforms

are obtained directly:

ẽn(z) = z−n, z �= 0, n ∈ N0;

k̃α(z) =
zα

(z − 1)α
, |z| > 1;

p̃λ(z) =
z

zλ− 1
, |z| > 1

|λ| , λ ∈ C\{0},

h̃αn(z) =
n∑

j=0

kα(n− j)z−j , z �= 0.

It is also well-known that

(4.2) (̃f ∗ g)(z) = f̃(z)g̃(z),

for all z such that f̃(z) and g̃(z) exist. For properties on the Z-transform we

refer, for instance, to the book [12, Chapter 6]. In particular, given α > 0 and

f : N0 → X such that f̃(z) exists for |z| > R, then

˜(Δ−αf)(z) =
zα

(z − 1)α
f̃(z), |z| > max{R, 1}.

We denote by nf(m) := f(n + m) for all m,n ∈ N0. The next technical

lemma for the Z-transform will be used in the forthcoming Theorem 4.4. We

observe that similar results hold for the Laplace transform, see for example [24,

Proposition 4.1].

Lemma 4.3: Let X be a Banach space, f : N0 → C a scalar-valued sequence

and S : N0 → B(X) an operator-valued sequence. Then

1

μ− λ
f̃(μ)

(
μS̃(λ)x − λS̃(μ)x

)
=

∞∑
n=0

λ−n
∞∑

m=0

μ−m(f ∗ nS)(m)x, x ∈ X,

1

μ− λ

(
μf̃(λ)− λf̃(μ)

)
S̃(μ)x =

∞∑
n=0

λ−n
∞∑

m=0

μ−m( nf ∗ S)(m)x, x ∈ X,

for all |λ| > |μ| sufficiently large.

Proof. To show the first identity, note that

ñS(μ)x =

∞∑
m=0

μ−mS(m+n)x = μn
∞∑
j=n

μ−jS(j)x = μn

(
S̃(μ)x−

n−1∑
j=0

μ−jS(j)x

)
,
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for x ∈ X and n ≥ 1. By (4.2) we get

∞∑
n=0

λ−n
∞∑

m=0

μ−m(f ∗ nS)(m)x = f̃(μ)

∞∑
n=0

λ−n
ñS(μ)x

= f̃(μ)

(
S̃(μ)x +

∞∑
n=1

λ−n
ñS(μ)x

)

= f̃(μ)S̃(μ)x

∞∑
n=0

(
μ

λ

)n

− f̃(μ)

∞∑
n=1

(
μ

λ

)n n−1∑
j=0

μ−jS(j)x.

Finally, from the identities

∞∑
n=1

(
μ

λ

)n n−1∑
j=0

μ−jS(j)x =

∞∑
j=0

μ−jS(j)x

∞∑
n=j+1

(
μ

λ

)n

=
μ

λ− μ
S̃(λ)x,

we conclude that
∞∑

n=0

λ−n
∞∑

m=0

μ−m(f ∗ nS)(m)x =
1

λ− μ
f̃(μ)

(
λS̃(μ)x − μS̃(λ)x

)
,

for all |λ| > |μ| sufficiently large and x ∈ X . The second identity in the Lemma

can be proved similarly.

Theorem 4.4: Let α ≥ 0, φ ∈ ωα, a > 1 be given and let X be a Banach

space. Suppose that {Tn}n∈N0 ⊂ B(X) is such that T0 = I and satisfies ‖Tn‖ ≤
Cφ(n) ≤ C′an for all n ∈ N0 with C,C′ > 0. The following statements are

equivalent:

(i) The operator-valued sequence {Tn}n∈N0 satisfies the equation (3.1).

(ii) There exists a bounded algebra homomorphism θ : τα(φ) → B(X) such

that θ(hαn) = Tn for n ∈ N0.

(iii) The family {R(λ)}|λ|>a defined by

R(λ)x :=
(λ− 1)α

λα+1

∞∑
n=0

λ−nTn(x), |λ| > a, x ∈ X,

is a pseudo-resolvent.

In these cases the generator of {Tn}n∈N0 , defined by T := T1 −αI (see Remark

3.4), satisfies that Tn = Δ−αT (n) for n ∈ N0, θ(e1) = T , {λ ∈ C | |λ| > a} ⊂
ρ(T ) and

R(λ) = (λ− T )−1, |λ| > a.
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Proof. The proof (i)⇒(ii) is a direct consequence of Theorem 3.3 and Theorem

3.5. To show that (ii)⇒(iii), we use Corollary 3.6. Finally we prove (iii)⇒(i).

It is clear that

R(λ) =
T̃(λ)

λk̃α(λ)
, |λ| > a,

where T = {Tn}n∈N0 and T̃ is given by (4.1). Since {R(λ)}|λ|>a is a pseudo-

resolvent, then

(μ− λ)
T̃(λ)T̃(μ)

λk̃α(λ)μk̃α(μ)
=

T̃(λ)

λk̃α(λ)
− T̃(μ)

μk̃α(μ)
, |λ|, |μ| > a, μ �= λ,

so

T̃(λ)T̃(μ) =
1

μ− λ

(
μk̃α(μ)T̃(λ) − λk̃α(λ)T̃(μ)

)
, |λ|, |μ| > a, μ �= λ.

On the other hand, note that the condition (3.1) can be rewritten as

(kα ∗ nT)(m)− ( nk
α∗T)(m) + kα(n)Tm

=
n+m∑
u=n

kα(n+m− u)Tu −
m−1∑
u=0

kα(n+m− u)Tu,

for m ≥ 1 and n ≥ 0. We apply Lemma 4.3 in order to obtain, after a simple

algebraic manipulation, that

∞∑
n=0

λ−n
∞∑

m=0

μ−m((kα ∗ nT)(m)− ( nk
α ∗ T)(m) + kα(n)Tm)

=
μk̃α(μ)T̃(λ)− λk̃α(λ)T̃(μ)

μ− λ
,

for |λ|, |μ| > a, and μ �= λ. Then we conclude that {Tn}n∈N0 satisfies (3.1), as

consequence of the injectivity of the double Z-transform. Finally, by Corollary

3.6

R(λ) = θ(pλ) = (λ− T )−1, |λ| > a,

and we finish the proof.

5. Applications, examples and final comments

In this last section, we present applications of, comments on, examples and

counterexamples to the results presented in this paper.
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5.1. Bounds for Abel means. Given T ∈ B(X) and 0 ≤ r < 1 we recall that

the Abel mean of order r to the operator T , denoted by Ar(T ), is defined by

Ar(T )x := (1− r)

∞∑
n=0

rnT n(x), x ∈ X,

whenever this series converges, see for example [26]. Denoting r(T ) = lim
n→∞‖T n‖ 1

n

the spectral radius of T, we have for 0 < r < 1
r(T ) that 1

r ∈ ρ(T ) and

Ar(T ) =
(1− r)

r

(
1

r
− T

)−1

, 0 < r < min

{
1,

1

r(T )

}
.

The next theorem improves [26, Proposition 2.1 (i)], given there for α ∈ {0, 1}.

Theorem 5.1: Take α ≥ 0 and T ∈ B(X). Then

Ar(T )x = (1− r)α+1
∞∑

n=0

rnΔ−αT (n)x, 0 ≤ r < min

{
1,

1

r(T )

}
.

In the case that ‖Δ−αT (n)‖ ≤ Ckγ+1(n) for n ≥ 1 and γ ≥ α then we have

‖Ar(T )‖ ≤ C(1− r)−(γ−α), 0 ≤ r < 1.

In particular, if T is a (C,α)-bounded operator then sup0≤r<1 ‖Ar(T )‖ <∞.

Proof. Let α ≥ 0 be given and p 1
r
(n) = rn+1 for 0 < r < 1. By Remark 2.6, we

have that

Ar(T )x = (1− r)

∞∑
n=0

rnT n(x) =
1− r

r

∞∑
n=0

Wαp 1
r
(n)Δ−αT (n)x

=
(1− r)α+1

r

∞∑
n=0

p 1
r
(n)Δ−αT (n)x = (1 − r)α+1

∞∑
n=0

rnΔ−αT (n)x,

where we have used Example 2.5 (i) for 0 < r < min{1, 1
r(T )}. For r = 0 it is

obvious.

In the case that ‖Δ−αT (n)‖ ≤ Ckγ+1(n) for n ≥ 1 and γ ≥ α, there exists a

bounded algebra homomorphism θ : τα(kγ+1) → B(X) such that

θ(f) =
∞∑
n=0

Wαf(n)Δ−αT (n), x ∈ X, f ∈ τα(kγ+1);
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see Theorem 3.5. Note that p 1
r

∈ τα(kγ+1) and Ar(T ) =
1−r
r θ(p 1

r
), for

0 < r < 1. By formula (2.6), we obtain that

‖Ar(T )‖ ≤ C
1− r

r
qkγ+1(p 1

r
) = C

1− r

r

r

(1− r)γ+1−α
=

C

(1 − r)γ−α
, 0 < r < 1,

and we conclude the proof.

Remark 5.2: If we consider ‖T n‖ ≤ Cnγ , with γ ≥ 0, and using the estimate

nγ ≤ Γ(γ + 1)kγ+1(n) which follows easily from (2.3), then we get that

‖Ar(T )‖ ≤ CΓ(γ + 1)(1− r)−γ ,

which improves the bound of [26, Proposition 2.1 (i) (2.3)]. One can use similar

arguments to improve the bound of [26, Proposition 2.1 (i) (2.4)].

Remark 5.3: An inverse result exists on Banach lattices (see [26, Corollary

3.2]), which proves that for any α > −1 and a positive bounded operator T,

{(1− r)αAr(T ), 0 ≤ r < 1} is bounded if and only if ‖Δ−1T (n)‖ ≤ C(n+1)α,

n ∈ N0. In particular, T is Abel-mean bounded if and only if it is (C, 1)-bounded.

Note that there are examples of positive (C, 1)-bounded operators in Banach

lattices which are not power bounded, see the remarks following [26, Corollary

3.2].

5.2. α-Times integrated semigroups and Cesàro sums. Now, let A be

a closed linear operator on X, α > 0 and {Sα(t)}t≥0 ⊂ B(X) an α-times

integrated semigroup generated by A, that is, Sα(0) = 0, the map [0,∞) → X ,

r �→ Sα(r)x is strongly continuous and

Sα(t)Sα(s)x

=
1

Γ(α)

(∫ t+s

t

(t+ s− r)α−1Sα(r)xdr −
∫ s

0

(t+ s− r)α−1Sα(r)xdr

)
,

x ∈ X , for t, s > 0; for α = 0, {S0(t)}t≥0 is a usual C0-semigroup, S0(0) = I

and S0(t + s) = S0(t)S0(s) for t, s > 0. In the case that {Sα(t)}t≥0 is a non-

degenerate family and ‖Sα(t)‖ ≤ Ceωt for C > 0, ω ∈ R, then there exists a

closed operator, (A,D(A)), called the generator of {Sα(t)}t≥0, such that

(5.1) (λ−A)−1x = λα
∫ ∞

0

e−λtSα(t)xdt, �λ > ω, x ∈ X.
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Moreover, the following integral equality holds

(5.2) A

∫ t

0

Sα(s)xds = Sα(t)x− tα

Γ(α+ 1)
x, t > 0, x ∈ X.

For more details see [22].

Theorem 5.4: Suppose that {Sα(t)}t≥0 is an α-times integrated semigroup

generated by (A,D(A)) such that ‖Sα(t)‖ ≤ Ceωt with 0 ≤ ω < 1. Then

1 ∈ ρ(A) and for R := (1−A)−1, R(n) = Rn we have

Δ−αR(n)x = (I −A)

∫ ∞

0

e−ttn

n!
Sα(t)xdt, n ∈ N0,

=

∫ ∞

0

e−ttn−1

(n− 1)!
Sα(t)xdt + kα+1(n)x − kα+1(n− 1)x, n ≥ 1, x ∈ X.

In particular, if {Sα(t)}t≥0 has temperated growth, i.e. ‖Sα(t)‖ ≤ Ctα for

t > 0, then (I −A)−1 is a (C,α)-bounded operator.

Proof. Let λ ∈ ρ(A) be given. We have

(−1)n

n!

dn

dλn
(λ−α(λ −A)−1) =

n∑
j=0

kα(n− j)

λα+n−j
(λ−A)−j−1.

On the other hand, for �λ > ω, we apply formula (5.1) to get that

(−1)n

n!

dn

dλn
(λ−α(λ−A)−1)x =

∫ ∞

0

tn

n!
e−λtSα(t)x dt, x ∈ X.

Finally, we set λ = 1 to conclude the first equality. Now for n ≥ 1, we have

that

Δ−αR(n)x =

∫ ∞

0

e−ttn

n!
Sα(t)xdt +A

∫ ∞

0

e−ttn−1

(n− 1)!

(
1− t

n

)∫ t

0

Sα(s)xdsdt

=

∫ ∞

0

e−ttn−1

(n− 1)!
Sα(t)xdt + kα+1(n)x − kα+1(n− 1)x, x ∈ X,

where we applied the equality (5.2).

In the case that ‖Sα(t)‖ ≤ Ctα, we use the second equality and that the

sequence kα+1 is increasing to conclude that

sup
n∈N0

‖Δ−αR(n)‖
kα+1(n)

<∞

and (I −A)−1 is a (C,α)-bounded operator.
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Classical examples of generators of temperated α-times integrated semigroups

are differential operatorsA such that their symbol Â is of the form Â = ia, where

a is a real elliptic homogeneous polynomial on Rn or a ∈ C∞(Rn \ {0}) is a real

homogeneous function on Rn such that if a(t) = 0 then t = 0; see [21, Theorem

4.2], and other different examples in [21, Section 6].

Remark 5.5: In the case of uniformly bounded C0-semigroups, i.e. {T (t)}t≥0 ⊂
B(X) such that supt>0 ‖T (t)‖ < ∞, the resolvent (1 − A)−1 is power-bounded

due to

(1−A)−nx =

∫ ∞

0

tn−1

(n− 1)!
e−tT (t)xdt, x ∈ X.

Note that Theorem 5.4 includes a natural extension of this fact: the resolvent

(1−A)−1 is a (C,α)-bounded operator when A generates a temperated α-times

integrated semigroup.

We may also consider the homomorphism θ defined in Theorem 3.5, and in

this case

θ(Δf)x = −Aθ(f)x− (I −A)f(0)x, f ∈ τα(kα+1), x ∈ D(A),

when A generates a temperated α-times integrated semigroup. This equality

shows that if we know the generator A, we can transfer properties between f

and Δf for sequences in τα(kα+1).

5.3. Counterexamples of bounded homomorphisms.

Example 5.6: In [10, Section 2] there is an example of a positive, Cesàro bounded

but not power bounded operator T on the space �1. As the author comments in

[9, Section 4. Examples], one has ‖T n‖1 ≤ Kn/ ln(n) where K is the uniform

bound of the Cesàro averages of T . In this example T is also a contraction in

�∞. In [13, Section (VI)], it is proved that supn≥0 ‖T n‖p ≥ (2k)
1
p for any k ≥ 1

and 1 ≤ p < ∞. We conclude that T is not power bounded in �p (1 ≤ p < ∞)

and T is Cesàro bounded in �p (1 ≤ p ≤ ∞) . By Corollary 3.7, there exists a

bounded homomorphism θ : τ1(k2) → B(�p) such that θ(e1) = T which extends

to θ : �1 → B(�p) if and only if p = ∞.

Example 5.7: In [28], a simple matrix construction, which unifies different ap-

proaches to the Ritt condition and ergodicity of matrix semigroups, is studied

in detail. Consider the Banach space X := X ⊕X with norm

‖x1 ⊕ x2‖X⊕X :=
√
‖x1‖2 + ‖x2‖2, x1 ⊕ x2 ∈ X.
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Let the bounded linear operator T on X be defined by the operator matrix

T :=

(
T T − I

0 T

)
where T ∈ B(X). In [28, Lemma 2.1], some connected properties between T

and T are given. Now we consider X = �2 and the backward shift operator

T ∈ L(�2) defined by

T (x)(n) := x(n+ 1), x ∈ �2, n ∈ N0.

By [28, Example 3.1], ‖Tn‖ ≥ 2n and T is a (C, 1)-bounded operator. We

apply Corollary 3.7 to conclude that there exists an algebra homomorphism

θ : τ1(k2) → B(X) such that θ(e1) = T which does not extend continuously

to �1. In [28, Remark 3.2], the growth ‖Tn‖ ≥ 2n is pointed at as the fastest

possible for a Cesàro bounded operator.

Example 5.8: In [26, Proposition 4.3], the following example is given. For any

γ with 0 < γ < 1, there exists a positive linear operator T on an L1-space such

that

sup
n≥0

∥∥∥∥Δ−γT (n)

kγ+1(n)

∥∥∥∥ = ∞, but sup
n≥0

∥∥∥∥Δ−βT (n)

kβ+1(n)

∥∥∥∥ <∞ for all β > γ.

By Corollary 3.7, we conclude that there exists a bounded algebra homomor-

phism θ such that θ : τβ(kβ+1) → B(X) for all β > γ, θ(e1) = T , and the

homomorphism θ does not extend continuously to the algebra τγ(kγ+1) with

0 < γ < 1.

Example 5.9: In [26, Proposition 4.4 (i)], the following operator is constructed:

Let dimX = ∞. For any integer j ≥ 0, there exists a bounded linear operator

T on X such that

sup
n≥0

∥∥∥∥Δ−(j+1)T (n)

kj+2(n)

∥∥∥∥ <∞, but sup
n≥0

∥∥∥∥Δ−γT (n)

kγ+1(n)

∥∥∥∥ = ∞ for 0 ≤ γ < j + 1.

By Corollary 3.7, we conclude that there exists a bounded algebra homomor-

phism θ such that θ : τ j+1(kj+2) → B(X), θ(e1) = T , and the homomorphism

θ does not extend continuously to the algebra τγ(kγ+1) with 0 ≤ γ < j + 1.

Example 5.10: In [26, Proposition 4.4 (ii)], the following operator is constructed.

Let dimX = ∞. There exists a bounded linear operator T on X with r(T ) = 1,
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‖T ‖ = 2, and

‖Ar(T )‖ ≤ 1− r, 0 < r < 1; and sup
n≥0

∥∥∥∥Δ−jT (n)

kj+1(n)

∥∥∥∥ = ∞, for j ≥ 1.

Since kj(n) ≤ kj+1(n) for n ≥ 0, we also conclude that∥∥∥∥Δ−jT (n)

kj(n)

∥∥∥∥ = ∞ for j ≥ 1

and the converse of Theorem 5.1 does not hold for γ < α.

5.4. Application to Katznelson–Tzafriri type theorems. Let A(T) be

the regular convolution Wiener algebra formed by all continuous periodic func-

tions f(t) =
∑∞

n=−∞ f̂(n)eint, t ∈ [−π, π], where {f̂(n)}n∈Z are the Fourier

coefficients of f, that is

f̂(n) =
1

2π

∫ π

−π

f(t)e−int dt, n ∈ Z,

with the norm ‖f‖A(T) :=
∑∞

n=−∞ |f̂(n)|, and let A+(T) be the closed convo-

lution subalgebra of A(T) where the functions satisfy that f̂(n) = 0 for n < 0.

Note that both A(T) and �1
Z
, and A+(T) and �1 are isometrically isomorphic,

where �1
Z
denotes the complex summable sequences indexed by Z.

Katznelson and Tzafriri proved in 1986 the following well-known theorem: if

T ∈ B(X) is power-bounded and f ∈ A+(T) is of spectral synthesis in A(T)

with respect to σ(T ) ∩ T, then

lim
n→∞‖T nθ(f̂)‖ = 0;

see [23, Theorem 5]. Moreover, for T ∈ B(X) a power-bounded operator, one

has lim
n→∞‖T n − T n+1‖ = 0 if and only if σ(T ) ∩ T ⊆ {1}; see [23, Theorem 1].

The authors have obtained some similar results for (C,α)-bounded operators,

which will appear in a forthcoming paper. We define Aα(T) to be a new regular

Wiener algebra contained in A(T), and Aα
+(T) a convolution closed subalgebra

of Aα(T), which is isometrically isomorphic to τα(kα+1). The result states that

if α > 0, T ∈ B(X) is a (C,α)-bounded operator and f ∈ Aα
+(T) is of spectral

synthesis in Aα(T) with respect to σ(T ) ∩ T, then

lim
n→∞

1

kα+1(n)
‖Δ−αT (n)θ(f̂)‖ = 0.
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On the continuous case, Katznelson–Tzafriri theorems have been proved for

C0-semigroups and extended later for α-times integrated semigroups; see [14]

and [15], respectively.
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[5] F. M. Atıcı and S. Şengül, Modeling with fractional difference equations, J. Math. Anal.

Appl. 369 (2010), 1–9.

[6] S. Calzadillas, C. Lizama and G. Mesquita, A unified approach to discrete fractional

calculus and applications, Preprint (2014).

[7] S. Chanillo and B. Muckenhoupt, Weak type estimates for Cesàro sums of Jacobi poly-
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[16] J. E. Galé and P. J. Miana, One-parameter groups of regular quasimultipliers, J. Funct.

Anal. 237 (2006), 1–53.



Vol. 216, 2016 ALGEBRA HOMOMORPHISMS 505
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