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We obtain a vector-valued subordination principle for (𝑔
𝛼
, 𝑔

𝛽
)-regularized resolvent families which unified and improves various

previous results in the literature. As a consequence, we establish new relations between solutions of different fractional Cauchy
problems. To do that, we consider scaled Wright functions which are related to Mittag-Leffler functions, the fractional calculus,
and stable Lévy processes.We study some interesting properties of these functions such as subordination (in the sense of Bochner),
convolution properties, and their Laplace transforms. Finally we present some examples where we apply these results.

1. Introduction

A function 𝑓 : (0,∞) → R is a Bernstein function if 𝑓 is of
class 𝐶∞, 𝑓(𝜆) ≥ 0 for all 𝜆 > 0 and

(−1)
𝑛−1

𝑓
(𝑛)

(𝜆) ≥ 0, 𝜆 > 0, 𝑛 ∈ N. (1)

The celebrated Bochner subordination theorem characterizes
Bernstein functions: given 𝑓, a Bernstein function, there
exists a unique convolution semigroup of subprobability
measures (𝜇

𝑡
)
𝑡>0

on [0,∞) such that

𝑒
−𝑡𝑓(𝜆)

= ∫
∞

0

𝑒
−𝜆𝑠

𝑑𝜇
𝑡
(𝑠) , R𝜆 > 0. (2)

Conversely, given a convolution semigroup of subprobability
measures (𝜇

𝑡
)
𝑡>0

on [0,∞), then there exists a unique Bern-
stein function 𝑓 such that (2) holds true; see, for example,
[1, Theorem 5.2]. The original subordination principle for
stochastic processes in connection with diffusion equations
and semigroups was introduced in [2]. In [3, Chapters 4.3,
and 4.4], a detailed study of stochastic processes, their tran-
sition semigroups, generators, and subordination results are
developed.

Now let𝐴 be a densely defined closed linear operator on a
Banach space𝑋which generates a𝐶

0
-contraction semigroup

(𝑇(𝑡))
𝑡>0

⊂B(𝑋).Then the solution of the first order abstract
Cauchy problem

𝑢
󸀠

(𝑡) = 𝐴𝑢 (𝑡) , 𝑡 > 0,

𝑢 (0) = 𝑥
(3)

is given by 𝑢(𝑡) = 𝑇(𝑡)𝑥 for 𝑡 > 0. Now, suppose that (𝜇
𝑡
)
𝑡>0

is a vaguely continuous convolution semigroup of subproba-
bility measures on [0,∞) with the corresponding Bernstein
function 𝑓. Then the Bochner integral

𝑇
𝑓

(𝑡) 𝑥 := ∫
∞

0

𝑇 (𝑠) 𝑥 𝑑𝜇
𝑡
(𝑠) , 𝑥 ∈ 𝑋, 𝑡 > 0, (4)

defines again a 𝐶
0
-contraction semigroup on 𝑋 [1, Proposi-

tion 12.1].Then the semigroup (𝑇𝑓(𝑡))
𝑡>0

is called subordinate
(in line with Bochner) to the semigroup (𝑇(𝑡))

𝑡>0
with respect

to the Bernstein function𝑓. In particular, given 0 < 𝛼 < 1 and
𝑑𝜇

𝑡
(𝑠) = 𝑓

𝑡,𝛼
(𝑠)𝑑𝑠 (where 𝑓

𝑡,𝛼
are the stable Lévy processes,

see (32)), then

𝑇
(𝛼)

(𝑡) 𝑥 := ∫
∞

0

𝑓
𝑡,𝛼
(𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, 𝑡 > 0, (5)

is an analytic semigroup generated by −(−𝐴)𝛼, the fractional
powers of the generator 𝐴 according to Balakrishnan. For
more details, see [4, Chapter IX].
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Other subordination formulae allow defining new fami-
lies of operators from some previous ones by integration. Let
𝐴 be the generator of a cosine function (𝐶(𝑡))

𝑡>0
on a Banach

space𝑋 (see definition in [5, Section 3.14]).Then𝐴 generates
a holomorphic 𝐶

0
-semigroup (𝑇(𝑧))

𝑧∈C
+

of angle 𝜋/2, given
by

𝑇 (𝑧) 𝑥 =
1

√𝜋𝑧
∫
∞

0

𝑒
−𝑠
2
/4𝑧

𝐶 (𝑠) 𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, 𝑧 ∈ C
+
,

(6)

[5, Theorem 3.14.17]. Remember that the solution of the sec-
ond order Cauchy problem

𝑢
󸀠󸀠

(𝑡) = 𝐴𝑢 (𝑡) , 𝑡 > 0,

𝑢 (0) = 𝑥,

𝑢
󸀠

(0) = 0

(7)

is 𝑢(𝑡) = 𝐶(𝑡)𝑥 for 𝑡 > 0 [5, Section 3.14].
In [6], a two-kernel dependent family of strong contin-

uous operators defined in a Banach space is introduced. This
family allows us to consider in a unified treatment the notions
of, among others, 𝐶

0
-semigroups of operators, cosine fami-

lies, 𝑛-times integrated semigroups, resolvent families, and 𝑘-
generalized solutions. Let 𝑎 ∈ 𝐿1loc(R+

) and 𝑘 ∈ 𝐶(R
+
). The

family {𝑆
𝑎,𝑘
(𝑡)}

𝑡>0
⊂ B(𝑋) is a (𝑎, 𝑘)-regularized resolvent

family generated by𝐴 if the following conditions are fulfilled:
𝑆
𝑎,𝑘
(𝑡) is strongly continuous for 𝑡 > 0 and 𝑆

𝑎,𝑘
(0)𝑥 = 𝑘(0)𝑥

for all 𝑥 ∈ 𝑋; 𝑆
𝑎,𝑘
(𝑡)𝐴 ⊂ 𝐴𝑆

𝑎,𝑘
(𝑡), that is, 𝑆

𝑎,𝑘
(𝑡)𝐴(𝑥) ⊂

𝐴𝑆
𝑎,𝑘
(𝑡)𝑥, for 𝑥 ∈ 𝐷(𝐴) and 𝑡 > 0; and

𝑆
𝑎,𝑘
(𝑡) 𝑥 = 𝑘 (𝑡) 𝑥 + 𝐴(∫

𝑡

0

𝑎 (𝑡 − 𝑠) 𝑆
𝑎,𝑘
(𝑠) 𝑥 𝑑𝑠) ,

𝑥 ∈ 𝑋, 𝑡 > 0;

(8)

see [6, Definition 2.1]. In the case 𝑘(𝑡) = 1, we obtain the
resolvent families which are treated in detail in [7]; for 𝑘(𝑡) =
𝑎(𝑡) = 1, this family of operators is a 𝐶

0
-semigroup, and we

also retrieve cosine functions for 𝑘(𝑡) = 1 and 𝑎(𝑡) = 𝑡 (𝑡 >

0). Some spectral properties for (𝑎, 𝑘)-regularized resolvent
families are proved in [8].

Subordination theorems for (𝑎, 𝑘)-regularized resolvents
have been considered in some different works. In [7, Section
I.4], the use of the theory of Bernstein functions, completely
positive functions, and the Laplace transform allows showing
some subordination results for (𝑎, 1)-regularized resolvents
[7, Theorem 4.1, Corollaries 4.4 and 4.5]. A nice subordi-
nation theorem for 𝑚-times integrated semigroup is proved
in [6, Theorem 3.7]. In the case of (𝑡𝛼−1/Γ(𝛼), 1)-regularized
functions, this subordination theorem is improved in [9,
Theorem 3.1] and [10, Theorem 3.1] and an integral repre-
sentation, similar to formula (6), is also proved involving
Wright functions. In [11, Theorem 3.1], using holomorphic
functional calculus, the authors prove a subordination result
for (𝑡𝛼−1/Γ(𝛼), 1)-regularized resolvent families generated by
fractional powers of closed operators, which extends both
[4, Chapter IX, Section 11, Theorem 2] and [9, Theorem 3.1].

Finally, in [12, Theorem 2.8], a subordination principle for
(𝑎, 𝑘)-regularized resolvents, inspired in the original proof of
[7, Theorem 4.1], is shown. In all these results, note that the
subordination integral formula is only present in [9,Theorem
3.1] and [11, Theorem 3.1].

The main aim of this paper is to obtain subordination
integral formulae to (𝑡𝛼−1/Γ(𝛼), 𝑡𝛽−1/Γ(𝛽))-regularized resol-
vents (Theorem 12). To achieve this, we present a detailed pre-
sentation ofWright andMittag-Leffler functions in Section 2,
which includes some basic results and known connections of
these functions and fractional differential equations.

In Section 3, we introduce a new family of biparameter
special functions 𝜓

𝛼,𝛽
in two variables defined by scaling

Wright functions (Definition 2).This family of functions𝜓
𝛼,𝛽

plays a fundamental role in the subordination principle for
(𝑡𝛼−1/Γ(𝛼), 𝑡𝛽−1/Γ(𝛽))-regularized resolvent families; see for-
mula (51). Moreover, these functions satisfy a nice subordina-
tion formula, Theorem 8, which extends some known results
for Wright M-function and stable Lévy processes; see
Remark 9. In fact the algebraic nature (for convolution
products) of these functions 𝜓

𝛼,𝛽
is shown in Propositions 5

and 7.
In Section 4, we consider (𝑡𝛼−1/Γ(𝛼), 𝑡𝛽−1/Γ(𝛽))-regular-

ized resolvents in abstract Banach spaces. We prove the
main subordination principle, Theorem 12, and some conse-
quences in Remark 13 and Corollary 14.

Finally, in Section 5 we present some comments, concrete
examples, and applications to fractional Cauchy problems
which illustrate the main results of this paper.

Notation. Let R
+
:= [0,∞), C

+
:= {𝑧 ∈ C : R𝑧 > 0}, and

𝐿1(R
+
) be the Lebesgue Banach algebra of integrable function

on R
+
with the usual convolution product

𝑓 ∗ 𝑔 (𝑡) = ∫
𝑡

0

𝑓 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝑠, 𝑓, 𝑔 ∈ 𝐿
1

(R
+
) , 𝑡 ≥ 0.

(9)

The usual Laplace transform of a function 𝑓, 𝑓, is defined by

𝑓 (𝜆) = ∫
∞

0

𝑓 (𝑡) 𝑒
−𝜆𝑡

𝑑𝑡, 𝜆 ∈ C
+
, (10)

for 𝑓 ∈ 𝐿
1(R

+
). Let 𝛾 > 0, and we denote 𝑔

𝛾
(𝑡) := 𝑡𝛾−1/Γ(𝛾),

𝑡 > 0, and 𝑔
𝛾
(𝜆) = 1/𝜆𝛾 for 𝜆 ∈ C

+
.

The set of continuous functions on R
+

such that
lim

𝑡→∞
|𝑓(𝑡)| = 0 is denoted as 𝐶

0
(R

+
), and the set of

holomorphic functions on C
+
such that lim

|𝑧|→∞
|𝑓(𝑧)| = 0

is denoted as H
0
(C+). We denote by 𝑋 an abstract Banach

space, B(𝑋) the set of linear and bounded operators on the
Banach space 𝑋, and 𝐶

(∞)

𝑐
(R

+
; 𝑋) the set of functions of

compact support and infinitely differentiable on R
+
into𝑋.

2. Mittag-Leffler and Wright Functions

In this section we present definitions and basic properties of
Mittag-Leffler and Wright functions. The algebraic structure
of those functions has been partially considered in [13] and
formulae (15) and (16) seem to be new.
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The Mittag-Leffler functions are defined by

𝐸
𝛼,𝛽
(𝑧) :=

∞

∑
𝑛=0

𝑧𝑛

Γ (𝛼𝑛 + 𝛽)
, 𝛼, 𝛽 > 0, 𝑧 ∈ C. (11)

We write 𝐸
𝛼
(𝑧) := 𝐸

𝛼,1
(𝑧). The Mittag-Leffler functions

satisfy the following fractional differential problems:

𝐶
𝐷

𝛼

𝑡
𝐸
𝛼
(𝜔𝑡

𝛼

) = 𝜔𝐸
𝛼
(𝜔𝑡

𝛼

) ,

𝑅
𝐷

𝛼

𝑡
(𝑡

𝛼−1

𝐸
𝛼,𝛼
(𝜔𝑡

𝛼

)) = 𝜔𝑡
𝛼−1

𝐸
𝛼,𝛼
(𝜔𝑡

𝛼

) ,
(12)

for 0 < 𝛼 < 1, under certain initial conditions, where
𝐶
𝐷

𝛼

𝑡

and
𝑅
𝐷

𝛼

𝑡
denote the Caputo and Riemann-Liouville frac-

tional derivatives of order 𝛼, respectively; see Section 5 and
[14, 15]. Their Laplace transform is

∫
∞

0

𝑒
−𝜆𝑡

𝑡
𝛽−1

𝐸
𝛼,𝛽
(𝜔𝑡

𝛼

) 𝑑𝑡 =
𝜆𝛼−𝛽

𝜆𝛼 − 𝜔
, R𝜆 > 𝜔

1/𝛼

, 𝜔 > 0.

(13)

For more details see [10, Section 1.3].
Recently, the next algebraic property has been proved

(∫
𝑡+𝑠

𝑡

−∫
𝑠

0

)
𝐸
𝛼
(𝜔𝑟𝛼)

(𝑡 + 𝑠 − 𝑟)
𝛼
𝑑𝑟

= 𝛼∫
𝑡

0

∫
𝑠

0

𝐸
𝛼
(𝜔𝑟𝛼

1
) 𝐸

𝛼
(𝜔𝑟𝛼

2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟

2
, 𝑡, 𝑠 ≥ 0,

(14)

for 0 < 𝛼 < 1 and 𝜔 ∈ C; see [13, Theorem 1]. In fact, a
similar identity holds for generalized Mittag-Leffler function
𝐸
𝛼,𝛽

with 0 < 𝛼 < 1, 𝛽 > 𝛼, and

(∫
𝑡+𝑠

𝑡

−∫
𝑠

0

)
(𝑡 + 𝑠 − 𝑟)

𝛽−𝛼−1

Γ (𝛽 − 𝛼)
𝑟
𝛽−1

𝐸
𝛼,𝛽
(𝜔𝑟

𝛼

) 𝑑𝑟

=
𝛼

Γ (1 − 𝛼)
∫
𝑡

0

∫
𝑠

0

𝑟
𝛽−1

1
𝐸
𝛼,𝛽
(𝜔𝑟𝛼

1
) 𝑟

𝛽−1

2
𝐸
𝛼,𝛽
(𝜔𝑟𝛼

2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟

2
,

(15)

for 𝑡, 𝑠 ≥ 0 and 𝜔 > 0. The proof of this result is a
straightforward consequence of [16, Theorem 5]. In the case
𝛽 = 𝛼 for 0 < 𝛼 < 1, the algebraic property is

(𝑡 + 𝑠)
𝛼−1

𝐸
𝛼,𝛼
(𝜔 (𝑡 + 𝑠)

𝛼

)

=
𝛼

Γ (1 − 𝛼)
∫
𝑡

0

∫
𝑠

0

𝑟𝛼−1
1

𝐸
𝛼,𝛼
(𝜔𝑟𝛼

1
) 𝑟𝛼−1

2
𝐸
𝛼,𝛼
(𝜔𝑟𝛼

2
)

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

𝑑𝑟
1
𝑑𝑟

2
,

(16)

which is a direct consequence ofTheorems 2.1 and 2.2 of [17].
The Wright function that we denote by 𝑊

𝜆,𝜇
was intro-

duced and investigated by 𝐸. Maitland Wright in a series
of notes starting from 1933 in the framework of the theory
of partitions; see [18]. This entire function is defined by the
series representation, convergent in the whole complex plane:

𝑊
𝜆,𝜇
(𝑧) :=

∞

∑
𝑛=0

𝑧𝑛

𝑛!Γ (𝜆𝑛 + 𝜇)
, 𝜆 > −1, 𝜇 ∈ C. (17)

The equivalence between the above series and the follow-
ing integral representations of𝑊

𝜆,𝜇
is easily proven by using

the Hankel formula for the Gamma function:

𝑊
𝜆,𝜇
(𝑧) =

1

2𝜋𝑖
∫
Ha
𝜎
−𝜇

𝑒
𝜎+𝑧𝜎
−𝜆

𝑑𝜎, 𝜆 > −1, 𝜇 ≥ 0, 𝑧 ∈ C,

(18)

where Ha denotes the Hankel path defined as a contour that
begins at 𝑡 = −∞−𝑖𝑎 (𝑎 > 0), encircles the branch cut that lies
along the negative real axis, and ends up at 𝑡 = −∞ + 𝑖𝑏 (𝑏 >

0); for more details see [14, Appendix F]. It is clear that

𝑑

𝑑𝑧
𝑊

𝜆,𝜇
(𝑧) = 𝑊

𝜆,𝜆+𝜇
(𝑧) , 𝑧 ∈ C. (19)

In addition, as discussed below, the following special
cases are of considerable interest:

𝑀
𝛼
(𝑧) := 𝑊

−𝛼,1−𝛼
(−𝑧) , 𝐹

𝛼
(𝑧) := 𝑊

−𝛼,0
(−𝑧) ,

0 < 𝛼 < 1, 𝑧 ∈ C,
(20)

interrelated through

𝐹
𝛼
(𝑧) = 𝛼𝑧𝑀

𝛼
(𝑧) , 𝑧 ∈ C. (21)

TheWrightM-function in two variablesM is defined by

M
𝛼
(𝑠, 𝑡) := 𝑡

−𝛼

𝑀
𝛼
(𝑠𝑡

−𝛼

) , 𝑡 > 0, 𝑠 ∈ R. (22)

This function has been studied, for example, in [14, page 257]
and [19, Section 6]; a subordination formula for time frac-
tional diffusion process is given in [19, Formula (6.3)] and [14,
Formula (F.55)]: for 𝜂, 𝛽 ∈ (0, 1), the following subordination
formula holds true;

M
𝜂𝛽
(𝑠, 𝑡) = ∫

∞

0

M
𝜂
(𝑠, 𝜏)M

𝛽
(𝜏, 𝑡) 𝑑𝜏, 𝑡, 𝑠 > 0. (23)

This subordination formula had previously appeared in [10,
Formula (3.28)].

The deep connection between fractional differential
equations (in space and in time) and Wright-type functions
(𝑊

𝜆,𝜇
,𝑀

𝛼
, 𝐹

𝛼
,M

𝛼
, . . .) has been studied in detail in [14, 19,

20].
It is known that

𝐸
𝛼,𝛼+𝛽

(𝑧) = ∫
∞

0

𝑒
𝑧𝑡

𝑊
−𝛼,𝛽

(−𝑡) 𝑑𝑡,

𝑧 ∈ C, 0 < 𝛼 < 1, 𝛽 ≥ 0;

(24)

that is, 𝐸
𝛼,𝛼+𝛽

(−(⋅)) is the Laplace transform of 𝑊
−𝛼,𝛽

(−(⋅))

in the whole complex plane; see [14, Formula (F.25)]. Then,
observe that for 0 < 𝛼 < 1

𝐸
𝛼
(𝑧) = ∫

∞

0

𝑒
𝑧𝑡

𝑀
𝛼
(𝑡) 𝑑𝑡,

𝐸
𝛼,𝛼
(𝑧) = ∫

∞

0

𝑒
𝑧𝑡

𝐹
𝛼
(𝑡) 𝑑𝑡,

𝑧 ∈ C,

(25)



4 Journal of Function Spaces

where both functions are related to the solutions of the
fractional differential problems mentioned above.

Nice connections between Mittag-Leffler functions and
Wright functions are obtained by the Laplace transform; see
formula (24) and

∫
∞

0

𝑒
−𝑧𝑡

𝑊
𝜆,𝜇
(±𝑟) 𝑑𝑟 =

1

𝑧
𝐸
𝜆,𝜇
(±

1

𝑧
) , |𝑧| > 0, 𝜆 > 0,

(26)

[14, Formula (F.22)]. In the next proposition, we present some
interesting properties of Wright functions. The next result
extends the study which was done in [10, Chapter 1, page 14]
for the case𝑊

−𝛼,1−𝛼
with 0 < 𝛼 < 1.

Proposition 1. Let 0 < 𝛼 < 1 and 𝛽 ≥ 0. Then the following
properties hold:

(i) ∫∞
0

(𝑡𝜂−1/Γ(𝜂))𝑊
−𝛼,𝛽

(−𝑡)𝑑𝑡 = 1/Γ(𝛼𝜂 + 𝛽); 𝜂 > 0.
(ii) 𝑊

−𝛼,𝛽
(−𝑡) ≥ 0, for 𝑡 > 0.

Proof. (i) Using the definition of𝑊
−𝛼,𝛽

, we have

∫
∞

0

𝑡𝜂−1

Γ (𝜂)
𝑊

−𝛼,𝛽
(−𝑡) 𝑑𝑡

=
1

2𝜋𝑖
∫
Ha
𝑒
𝜎

𝜎
−𝛽−𝛼𝜂

𝑑𝜎 = 𝑔
𝛽+𝛼𝜂

(1) ,

(27)

where we have applied the Fubini theorem and the Laplace
transform of 𝑔

𝜂
.

(ii) The positivity of 𝑊
−𝛼,𝛽

(−𝑡) follows from (24), the
complete monotonicity of 𝐸

𝛼,𝛾
(−𝑡) for 𝑡 > 0, 0 < 𝛼 < 1, and

𝛾 ≥ 𝛼 (see [14, Appendix E, Formula (E.32)]), and the Post-
Widder inversion formula; see [10, Lemma 1.6].

3. Scaled Wright Functions

In this section, we introduce two-parameterWright functions
in Definition 2, which we call scaled Wright functions. This
class of functions includes theWrightM-function introduced
in [19, Formula (6.2)] and also considered in [14, Formula
(F.51)] and stable Lévy processes. They satisfy important
properties (Theorem 3 and Proposition 5) and a subordina-
tion principle (Theorem 8) and play a crucial role in this
paper.

Definition 2. For 0 < 𝛼 < 1 and 𝛽 ≥ 0, we define the function
𝜓
𝛼,𝛽

in two variables by

𝜓
𝛼,𝛽
(𝑡, 𝑠) := 𝑡

𝛽−1

𝑊
−𝛼,𝛽

(−𝑠𝑡
−𝛼

) , 𝑡 > 0, 𝑠 ∈ C. (28)

Note that, using the change of variable 𝑧 = 𝜎/𝑡, we get the
integral representation

𝜓
𝛼,𝛽
(𝑡, 𝑠) =

1

2𝜋𝑖
∫
Ha
𝑧
−𝛽

𝑒
𝑡𝑧−𝑠𝑧

𝛼

𝑑𝑧, 𝑡, 𝑠 > 0. (29)

The function 𝜓
𝛼,𝛽

is considered in the literature in some
particular cases.

(i) For 𝛽 = 1 − 𝛼,

𝜓
𝛼,1−𝛼

(𝑡, 𝑠) = 𝑡
−𝛼

𝑀
𝛼
(𝑠𝑡

−𝛼

) = M
𝛼
(𝑠, 𝑡) = 𝜑

𝑡,𝛼
(𝑠) , 𝑡, 𝑠 > 0,

(30)

whereM
𝛼
(𝑠, 𝑡) is the WrightM-function in two vari-

ables studied in [14, page 257] and𝜑
𝑡,𝛼
(𝑠) is considered

in [10, Theorem 3.1]; for 𝛼 = 1/2,

𝜓
1/2,1/2

(𝑡, 𝑠) =
1

√𝜋𝑡
𝑒
−𝑠
2
/4𝑡

, 𝑡, 𝑠 > 0; (31)

see [14, Appendix F, Formula (F.16)].
(ii) For 𝛽 = 0,

𝜓
𝛼,0
(𝑡, 𝑠) =

1

2𝜋𝑖
∫
Ha
𝑒
𝑡𝑧−𝑠𝑧

𝛼

𝑑𝑧 =: 𝑓
𝑠,𝛼
(𝑡) , 𝑡, 𝑠 > 0, (32)

is the stable Lévy process of order 𝛼; see Section 1, [2],
and [4, Chapter IX], in particular

𝜓
1/2,0

(𝑡, 𝑠) =
1

2√𝜋
𝑡
−3/2

𝑠𝑒
−𝑠
2
/4𝑡

, 𝑡, 𝑠 > 0. (33)

In the next theorem, we join some properties which are
satisfied by functions 𝜓

𝛼,𝛽
.

Theorem 3. Let 0 < 𝛼 < 1 and 𝛽 ≥ 0; one has the following.

(i) 𝜓
𝛼,𝛽
(𝑡, 𝑠) ≥ 0, for 𝑡, 𝑠 > 0.

(ii) ∫∞
0

𝑒−𝜆𝑡𝜓
𝛼,𝛽
(𝑡, 𝑠)𝑑𝑡 = 𝜆−𝛽𝑒−𝜆

𝛼
𝑠, for 𝑠, 𝜆 > 0.

(iii) ∫∞
0

𝑒𝜆𝑠𝜓
𝛼,𝛽
(𝑡, 𝑠)𝑑𝑠 = 𝑡𝛼+𝛽−1𝐸

𝛼,𝛼+𝛽
(𝜆𝑡𝛼), for 𝑡 > 0, 𝜆 ∈

C.
(iv) ∬∞

0

𝑒−𝜆𝑠𝑒−𝜇𝑡𝜓
𝛼,𝛽
(𝑡, 𝑠)𝑑𝑠 𝑑𝑡 = 1/𝜇𝛽(𝜇𝛼 + 𝜆) for 𝑡 > 0,

𝜆, 𝜇 > 0.
(v) 𝜓

𝛼,𝛽+𝛾
(𝑡, 𝑠) = (𝑔

𝛾
∗ 𝜓

𝛼,𝛽
(⋅, 𝑠))(𝑡), for 𝑡, 𝑠, 𝛾 > 0.

(vi) ∫∞
0

𝑔
𝜂
(𝑠)𝜓

𝛼,𝛽
(𝑡, 𝑠)𝑑𝑠 = 𝑔

𝛼𝜂+𝛽
(𝑡), for 𝑡, 𝜂 > 0.

Proof. (i) It is clear by Definition 2 and Proposition 1. (ii) It is
easy to see that𝜓

𝛼,𝛽
(𝑡, 𝑠) is of exponential growth in 𝑡. Let 𝜆 >

max(𝑎, 𝑏) > 0, (where 𝑎 and 𝑏 are involved in the definition
of Hankel path Ha). Then, by Cauchy theorem of residue,

∫
∞

0

𝑒
−𝜆𝑡

𝜓
𝛼,𝛽
(𝑡, 𝑠) 𝑑𝑡 =

1

2𝜋𝑖
∫
Ha

𝑧−𝛽𝑒−𝑠𝑧
𝛼

𝑧 − 𝜆
𝑑𝑧 = 𝜆

−𝛽

𝑒
−𝑠𝜆
𝛼

.

(34)

(iii) Using (24), the result is direct by a change of variable.
(iv) We combine parts (ii) and (iii) to obtain the equality. (v)
It is clear using Laplace transform and (i). (vi) It is clear by a
change of variable and applying Proposition 1(i).

We combine Theorem 3(ii) and (iii) and formula (13) to
get the following corollary.

Corollary 4. For 0 < 𝛼, 𝛾 < 1, one denotes by Ψ
𝛾,𝛼

the func-
tion given by

Ψ
𝛾,𝛼
(𝑡, 𝑠) := ∫

∞

0

𝜓
𝛾,0
(𝑡, 𝑢) 𝜓

𝛼,0
(𝑠, 𝑢) 𝑑𝑢, 𝑡, 𝑠 > 0. (35)
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Then Ψ
𝛾,𝛼
(𝑡, 𝑠) = Ψ

𝛼,𝛾
(𝑠, 𝑡), and

∫
∞

0

𝑒
−𝜆𝑡

Ψ
𝛾,𝛼
(𝑡, 𝑠) 𝑑𝑡 = 𝑠

𝛼−1

𝐸
𝛼,𝛼
(−𝜆

𝛾

𝑠
𝛼

) , 𝑠 > 0,

∬
∞

0

𝑒
−𝜇𝑠

𝑒
−𝜆𝑡

Ψ
𝛾,𝛼
(𝑡, 𝑠) 𝑑𝑡 𝑑𝑠 =

1

𝜆𝛾 + 𝜇𝛼
,

(36)

for 𝜇, 𝜆 > 0.

Note that

Ψ
1/2,1/2

(𝑡, 𝑠) =
1

2√𝜋 (𝑡 + 𝑠)
3/2

, 𝑡, 𝑠 > 0. (37)

The following key lemma includes the particular case 𝛼 =
𝛽 = 1/2 and 0 < 𝜂 proved in [21, Lemma 1].

Proposition 5. For 0 < 𝛼 < 1, 𝛽 ≥ 0, and 0 < 𝜂, the following
identity holds:

𝜓
𝛼,𝛽+𝛼𝜂

(𝑡, 𝑢) = ∫
∞

𝑢

𝑔
𝜂
(𝑠 − 𝑢) 𝜓

𝛼,𝛽
(𝑡, 𝑠) 𝑑𝑠 (38)

for 𝑡, 𝑢 > 0.

Proof. Note that 𝜓
𝛼,𝛽

is a Laplace transformable function
and locally integrable in two variables. We apply the Laplace
transform in variable 𝑡 to get in the right side

∫
∞

0

𝑒
−𝜆𝑡

∫
∞

𝑢

𝑔
𝜂
(𝑠 − 𝑢) 𝜓

𝛼,𝛽
(𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

= 𝜆
−𝛽

∫
∞

𝑢

𝑔
𝜂
(𝑠 − 𝑢) 𝑒

−𝜆
𝛼
𝑠

𝑑𝑠 = 𝜆
−𝛽

𝜆
−𝛼𝜂

𝑒
−𝜆
𝛼
𝑢

,

(39)

with 𝜆 > 0, where we have applied Theorem 3(ii) and [15,
Chapter II, Formula (5.11)].

In the left side, we also apply the Laplace transform in the
variable 𝑡 to get that

∫
∞

0

𝑒
−𝜆𝑡

𝜓
𝛼,𝛽+𝛼𝜂

(𝑡, 𝑢) 𝑑𝑡 = 𝜆
−(𝛽+𝛼𝜂)

𝑒
−𝜆
𝛼
𝑢

, 𝑢 > 0, (40)

with 𝜆 > 0, where we have usedTheorem 3(ii).

Remark 6. For 𝑢 = 0 in Proposition 5, we obtain the equality

𝜓
𝛼,𝛽+𝛼𝜂

(𝑡, 0) = ∫
∞

0

𝑔
𝜂
(𝑠) 𝜓

𝛼,𝛽
(𝑡, 𝑠) 𝑑𝑠 = 𝑔

𝛼𝜂+𝛽
(𝑡) , 𝑡 > 0,

(41)

proved inTheorem 3(vi).

Finally, we show an algebraic identity which satisfies
functions 𝜓

𝛼,1−𝛼
.

Proposition 7. Take 0 < 𝛼 < 1, 𝛽 > 𝛼, and 𝑡, 𝑠 > 0. Then

(i) (∫𝑡+𝑠
𝑡

−∫
𝑠

0

)((𝑡 + 𝑠 − 𝑟)
𝛽−𝛼−1

/Γ(𝛽 − 𝛼))𝜓
𝛼,𝛽−𝛼

(𝑟, 𝑢)𝑑𝑟 =
(𝛼/Γ(1 − 𝛼)) ∫

𝑡

0

∫
𝑠

0

((𝜓
𝛼,𝛽−𝛼

(𝑟
1
, (⋅)) ∗ 𝜓

𝛼,𝛽−𝛼
(𝑟

2
, (⋅)))(𝑢)/

(𝑡 + 𝑠 − 𝑟
1
− 𝑟

2
)
1+𝛼

)𝑑𝑟
1
𝑑𝑟

2
;

(ii) 𝜓
𝛼,0
(𝑡 + 𝑠, 𝑢) = (𝛼/Γ(1 − 𝛼)) ∫

𝑡

0

∫
𝑠

0

((𝜓
𝛼,0
(𝑟

1
, (⋅)) ∗

𝜓
𝛼,0
(𝑟

2
, (⋅)))(𝑢)/(𝑡 + 𝑠 − 𝑟

1
− 𝑟

2
)
1+𝛼

)𝑑𝑟
1
𝑑𝑟

2
.

Proof. Note that 𝜓
𝛼,𝛽−𝛼

(𝑟, (⋅))(𝜆) = 𝑟𝛽−1𝐸
𝛼,𝛽
(−𝜆𝑟𝛼), for 𝛽 ≥

𝛼, 𝑟 > 0, and 𝜆 ∈ C; see Theorem 3(iii). Then we apply the
Laplace transform in the variable 𝑢 in both equalities to get
identities (15) and (16). The injectivity of Laplace transform
allows us to finish the proof.

To finish this section, we prove a subordination formula
for functions 𝜓

𝛼,𝛽
which expands some well-known results.

Theorem 8. For 0 < 𝛼, 𝛿 < 1, 𝛽 ≥ 𝛼, and 𝛿 ≥ 𝛾, the following
identity holds:

𝜓
𝛼𝛾,𝛽−𝛼+𝛼(𝛿−𝛾)

(𝑡, 𝑠)

= ∫
∞

0

𝜓
𝛼,𝛽−𝛼

(𝑡, 𝑟) 𝜓
𝛾,𝛿−𝛾

(𝑟, 𝑠) 𝑑𝑟, 𝑡, 𝑠 > 0.
(42)

Proof. To show this theorem, we apply the Laplace transform
in both variables (𝑡, 𝑠), the so-called double Laplace trans-
form, Fubini theorem, Theorem 3(ii) and (iii), and finally
formula (13) to get that

∬
∞

0

𝑒
−𝜆𝑡−𝜇𝑠

∫
∞

0

𝜓
𝛼,𝛽−𝛼

(𝑡, 𝑟) 𝜓
𝛾,𝛿−𝛾

(𝑟, 𝑠) 𝑑𝑟 𝑑𝑠 𝑑𝑡

= ∫
∞

0

𝜆
𝛼−𝛽

𝑒
−𝜆
𝛼
𝑟

𝑟
𝛾−1

𝐸
𝛾,𝛿
(−𝜇𝑟

𝛾

) 𝑑𝑟

=
𝜆
𝛼𝛾−(𝛽−𝛼+𝛼𝛾)

𝜆𝛼𝛾 + 𝜇
,

(43)

for R𝜆,R𝜇 > 0. Due to Theorem 3(iv) and the uniqueness
of the double Laplace transform (see, e.g., [22, page 346]), we
conclude the equality.

Remark 9. In the case that 𝛽 = 𝛿 = 1, we obtain formula
(23). For 𝛼 = 𝛽 and 𝛾 = 𝛿, we get the following subordination
formula for stable Lévy processes:

𝑓
𝑠,𝛼𝛾

(𝑡) = ∫
∞

0

𝑓
𝑟,𝛼
(𝑡) 𝑓

𝑠,𝛾
(𝑟) 𝑑𝑟, 𝑠, 𝑡 > 0, (44)

for 0 < 𝛼, 𝛾 < 1. Finally, for 𝛼 = 𝛾 = 1/2 and 𝛽 = 𝛿 = 1, we
obtain that

𝜓
1/4,3/4

(𝑡, 𝑠) =
1

𝜋√𝑡
∫
∞

0

𝑒
−𝑟
2
/4𝑡−𝑠
2
/4𝑟
𝑑𝑟

√𝑟
, 𝑡, 𝑠 > 0, (45)

where we use equality (31).

4. Subordination Principle for Regularized
Resolvent Families

In the following we consider that the operator 𝐴 is a densely
defined closed linear operator on aBanach space𝑋. Let𝛼, 𝛽 >
0. A family {𝑆

𝛼,𝛽
(𝑡)}

𝑡>0
⊂ B(𝑋) is a (𝑔

𝛼
, 𝑔

𝛽
)-regularized

resolvent family generated by 𝐴 if the following conditions
are satisfied.
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(a) 𝑆
𝛼,𝛽
(𝑡) is strongly continuous for 𝑡 > 0 and

lim
𝑡→0
+𝑆

𝛼,𝛽
(𝑡)𝑥/𝑔

𝛽
(𝑡) = 𝑥 for all 𝑥 ∈ 𝑋.

(b) 𝑆
𝛼,𝛽
(𝑡)𝐴 ⊂ 𝐴𝑆

𝛼,𝛽
(𝑡); that is, 𝑆

𝛼,𝛽
(𝑡)𝐴(𝑥) ⊂ 𝐴𝑆

𝛼,𝛽
(𝑡)𝑥

for 𝑥 ∈ 𝐷(𝐴) and 𝑡 > 0.
(c) The integral equation

𝑆
𝛼,𝛽
(𝑡) 𝑥 =

𝑡
𝛽−1

Γ (𝛽)
𝑥 + 𝐴(∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑆
𝛼,𝛽
(𝑠) 𝑥 𝑑𝑠) (46)

holds for 𝑥 ∈ 𝑋 and 𝑡 > 0.

This family of operators was formerly introduced for general
kernels (𝑎, 𝑘) in [6,Definition 2.1].The above definition is also
considered for 𝛼 > 0 and 𝛽 ≥ 1 in [23], for 0 < 𝛼 = 𝛽 < 1 in
[17], and for 𝛼 > 0 and 𝛽 = 1 in [9, Definition 2.1].

The reason why we do not consider the value of 𝑆
𝛼,𝛽
(⋅) at

0 in condition (a) (compare with [6, Definition 2.1, Condition
(R1)]) is that the function 𝑡 󳨃→ 𝑔

𝛽
(𝑡) has a singularity at 0 if

0 < 𝛽 < 1.
Let 𝑆 : (0,∞) → B(𝑋) be a strongly continuous opera-

tor family such that 𝑆(⋅)𝑥 ∈ 𝐿1loc(R+
, 𝑋), for any 𝑥 ∈ 𝑋. The

operator family {𝑆(𝑡)}
𝑡>0

is said to be Laplace-transformable
if there exists 𝜔 ∈ R such that the Laplace transform of 𝑆,

𝑆 (𝜆) 𝑥 = ∫
∞

0

𝑒
−𝜆𝑡

𝑆 (𝑡) 𝑥 𝑑𝑡, R𝜆 > 𝜔, (47)

converges for 𝑥 ∈ 𝑋; see, for example, [5, Definition
3.1.4]. If 𝐴 generates a (𝑔

𝛼
, 𝑔

𝛽
)-regularized resolvent family

{𝑆
𝛼,𝛽
(𝑡)}

𝑡>0
such that 𝑆(⋅)𝑥 ∈ 𝐿1loc(R+

, 𝑋) for 𝑥 ∈ 𝑋 and
is Laplace transformable of parameter 𝜔, we write 𝐴 ∈

C𝛼,𝛽(𝜔). We denote C𝛼,𝛽 := ⋃{C𝛼,𝛽(𝜔); 𝜔 ≥ 0}. The case of
(𝑔

𝛼
, 1)-regularized resolvent families exponentially bounded,

‖𝑆
𝛼,1
(𝑡)‖ ≤ 𝑀𝑒𝑤𝑡 for 𝑡 > 0, is considered in [11, Definition 2.5]

and [10, Definition 2.4]; in this case,C𝛼(𝜔) := C𝛼,1(𝜔).
The next theorem characterizes the Laplace transform of

(𝑔
𝛼
, 𝑔

𝛽
)-regularized family and extends [23, Theorem 3.11]

and the proof is similar to the proof of [6, Proposition 3.1].

Theorem 10. Let 𝛼, 𝛽 > 0. Then 𝐴 ∈ C𝛼,𝛽(𝜔) if and only
if (𝜔𝛼,∞) ⊂ 𝜌(𝐴) and there exists a strongly continuous
function 𝑆

𝛼,𝛽
(⋅) : (0,∞) → B(𝑋), locally integrable,

lim
𝑡→0
+(𝑆

𝛼,𝛽
(𝑡)𝑥/𝑔

𝛽
(𝑡)) = 𝑥 for all 𝑥 ∈ 𝑋, and Laplace trans-

formable such that

∫
∞

0

𝑒
−𝜆𝑡

𝑆
𝛼,𝛽
(𝑡) 𝑥 𝑑𝑡 = 𝜆

𝛼−𝛽

(𝜆
𝛼

− 𝐴)
−1

𝑥, 𝜆 > 𝜔, (48)

for all 𝑥 ∈ 𝑋. Furthermore, the family {𝑆
𝛼,𝛽
(𝑡)}

𝑡>0
is the

(𝑔
𝛼
, 𝑔

𝛽
)-regularized resolvent family generated by 𝐴.

Example 11. For 0 < 𝛼 < 1 and 𝛽 ≥ 𝛼, the family {𝑆
𝛼,𝛽
(𝑡)}

𝑡>0

defined by

𝑆
𝛼,𝛽
(𝑡) 𝑓 (𝑠) := (𝜓

𝛼,𝛽−𝛼
(𝑡, (⋅)) ∗ 𝑓) (𝑠)

= ∫
𝑠

0

𝑓 (𝑠 − 𝑢) 𝜓
𝛼,𝛽−𝛼

(𝑡, 𝑢) 𝑑𝑢,

𝑠 ∈ R
+
, 𝑓 ∈ 𝐿

1

(R
+
) ,

(49)

is a (𝑔
𝛼
, 𝑔

𝛽
)-regularized resolvent family generated by 𝐴 =

−𝑑/𝑑𝑡 on the Banach space 𝐿1(R
+
). First note that the family

is well defined since ‖𝜓
𝛼,𝛽−𝛼

(𝑡, (⋅))‖
1
= 𝑔

𝛽
(𝑡) for 𝑡 > 0; see

Theorem 3(vi). In addition, by Theorem 3(ii), we have that

∫
∞

0

𝑒
−𝜆𝑡

𝑆
𝛼,𝛽
(𝑡) 𝑓 (𝑠) 𝑑𝑡

= ∫
𝑠

0

𝑓 (𝑠 − 𝑢) ∫
∞

0

𝑒
−𝜆𝑡

𝜓
𝛼,𝛽−𝛼

(𝑡, 𝑢) 𝑑𝑡 𝑑𝑢

= 𝜆
𝛼−𝛽

∫
𝑠

0

𝑒
−𝜆
𝛼
𝑢

𝑓 (𝑠 − 𝑢) 𝑑𝑢

= 𝜆
𝛼−𝛽

(𝜆
𝛼

+
𝑑

𝑑𝑡
)

−1

𝑓 (𝑠) , 𝑠 ∈ R
+
.

(50)

The strong continuity at the origin is a simple check, and the
reader can follow the steps on the proof of Theorem 12; in
particular, the stable Lévy processes (𝑓

(⋅),𝛼
(𝑡))

𝑡>0
are convolu-

tion (𝑔
𝛼
, 𝑔

𝛼
)-regularized resolvent families. Similarly, for 𝜆 ∈

C, Mittag-Leffler functions (𝑡𝛽−1𝐸
𝛼,𝛽
(−𝜆𝑡𝛼))

𝑡≥0
are (𝑔

𝛼
, 𝑔

𝛽
)-

regularized resolvent families generated by 𝐴𝑓(𝑧) = −𝜆𝑓(𝑧)

on the Banach space 𝐶
0
(R

+
) (or H

0
(C

+
)); see formula

(13). These two families of functions are canonical examples
of (𝑔

𝛼
, 𝑔

𝛽
)-regularized resolvent families.

The next theorem is the main one of this paper.

Theorem 12. Let 0 < 𝜂
1
≤ 2, 0 < 𝜂

2
, and 𝜔 ≥ 0. If 𝐴 ∈

C𝜂
1
,𝜂
2(𝜔) generates a (𝑔

𝜂
1

, 𝑔
𝜂
2

)-regularized resolvent family
{𝑆

𝜂
1
,𝜂
2

(𝑡)}
𝑡>0

, then𝐴 ∈ C𝛼𝜂
1
,𝛼𝜂
2
+𝛽(𝜔1/𝛼) generates the following

(𝑔
𝛼𝜂
1

, 𝑔
𝛼𝜂
2
+𝛽
)-regularized resolvent family:

𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡) 𝑥 := ∫

∞

0

𝜓
𝛼,𝛽
(𝑡, 𝑠) 𝑆

𝜂
1
,𝜂
2

(𝑠) 𝑥 𝑑𝑠,

𝑡 > 0, 𝑥 ∈ 𝑋,

(51)

for 0 < 𝛼 < 1 and𝛽 ≥ 0. Moreover the following equality holds:

𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡) 𝑥 = (𝑔

𝛽
∗ 𝑆

𝛼𝜂
1
,𝛼𝜂
2

) (𝑡) 𝑥, 𝑡 > 0, 𝑥 ∈ 𝑋,

(52)

for 𝛽 > 0.

Proof. First we show that {𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡)}

𝑡>0
is Laplace trans-

formable of parameter𝜔1/𝛼. Note that usingTheorem 3(ii) we
get that

∫
∞

0

𝑒
−𝜆𝑡

𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡) 𝑥 𝑑𝑡

= ∫
∞

0

(∫
∞

0

𝑒
−𝜆𝑡

𝜓
𝛼,𝛽
(𝑡, 𝑠) 𝑑𝑡) 𝑆

𝜂
1
,𝜂
2

(𝑠) 𝑥 𝑑𝑠

= 𝜆
−𝛽

∫
∞

0

𝑒
−𝜆
𝛼𝑠

𝑆
𝜂
1
,𝜂
2

(𝑠) 𝑥 𝑑𝑠

= 𝜆
𝛼𝜂
1
−(𝛼𝜂
2
+𝛽)

(𝜆
𝛼𝜂
1 − 𝐴)

−1

𝑥,

(53)

for 𝜆 > 𝜔1/𝛼, and (𝜔𝜂
1 ,∞) = ((𝜔1/𝛼)

𝛼𝜂
1 ,∞) ⊂ 𝜌(𝐴).
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The family {𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡)}

𝑡>0
is strongly continuous on

(0,∞) and now we prove the strong continuity at the origin.
Let 𝑥 ∈ 𝑋, and then

󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡) 𝑥 − 𝑔

𝛼𝜂
2
+𝛽
(𝑡) 𝑥

󵄩󵄩󵄩󵄩󵄩

𝑔
𝛼𝜂
2
+𝛽
(𝑡)

≤ ∫
∞

0

𝜓
𝛼,𝛽
(𝑡, 𝑠)

𝑔
𝛼𝜂
2
+𝛽
(𝑡)

󵄩󵄩󵄩󵄩󵄩
𝑆
𝜂
1
,𝜂
2

(𝑠) 𝑥 − 𝑔
𝜂
2

(𝑠) 𝑥
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

= Γ (𝛼𝜂
2
+ 𝛽)∫

∞

0

𝑡
𝛼−𝛼𝜂
2𝑊

−𝛼,𝛽
(−𝑢)

⋅
󵄩󵄩󵄩󵄩󵄩
𝑆
𝜂
1
,𝜂
2

(𝑢𝑡
𝛼

) 𝑥 − 𝑔
𝜂
2

(𝑢𝑡
𝛼

) 𝑥
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢

= Γ (𝛼𝜂
2
+ 𝛽)∫

∞

0

𝑔
𝜂
2

(𝑢)𝑊
−𝛼,𝛽

(−𝑢)

𝑔
𝜂
2

(𝑢𝑡𝛼)

⋅
󵄩󵄩󵄩󵄩󵄩
𝑆
𝜂
1
,𝜂
2

(𝑢𝑡
𝛼

) 𝑥 − 𝑔
𝜂
2

(𝑢𝑡
𝛼

) 𝑥
󵄩󵄩󵄩󵄩󵄩
𝑑𝑢,

(54)

where we have used Theorem 3(vi). We apply the dominated
convergence theorem to the above term and Proposition 1(i)
to conclude that

󵄩󵄩󵄩󵄩󵄩
𝑆
𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡) 𝑥 − 𝑔

𝛼𝜂
2
+𝛽
(𝑡) 𝑥

󵄩󵄩󵄩󵄩󵄩

𝑔
𝛼𝜂
2
+𝛽
(𝑡)

󳨀→ 0, 𝑡 󳨀→ 0
+

, (55)

since 𝑆
𝜂
1
,𝜂
2

(𝑡) is a (𝑔
𝜂
1

, 𝑔
𝜂
2

)-regularized resolvent fam-
ily. Finally, by Theorem 10, we obtain that the family
{𝑆

𝛼𝜂
1
,𝛼𝜂
2
+𝛽
(𝑡)}

𝑡>0
is a (𝑔

𝛼𝜂
1

, 𝑔
𝛼𝜂
2
+𝛽
)-regularized resolvent fam-

ily generated by 𝐴. The proof of equality (52) is a straightfor-
ward consequence of Theorem 3(v).

Remark 13. Note that the above subordination theorem
extends some subordination results which have been consid-
ered in this paper and previous papers.

(i) Now, we consider the family of functions
(𝜓

𝛾,𝛿−𝛾
(𝑡, (⋅)))

𝑡>0
which is a (𝑔

𝛾
, 𝑔

𝛿
)-regularized

resolvent family for 0 < 𝛾 < 1 and 𝛿 ≥ 𝛾 (see
Example 11). Then we applyTheorem 12 for 0 < 𝛼 < 1
and 𝛽 > 0, and we obtain the formula

𝜓
𝛼𝛾,𝛽+𝛼(𝛿−𝛾)

(𝑡, (⋅)) = ∫
∞

0

𝜓
𝛼,𝛽
(𝑡, 𝑠) 𝜓

𝛾,𝛿−𝛾
(𝑠, (⋅)) 𝑑𝑠, 𝑡 > 0,

(56)

which is shown inTheorem 8.
(ii) If 0 < 𝜂

1
≤ 2 and 𝜂

2
= 1 in Theorem 12, we retrieve

the subordination principle for (𝑔
𝛼𝜂
1

, 1)-regularized
resolvent families given in [9, Theorem 3.1] and [10,
Theorem 3.1] for 0 < 𝛼 < 1 and 𝛽 = 1 − 𝛼.

(iii) By [12, Theorem 2.8(i)], given a (𝑔
𝜂
1

, 𝑔
𝜂
2

)-regularized
resolvent family generated by𝐴, we obtain a (𝑔

𝛾
1

, 𝑔
𝛾
2

)-
regularized resolvent family generated by 𝐴, where
0 < 𝛾

1
< 𝜂

1
and 𝛾

2
= 1 − 𝛾

1
/𝜂

1
+ (𝛾

1
/𝜂

1
)𝜂

2
. This

is a particular case of Theorem 12 for 𝛼 = 𝛾
1
/𝜂

1
and

𝛽 = 1 − 𝛾
1
/𝜂

1
.

Corollary 14. Let 0 < 𝜂 ≤ 2 and 0 < 𝛼 < 1. If {𝑆
𝜂,𝜂
(𝑡)}

𝑡>0
is a

(𝑔
𝜂
, 𝑔

𝜂
)-regularized resolvent family generated by𝐴 ∈ C𝜂,𝜂(𝜔),

then 𝐴 ∈ C𝛼𝜂,𝛼𝜂(𝜔1/𝛼) generates the following (𝑔
𝛼𝜂
, 𝑔

𝛼𝜂
)-

regularized resolvent family:

𝑆
𝛼𝜂,𝛼𝜂

(𝑡) 𝑥 := ∫
∞

0

𝜓
𝛼,0
(𝑡, 𝑠) 𝑆

𝜂,𝜂
(𝑠) 𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋.

(57)

In particular, we have the following remarkable particular
cases.

(i) If 𝐴 generates a 𝐶
0
-semigroup {𝑇(𝑡)}

𝑡>0
, that is, a (𝑔

1
,

𝑔
1
)-regularized resolvent family, satisfying ‖𝑇(𝑡)‖ ≤

𝑀𝑒𝜔𝑡, 𝑡 ≥ 0, then 𝐴 ∈ C𝛼,𝛼(𝜔1/𝛼) generates the
following (𝑔

𝛼
, 𝑔

𝛼
)-regularized resolvent family:

𝑆
𝛼,𝛼
(𝑡) 𝑥 := ∫

∞

0

𝜓
𝛼,0
(𝑡, 𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋.

(58)

(ii) Let𝛽 ∈ (1, 2] and {𝑆
𝛽,𝛽
(𝑡)}

𝑡>0
be a (𝑔

𝛽
, 𝑔

𝛽
)-regularized

resolvent family generated by 𝐴 ∈ C𝛽,𝛽(𝜔). Then 𝐴 ∈

C1,1(𝜔𝛽) generates the following 𝐶
0
-semigroup:

𝑇 (𝑡) 𝑥 := ∫
∞

0

𝜓
1/𝛽,0

(𝑡, 𝑠) 𝑆
𝛽,𝛽
(𝑠) 𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋.

(59)

In the case that 𝐴 is the generator of an exponentially
bounded sine function ‖𝑆(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡, (𝑡 ≥ 0) (see
details in [5, Section 3.15]), that is, (𝑆(𝑡))

𝑡>0
is a (𝑔

2
,

𝑔
2
)-regularized resolvent family, then𝐴 generates the

following 𝐶
0
-semigroup:

𝑇 (𝑡) 𝑥 :=
1

2√𝜋
𝑡
−3/2

∫
∞

0

𝑠𝑒
−𝑠
2
/4𝑡

𝑆 (𝑠) 𝑥 𝑑𝑠, 𝑡 > 0, 𝑥 ∈ 𝑋,

(60)

with exponential bound 𝜔2, which is proved in [24,
Theorem 5.2], and see also [25, Proposition 2.5 and
Theorem 2.6].

5. Applications, Examples, and
Final Comments

In this last section we present some applications of our results
to fractional Cauchy problems and classical semigroups in
Lebesgue spaces. Now we recall some basic definitions on
fractional Cauchy problems. Let 𝑓 ∈ 𝐶(∞)

𝑐
(R

+
; 𝑋); we call

Riemann-Liouville fractional integral of 𝑓 of order 𝛾 > 0,
𝐼−𝛾𝑓 to the function given by

𝐼
−𝛾

𝑓 (𝑡) := 𝑔
𝛾
∗ 𝑓 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛾−1

Γ (𝛾)
𝑓 (𝑠) 𝑑𝑠, 𝑡 ≥ 0,

(61)

and the Riemann-Liouville fractional derivative of 𝑓 of order
𝛾 > 0 is given by

𝑅
𝐷

𝛾

𝑡
𝑓 (𝑡) :=

𝑑𝑛

𝑑𝑡𝑛
(𝐼

−(𝑛−𝛾)

𝑓) (𝑡) , 𝑡 ≥ 0, (62)
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and with 𝑛 = [𝛾] + 1. Also, we consider the Caputo fractional
derivative of 𝑓 of order 𝛾 > 0,

𝐶
𝐷

𝛾

𝑡
𝑓 (𝑡) := 𝑔

𝑛−𝛾
∗ 𝑓

(𝑛)

(𝑡) = 𝐼
−(𝑛−𝛾)

𝑓
(𝑛)

(𝑡) , 𝑡 ≥ 0,

(63)

with 𝑛 = [𝛾] + 1; see, for example [14, 15] and [11, Section
4]. Note that, in the above definitions, the function 𝑓 can be
taken in a larger space than 𝐶(∞)

𝑐
(R

+
) where the definitions

make sense.

5.1. Fractional Powers in Fractional Cauchy Problems. The
next results extend [11, Theorem 4.9(a), (c)]: for 0 < 𝛼 <

1, the solutions of Caputo fractional problems are (𝑔
𝛼
, 1)-

regularized resolvent families (see [10, Definition 2.3]) which
may be obtained by integration from (𝑔

𝛼
, 𝑔

𝛼
)-regularized

resolvent families by (52). Note that these are solutions of
Riemann-Liouville fractional problems; see [17,Theorem 1.1].

Theorem 15. Let 𝛼, 𝛾 ∈ (0, 1) and 𝐴 be the generator of a
uniformly bounded 𝐶

0
-semigroup {𝑇(𝑡)}

𝑡>0
⊂B(𝑋).

(i) The fractional Cauchy problem

𝑅
𝐷

𝛼

𝑡
V (𝑡) = 𝐴V (𝑡) , 𝑡 > 0,

(𝑔
1−𝛼

∗ V) (0) = 𝑥 ∈ 𝐷 (𝐴)
(64)

is well-posed and its unique solution is given by

V (𝑡) = ∫
∞

0

𝜓
𝛼,0
(𝑡, 𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑡 > 0. (65)

(ii) The fractional Cauchy problem

𝑅
𝐷

𝛾

𝑡
V (𝑡) = − (−𝐴)𝛼 V (𝑡) , 𝑡 > 0,

(𝑔
1−𝛾

∗ V) (0) = 𝑥 ∈ 𝐷 (𝐴)
(66)

is well-posed and its unique solution is given by

V (𝑡) = ∫
∞

0

Ψ
𝛾,𝛼
(𝑡, 𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑡 > 0. (67)

Proof. (i) By Corollary 14(i), the operator 𝐴 generates a
(𝑔

𝛼
, 𝑔

𝛼
)-regularized resolvent family which provides the

solution of fractional Cauchy problem (64); see [17, Theorem
1.1]. (ii) By [4, Chapter IX], the operator −(−𝐴)𝛼 generates a
𝐶
0
-semigroup {𝑇(𝛼)(𝑡)}

𝑡>0
given by (5). By part (i), Fubini the-

orem, and the definition of Ψ
𝛾,𝛼

in Corollary 4, we conclude
the proof.

5.2. Convolution Semigroups on 𝐿𝑝(R𝑛). Let {𝑇(𝑡)}
𝑡≥0

be a
uniformly bounded convolution semigroup in R𝑛 generated
by 𝐴; that is,

𝑇 (𝑡) 𝑓 (𝑥) = (𝑘
𝑡
∗ 𝑓) (𝑥) = ∫

R𝑛
𝑘
𝑡
(𝑥 − 𝑦) 𝑓 (𝑦) 𝑑𝑦,

𝑡 > 0, 𝑥 ∈ R
𝑛

.

(68)

Two well-known examples of convolution semigroups
are Gaussian and Poisson semigroups, 𝑔

𝑡
(𝑥) = (1/

(4𝜋𝑡)
𝑛/2

)𝑒−|𝑥|
2
/4𝑡 and 𝑝

𝑡
(𝑥) = (Γ((𝑛 + 1)/2)/𝜋(𝑛+1)/2)(𝑡/(𝑡2 +

|𝑥|2)
(𝑛+1)/2

), whose generators are the Laplacian Δ and
−(−Δ)

1/2, respectively; see, for example, [4, Chapter IX].
Then, by Theorem 15(i), the solution of the Riemann-
Liouville fractional diffusion problem of order 0 < 𝛼 < 1

𝑅
𝐷

𝛼

𝑡
𝑢 (𝑡, 𝑥) = 𝐴𝑢 (𝑡, 𝑥) , 𝑡 > 0,

(𝑔
1−𝛼

∗ 𝑢 (⋅, 𝑥)) (0) = 𝑓 (𝑥)
(69)

is given by

𝑢 (𝑡, 𝑥) = ∫
R𝑛
(∫

∞

0

𝜓
𝛼,0
(𝑡, 𝑠) 𝑘

𝑠
(𝑥 − 𝑦) 𝑑𝑠)𝑓 (𝑦) 𝑑𝑦.

(70)

In addition, to the particular case of the Laplacian, we obtain
the solution of the Caputo fractional diffusion problem of
order 0 < 𝛼 < 1,

𝐶
𝐷

𝛼

𝑡
V (𝑡, 𝑥) = ΔV (𝑡, 𝑥) , 𝑡 > 0,

V (0, 𝑥) = 𝑓 (𝑥) ,
(71)

(considered in [11, Example 4.13]) which is given by V(𝑡, 𝑥) =
∫
𝑡

0

𝑔
1−𝛼
(𝑡 − 𝑠)𝑢(𝑠, 𝑥)𝑑𝑠, for 𝑡 > 0.

5.3. Multiplication Families on 𝐶
0
(R𝑛). Let {𝑇(𝑡)}

𝑡≥0
be a

multiplication semigroup in R𝑛 generated by 𝑞(𝑥); that is,

𝑇 (𝑡) 𝑓 (𝑥) = 𝑒
𝑡𝑞(𝑥)

𝑓 (𝑥) , 𝑥 ∈ R
𝑛

, 𝑡 > 0. (72)

Some examples are 𝑞(𝑥) = −4𝜋2|𝑥|2, −2𝜋|𝑥|, − log(1 +

4𝜋2|𝑥|2), treated in [26].Then, byTheorem 15(i), the solution
of the Riemann-Liouville fractional diffusion problem of
order 0 < 𝛼 < 1

𝑅
𝐷

𝛼

𝑡
𝑢 (𝑡, 𝑥) = 𝑞 (𝑥) 𝑢 (𝑡, 𝑥) , 𝑡 > 0,

(𝑔
1−𝛼

∗ 𝑢 (⋅, 𝑥)) (0) = 𝑓 (𝑥) , 𝑥 ∈ R
𝑛

,
(73)

is given by

𝑢 (𝑡, 𝑥) = ∫
∞

0

𝜓
𝛼,0
(𝑡, 𝑠) 𝑒

𝑠𝑞(𝑥)

𝑓 (𝑥) 𝑑𝑠

= 𝑡
𝛼−1

𝐸
𝛼,𝛼
(𝑞 (𝑥) 𝑡

𝛼

) 𝑓 (𝑥) , 𝑡 > 0, 𝑥 ∈ R
𝑛

,

(74)

where we have applied Theorem 3(iii). Even more, by
Theorem 15(ii), the solution of the Riemann-Liouville frac-
tional diffusion problem of order 0 < 𝛼, 𝛾 < 1,

𝑅
𝐷

𝛾

𝑡
𝑢 (𝑡, 𝑥) = − (−𝑞 (𝑥))

𝛼

𝑢 (𝑡, 𝑥) , 𝑡 > 0,

(𝑔
1−𝛾

∗ 𝑢 (⋅, 𝑥)) (0) = 𝑓 (𝑥)
(75)

is given by

𝑢 (𝑡, 𝑥) = ∫
∞

0

Ψ
𝛾,𝛼
(𝑡, 𝑠) 𝑒

𝑠𝑞(𝑥)

𝑓 (𝑥) 𝑑𝑠

= 𝑡
𝛾−1

𝐸
𝛾,𝛾
(− (−𝑞 (𝑥))

𝛼

𝑡
𝛾

) 𝑓 (𝑥) , 𝑡 > 0,

(76)

where we have appliedTheorem 3(ii) and (iii).
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