000130744 001__ 130744
000130744 005__ 20240201145618.0
000130744 0247_ $$2doi$$a10.1039/c7cp02606d
000130744 0248_ $$2sideral$$a101102
000130744 037__ $$aART-2017-101102
000130744 041__ $$aeng
000130744 100__ $$aLamazares, E.
000130744 245__ $$aDirect examination of the relevance for folding, binding and electron transfer of a conserved protein folding intermediate
000130744 260__ $$c2017
000130744 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130744 5203_ $$aNear the minimum free energy basin of proteins where the native ensemble resides, partly unfolded conformations of slightly higher energy can be significantly populated under native conditions. It has been speculated that they play roles in molecular recognition and catalysis, but they might represent contemporary features of the evolutionary process without functional relevance. Obtaining conclusive evidence on these alternatives is difficult because it requires comparing the performance of a given protein when populating and when not populating one such intermediate, in otherwise identical conditions. Wild type apoflavodoxin populates under native conditions a partly unfolded conformation (10% of molecules) whose unstructured region includes the binding sites for the FMN cofactor and for redox partner proteins. We recently engineered a thermostable variant where the intermediate is no longer detectable. Using the wild type and variant, we assess the relevance of the intermediate comparing folding kinetics, cofactor binding kinetics, cofactor affinity, X-ray structure, intrinsic dynamics, redox potential of the apoflavodoxin-cofactor complex (Fld), its affinity for partner protein FNR, and electron transfer rate within the Fld/FNR physiological complex. Our data strongly suggest the intermediate state, conserved in long-chain apoflavodoxins, is not required for the correct assembly of flavodoxin nor does it contribute to shape its electron transfer properties. This analysis can be applied to evaluate other native basin intermediates.
000130744 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130744 590__ $$a3.906$$b2017
000130744 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b9 / 36 = 0.25$$c2017$$dQ1$$eT1
000130744 591__ $$aCHEMISTRY, PHYSICAL$$b46 / 144 = 0.319$$c2017$$dQ2$$eT1
000130744 592__ $$a1.686$$b2017
000130744 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ1
000130744 593__ $$aPhysical and Theoretical Chemistry$$c2017$$dQ1
000130744 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130744 700__ $$0(orcid)0000-0002-1232-6310$$aVega, S.
000130744 700__ $$0(orcid)0000-0003-4076-6118$$aFerreira, P.$$uUniversidad de Zaragoza
000130744 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, M.$$uUniversidad de Zaragoza
000130744 700__ $$0(orcid)0000-0002-1896-7805$$aGalano-Frutos, J.J.
000130744 700__ $$0(orcid)0000-0001-9047-0046$$aMartínez-Júlvez, M.$$uUniversidad de Zaragoza
000130744 700__ $$0(orcid)0000-0001-5702-4538$$aVelázquez-Campoy, A.$$uUniversidad de Zaragoza
000130744 700__ $$0(orcid)0000-0002-2879-9200$$aSancho, J.$$uUniversidad de Zaragoza
000130744 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000130744 773__ $$g19, 29 (2017), 19021-19031$$pPhys. chem. chem. phys.$$tPhysical chemistry chemical physics$$x1463-9076
000130744 8564_ $$s1328514$$uhttps://zaguan.unizar.es/record/130744/files/texto_completo.pdf$$yPostprint
000130744 8564_ $$s700968$$uhttps://zaguan.unizar.es/record/130744/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130744 909CO $$ooai:zaguan.unizar.es:130744$$particulos$$pdriver
000130744 951__ $$a2024-02-01-14:52:13
000130744 980__ $$aARTICLE