000130762 001__ 130762
000130762 005__ 20240131210810.0
000130762 0247_ $$2doi$$a10.1016/j.advwatres.2019.06.001
000130762 0248_ $$2sideral$$a113059
000130762 037__ $$aART-2019-113059
000130762 041__ $$aeng
000130762 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000130762 245__ $$aA comparative analysis of capacity and non-capacity formulations for the simulation of unsteady flows over finite-depth erodible beds
000130762 260__ $$c2019
000130762 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130762 5203_ $$aFinite-depth sediment layers are common in natural water bodies. The presence of underlying bedrock strata covered by erodible bed layers is ubiquitous in rivers and estuaries. In the last years, the development of models based on the non-capacity sediment transport assumption, also called non-equilibrium assumption, has offered a new theoretical background to deal with complex non-erodible bed configurations and the associated numerical problems. Bedload non-capacity sediment transport models consider that the actual solid transport state can be different from the equilibrium state and depending on the temporal evolution of the flow. The treatment of finite-depth erodible bed layers, i.e. partially erodible beds, in bedload models based on the equilibrium approach has usually been made using numerical fixes, which correct the unphysical results obtained in some cases. Generally, the presence of a finite-depth erodible layer implies the introduction of a kind of non-equilibrium condition in the bedload transport state. Nevertheless, this common natural bed configuration has not been previously considered in the development of numerical models. In this work, a finite volume model (FVM) for bedload transport based on non-capacity approach and dealing with finite-depth erodible layers is proposed. New expressions for the actual bedload transport rate and the net exchange flux through the static-moving bed layers interface are used to develop a numerical scheme which solves the coupled shallow water and non-capacity bedload transport system of equations. The reconstruction of the intermediate states for the local Riemann problem at each intercell edge is designed to correctly model the presence of non-erodible strata, avoiding the appearance of unphysical results in the approximate solution without reducing the time step. The new coupled scheme is tested against laboratory benchmarking experiments in order to demonstrate its stability and accuracy, pointing out the properties of both equilibrium and non-equilibrium formulations.
000130762 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CGL2015-66114-R
000130762 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130762 590__ $$a4.016$$b2019
000130762 591__ $$aWATER RESOURCES$$b11 / 94 = 0.117$$c2019$$dQ1$$eT1
000130762 592__ $$a1.536$$b2019
000130762 593__ $$aWater Science and Technology$$c2019$$dQ1
000130762 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130762 700__ $$0(orcid)0000-0002-1386-5543$$aMurillo, J.$$uUniversidad de Zaragoza
000130762 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000130762 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130762 773__ $$g130 (2019), 91-112$$pAdv. water resour.$$tAdvances in Water Resources$$x0309-1708
000130762 8564_ $$s4441951$$uhttps://zaguan.unizar.es/record/130762/files/texto_completo.pdf$$yPostprint
000130762 8564_ $$s1579583$$uhttps://zaguan.unizar.es/record/130762/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130762 909CO $$ooai:zaguan.unizar.es:130762$$particulos$$pdriver
000130762 951__ $$a2024-01-31-19:18:48
000130762 980__ $$aARTICLE