000130759 001__ 130759
000130759 005__ 20240131210810.0
000130759 0247_ $$2doi$$a10.1016/j.energy.2018.12.161
000130759 0248_ $$2sideral$$a109708
000130759 037__ $$aART-2019-109708
000130759 041__ $$aeng
000130759 100__ $$aJuárez-Hernández, S.
000130759 245__ $$aAssessing maize production systems in Mexico from an energy, exergy, and greenhouse-gas emissions perspective
000130759 260__ $$c2019
000130759 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130759 5203_ $$aMaize is the most important staple crop in Mexico and is cultivated under varied agro-climatic and socio-economic conditions. The aim of this study is to estimate energy use, cumulative exergy consumption (CExC), and greenhouse gas (GHG) emissions of different maize production systems as proxies to compare their resource use and environmental performance. Based on average values, per-hectare energy use, energy intensity (EI), energy output-input ratio (ER), and net energy (NE) are in the range of 2.3–40.2 GJ ha-1, 1.8–8.5 MJ kg-1, 1.7–12.0, and 16.3–73.1 GJ ha-1, respectively. Per-hectare CExC, exergy intensity (ExI), exergy output-input ratio (ExR), and net exergy (NEx) are in the range of 2.5–52.1 GJ ha-1, 1.9–10.7 MJ kg-1, 1.6–14.1, and 19.6–86.8 GJ ha-1, respectively. Per-hectare GHG emissions, GHG intensity (GHGI), and GHG per unit energy input (GHGEi) are in the range of 152.9–3475.8 kg CO2e ha-1, 116.5–601.9 kg CO2e Mg-1, and 63.1–117.2 kg CO2e GJ-1, respectively. Low-input rain-fed production systems perform better in EI, ER, ExI, ExR, GHGI, and GHGEi though, they also show the lowest NE and NEx due to poor yields. High-input surface irrigated production systems have the highest NE and NEx coupled with medium values of EI, ExI, and GHGI due to high productivity.
000130759 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130759 590__ $$a6.082$$b2019
000130759 591__ $$aTHERMODYNAMICS$$b3 / 61 = 0.049$$c2019$$dQ1$$eT1
000130759 591__ $$aENERGY & FUELS$$b20 / 112 = 0.179$$c2019$$dQ1$$eT1
000130759 592__ $$a2.166$$b2019
000130759 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1
000130759 593__ $$aEnergy (miscellaneous)$$c2019$$dQ1
000130759 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ1
000130759 593__ $$aManagement, Monitoring, Policy and Law$$c2019$$dQ1
000130759 593__ $$aCivil and Structural Engineering$$c2019$$dQ1
000130759 593__ $$aFuel Technology$$c2019$$dQ1
000130759 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000130759 593__ $$aBuilding and Construction$$c2019$$dQ1
000130759 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130759 700__ $$0(orcid)0000-0002-9279-1959$$aUsón, S.$$uUniversidad de Zaragoza
000130759 700__ $$aSheinbaum Pardo, C.
000130759 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000130759 773__ $$g170 (2019), 199-211$$pEnergy$$tEnergy$$x0360-5442
000130759 8564_ $$s2297898$$uhttps://zaguan.unizar.es/record/130759/files/texto_completo.pdf$$yPostprint
000130759 8564_ $$s964568$$uhttps://zaguan.unizar.es/record/130759/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130759 909CO $$ooai:zaguan.unizar.es:130759$$particulos$$pdriver
000130759 951__ $$a2024-01-31-19:18:37
000130759 980__ $$aARTICLE