000130765 001__ 130765
000130765 005__ 20240131210810.0
000130765 0247_ $$2doi$$a10.2166/hydro.2018.145
000130765 0248_ $$2sideral$$a107277
000130765 037__ $$aART-2018-107277
000130765 041__ $$aeng
000130765 100__ $$0(orcid)0000-0002-3635-6223$$aFernandez-Pato, J.
000130765 245__ $$aA fractional-order infiltration model to improve the simulation of rainfall/runoff in combination with a 2D shallow water model
000130765 260__ $$c2018
000130765 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130765 5203_ $$aIn this work, a distributed two-dimensional (2D) shallow water (SW) flow model is combined with a fractional-order version of the Green-Ampt (FOGA) infiltration law to improve rainfall/runoff simulation in real catchments. The surface water model is based on a robust finite volume method on triangular grids that can handle flow over dry bed and multiple wet/dry fronts. When supplied with adequate infiltration laws, this model can provide useful information in surface hydrology. The classical Green-Ampt law is generalized by using a Caputo fractional derivative of order less than or equal to 1 in Darcy''s law. The novelty of this combination is that, on the one hand, the distributed SW simulation provides a detailed surface water distribution and, on the other hand, the FOGA model offers the possibility to model infiltration rates not monotonically decreasing. In order to obtain the best results, a non-uniform order of the fractional derivative depending on the cumulative infiltration and the existence of available surface water is proposed for realistic cases. This allows significant improvement of previous published numerical results in the literature for several storm events in catchments where the infiltration process occurs.
000130765 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DI-14-06987$$9info:eu-repo/grantAgreement/ES/MINECO/MTM2016-75139-R
000130765 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130765 590__ $$a1.908$$b2018
000130765 591__ $$aENGINEERING, CIVIL$$b58 / 132 = 0.439$$c2018$$dQ2$$eT2
000130765 591__ $$aWATER RESOURCES$$b49 / 91 = 0.538$$c2018$$dQ3$$eT2
000130765 591__ $$aENVIRONMENTAL SCIENCES$$b148 / 250 = 0.592$$c2018$$dQ3$$eT2
000130765 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b63 / 106 = 0.594$$c2018$$dQ3$$eT2
000130765 592__ $$a0.665$$b2018
000130765 593__ $$aAtmospheric Science$$c2018$$dQ2
000130765 593__ $$aWater Science and Technology$$c2018$$dQ2
000130765 593__ $$aGeotechnical Engineering and Engineering Geology$$c2018$$dQ2
000130765 593__ $$aCivil and Structural Engineering$$c2018$$dQ2
000130765 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000130765 700__ $$0(orcid)0000-0003-2538-9027$$aGracia, J.L.$$uUniversidad de Zaragoza
000130765 700__ $$0(orcid)0000-0001-8674-1042$$aGarcia-Navarro, P.$$uUniversidad de Zaragoza
000130765 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000130765 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130765 773__ $$g20, 4 (2018), 898-916$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000130765 8564_ $$s1356679$$uhttps://zaguan.unizar.es/record/130765/files/texto_completo.pdf$$yVersión publicada
000130765 8564_ $$s2097050$$uhttps://zaguan.unizar.es/record/130765/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000130765 909CO $$ooai:zaguan.unizar.es:130765$$particulos$$pdriver
000130765 951__ $$a2024-01-31-19:19:08
000130765 980__ $$aARTICLE