000130740 001__ 130740
000130740 005__ 20240131210810.0
000130740 0247_ $$2doi$$a10.1080/00036811.2015.1064521
000130740 0248_ $$2sideral$$a91080
000130740 037__ $$aART-2016-91080
000130740 041__ $$aeng
000130740 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, L.$$uUniversidad de Zaragoza
000130740 245__ $$aAlmost automorphic mild solutions to fractional partial difference-differential equations
000130740 260__ $$c2016
000130740 5203_ $$aWe study existence and uniqueness of almost automorphic solutions for nonlinear partial difference-differential equations modeled in abstract form as [fórmula sin transcribir](*) for ... where ... is the generator of a ... -semigroup defined on a Banach space ... denote fractional difference in Weyl-like sense and ... satisfies Lipchitz conditions of global and local type. We introduce the notion of ... -resolvent sequence ... and we prove that a mild solution of (*) corresponds to a fixed point of [fórmula sin transcribir]. We show that such mild solution is strong in case of the forcing term belongs to an appropriate weighted Lebesgue space of sequences. Application to a model of population of cells is given.
000130740 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E64$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P
000130740 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130740 590__ $$a0.923$$b2016
000130740 591__ $$aMATHEMATICS, APPLIED$$b129 / 255 = 0.506$$c2016$$dQ3$$eT2
000130740 592__ $$a0.826$$b2016
000130740 593__ $$aApplied Mathematics$$c2016$$dQ2
000130740 593__ $$aAnalysis$$c2016$$dQ2
000130740 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130740 700__ $$aLizama, C.
000130740 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000130740 773__ $$g95, 6 (2016), 1347-1369$$pAPPLICABLE ANALYSIS$$tAPPLICABLE ANALYSIS$$x0003-6811
000130740 8564_ $$s197483$$uhttps://zaguan.unizar.es/record/130740/files/texto_completo.pdf$$yVersión publicada
000130740 8564_ $$s1930298$$uhttps://zaguan.unizar.es/record/130740/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130740 909CO $$ooai:zaguan.unizar.es:130740$$particulos$$pdriver
000130740 951__ $$a2024-01-31-19:17:18
000130740 980__ $$aARTICLE