000130761 001__ 130761
000130761 005__ 20240131210810.0
000130761 0247_ $$2doi$$a10.1007/s42405-018-0054-y
000130761 0248_ $$2sideral$$a108154
000130761 037__ $$aART-2018-108154
000130761 041__ $$aeng
000130761 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000130761 245__ $$aDynamic response of low-aspect-ratio cantilever NACA0012 airfoil at low-to-moderate reynolds numbers
000130761 260__ $$c2018
000130761 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130761 5203_ $$aThe influence of the angle of attack (AoA) and the chord based Reynolds number (Rec) on the lift and drag coefficients has been analyzed experimentally in a low-aspect-ratio NACA0012 airfoil, AR = 2. Results are shown for chord based Reynolds numbers in the range 3.33 × 104 = Rec = 1.33 × 105 and AoA between 0º and +35º, the stall angle being close to 12º. The aerodynamic characteristics show an increase and decrease of lift and drag force fluctuations for AoA greater than the stall angle. The explanation of how these aerodynamic variations appear has been reported numerically and it is based on two-dimensional effects which are mainly the unstable laminar separation bubble (LSB) and the subsequent downstream propagation of leading edge vortex (LEV) as AoA increases. In addition, the dynamic response of the wing has been studied using frequency analysis. We compute the power spectral density (PSD) from the temporal evolution of the net force exerted over the wing, showing that the main response of the wing is the presence of two natural frequencies of the wing-base system. The mean PSD suddenly increases for Rec ˜ 1 × 105, particularly at AoA exceeding the critical point that corresponds to the stall angle. Finally, and despite from the fact that our model is rigid, we find PSD peaks at very low and high frequencies in agreement with other authors’ results which correspond to energetic modes in the wingtip vortex and the formation and emission of coherent turbulent structures behind the airfoil, respectively.
000130761 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130761 590__ $$a0.511$$b2018
000130761 591__ $$aENGINEERING, AEROSPACE$$b29 / 31 = 0.935$$c2018$$dQ4$$eT3
000130761 592__ $$a0.257$$b2018
000130761 593__ $$aAerospace Engineering$$c2018$$dQ3
000130761 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ3
000130761 593__ $$aControl and Systems Engineering$$c2018$$dQ3
000130761 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ3
000130761 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130761 700__ $$aGarcía-González, A.
000130761 700__ $$aParras, L.
000130761 700__ $$aVelazquez-Navarro, J.F.
000130761 700__ $$aPino, C. del
000130761 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130761 773__ $$g19, 3 (2018), 584-594$$pInt. j. aeronaut. space sci.$$tInternational journal of aeronautical and space sciences$$x2093-274X
000130761 8564_ $$s676582$$uhttps://zaguan.unizar.es/record/130761/files/texto_completo.pdf$$yPostprint
000130761 8564_ $$s2331676$$uhttps://zaguan.unizar.es/record/130761/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130761 909CO $$ooai:zaguan.unizar.es:130761$$particulos$$pdriver
000130761 951__ $$a2024-01-31-19:18:44
000130761 980__ $$aARTICLE