000130771 001__ 130771
000130771 005__ 20240131210811.0
000130771 0247_ $$2doi$$a10.1016/j.ejpb.2019.10.004
000130771 0248_ $$2sideral$$a114740
000130771 037__ $$aART-2019-114740
000130771 041__ $$aeng
000130771 100__ $$aLuque-Michel, Edurne
000130771 245__ $$aCo-encapsulation of superparamagnetic nanoparticles and doxorubicin in PLGA nanocarriers: Development, characterization and in vitro antitumor efficacy in glioma cells
000130771 260__ $$c2019
000130771 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130771 5203_ $$aWith a very poor prognosis and no clear etiology, glioma is the most aggressive cancer in the brain. Thanks to its versatility, nanomedicine is a promising option to overcome the limitations on chemotherapy imposed by the blood brain barrier (BBB). The objective of this paper was to obtain monitored tumor-targeted therapeutic nanoparticles (NPs). To that end, theranostic surfactant-coated polymer poly-Lactic-co-Glycolic Acid (PLGA) nanoplatform encapsulating doxorubicin hydrochloride (DOX) and superparamagnetic iron oxide NPs (SPIONs) were developed. Different non-ionic surfactants known as BBB crossing enhancers (Tween 80, Brij-35, Pluronic F68 or Vitamin E-TPGS) were used to develop 4 types of theranostic nanoplatforms, which were characterized in terms of size and morphology by DLS, TEM and STEM-HAADF analyses. Moreover, the 3-month stability test, the therapeutic efficacy against different glioma cell lines (U87-MG, 9L/LacZ and patient derived-neuronal stem cells) and the Magnetic Resonance Imaging (MRI) relaxivity were studied. Results showed that the synthesised nanoplatforms were stable at 4 °C after their lyophilization, being that of paramount importance to ensure a long-term stability in a future in vivo application. Furthermore, the theranostic nanoplatforms were efficient in the in vitro treatment of glioma cells, proving to have imaging efficacy as MRI contrast agents. Our results show an efficient loading of drugs and good value of the relaxivity. Therefore, the efficient theranostic hybrid nanoplatform developed here could be used to perform MRI-guided delivery of hydrophobic drugs.
000130771 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78201-P
000130771 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130771 590__ $$a4.604$$b2019
000130771 591__ $$aPHARMACOLOGY & PHARMACY$$b40 / 270 = 0.148$$c2019$$dQ1$$eT1
000130771 592__ $$a1.059$$b2019
000130771 593__ $$aBiotechnology$$c2019$$dQ1
000130771 593__ $$aPharmaceutical Science$$c2019$$dQ1
000130771 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1
000130771 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130771 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, Víctor$$uUniversidad de Zaragoza
000130771 700__ $$0(orcid)0000-0002-6277-7996$$aLarrea, Ane
000130771 700__ $$0(orcid)0000-0003-0602-492X$$aMarquina, Clara$$uUniversidad de Zaragoza
000130771 700__ $$aBlanco-Prieto, María J.
000130771 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000130771 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000130771 773__ $$g145 (2019), 65-75$$pEur. j. pharm. biopharm.$$tEuropean Journal of Pharmaceutics and Biopharmaceutics$$x0939-6411
000130771 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074152330&doi=10.1016%2fj.ejpb.2019.10.004&partnerID=40&md5=c504a53a35f7a99873058a73ef2adfff$$zTexto completo de la revista
000130771 8564_ $$s2323059$$uhttps://zaguan.unizar.es/record/130771/files/texto_completo.pdf$$yPostprint
000130771 8564_ $$s1790594$$uhttps://zaguan.unizar.es/record/130771/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130771 909CO $$ooai:zaguan.unizar.es:130771$$particulos$$pdriver
000130771 951__ $$a2024-01-31-19:19:26
000130771 980__ $$aARTICLE