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Abstract

Numerical approximations to the solution of a linear singularly per-
turbed parabolic reaction-diffusion problem with incompatible bound-
ary-initial data are generated. The method involves combining the
computational solution of a classical finite difference operator on a
tensor product of two piecewise-uniform Shishkin meshes with an an-
alytical function that captures the local nature of the incompatibility.
A proof is given to show almost first order parameter-uniform conver-
gence of these numerical/analytical approximations. Numerical results
are given to illustrate the theoretical error bounds.

Keywords: Singularly perturbed problems, Incompatible boundary-initial
data, Shishkin mesh

1 Introduction

We examine singularly perturbed parabolic problems in one space dimen-
sion, with an incompatibility between the initial condition and a boundary
condition. These problems arise in mathematical models in fluid dynam-
ics [9] and, in particular, models for flow in porous media [3]. The solu-
tions of these problems typically exhibit boundary layers, initial layers and
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initial-boundary layers. In this paper we are interested in constructing a
parameter-uniform numerical algorithm [2] for this class of singularly per-
turbed problems.

Within the literature on singularly perturbed problems, there are two
common approaches to designing a parameter-uniform method: fitted oper-
ator (see e.g. [16]) or fitted mesh methods [2]. Numerical methods generate
finite dimensional approximations UN (where N is the number of mesh ele-
ments used in each coordinate direction) to the continuous solution u at the
selected nodal points within the continuous domain Q̄. A global approxi-
mation ŪN can also be created, using a user chosen choice of interpolating
basis functions. In this paper, we shall simply employ bilinear basis func-
tions. Parameter-uniform numerical methods [2] satisfy a theoretical error
bound of the form:

∥u− ŪN∥Q̄ ≤ CN−p, p > 0;

where ∥ · ∥Q̄ is the L∞ norm on the closed domain Q̄, C is a generic con-
stant, which depends on the problem data but is independent of N and
the singular perturbation ε. We emphasize that this error bound estimates
the pointwise error at all points in the domain Q̄ of the continuous solu-
tion. Parameter-uniform convergence at the nodes is a necessary, but not a
sufficient, condition for parameter-uniform global convergence. If a numeri-
cal method is parameter-uniform at the nodes, then the distribution of the
mesh points and the selected form of interpolation will determine whether
the method is globally parameter-uniform or not.

For some classes of singularly perturbed problems with boundary layers,
fitted operator methods on a uniform mesh exist which satisfy a parameter-
uniform error bound at the nodes, but these fitted operator methods are not
globally parameter-uniformly convergent [2], when some form of polynomial
interpolation is employed. Moreover, a nodally parameter-uniform fitted
operator method cannot be constructed for a class of singularly perturbed
heat equations, if one only uses a uniform mesh [2, 14]. However, parameter-
uniform numerical methods, using an appropriate Shishkin mesh have been
designed for a wide class of singularly perturbed problems [12].

To establish pointwise parameter uniform error bounds on numerical
approximations to the solutions of singularly perturbed parabolic problems,
most publications assume second level compatibility conditions and sufficient
regularity of the data so that the solution is in C4+γ(Q̄) 1 in the closed

1As in [8], we define the space C0+γ(D), where D ⊂ R2 is an open set, as the set of all
functions that are Hölder continuous of degree γ ∈ (0, 1) with respect to the metric ∥ · ∥,
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domain Q̄. Interested readers are referred, for example, to [19]. In the case
of singularly perturbed parabolic problems in one space dimension and using
appropriate fitted meshes, these compatibility constraints can be relaxed to
zero order, without an adverse effect on the rate of uniform convergence [18].
Hence, parameter-uniform numerical methods exist when the boundary and
initial data are simply assumed to be continuous.

However, there are difficulties with constructing a fitted mesh method
for parabolic problems with an incompatibility between the initial and a
boundary condition; or for a problem with a discontinuity in a boundary or
the initial condition [10, 11]. Hemker and Shishkin [11] constructed a fitted
operator method on a uniform mesh, which is nodally parameter-uniform
for a singularly perturbed heat equation with a discontinuity in the initial
condition; but the method is not globally parameter-uniform, using bilinear
interpolation. An extension of this fitted operator method to a fitted oper-
ator method on a fitted piecewise-uniform mesh was constructed in [5], but
this again failed to be parameter-uniform globally, using bilinear interpola-
tion. The interpolation failed to produce an accurate global approximation
in a neighbourhood of the point, where the initial condition and a boundary
condition were incompatible.

Another approach to dealing with a problem having discontinuous data
is to replace the problem with a regularized problem with continuous data
[6], but these approximations are only accurate approximations to u outside
a neighbourhood of the point (0, 0). In other words, this approach will not
generate parameter-uniform global approximations to the original problem
with an incompatibility between the boundary and initial data.

In this paper, we examine an alternative approach to dealing with this
problem class, which uses an idea examined numerically in [4] in the non-
singularly perturbed case (set ε = 1). Given a differential operator L, the
solution u of the continuous problem

Lu = f, in Q, u = g, on Q̄ \Q =: ∂Q, where g /∈ C0(∂Q);

where for all pi = (xi, ti),∈ R2, i = 1, 2; ∥p1 − p2∥2 = (x1 − x2)
2 + |t1 − t2|. For f to be

in C0+γ(D) the following semi-norm needs to be finite

⌈f⌉0+γ,D = sup
p1 ̸=p2, p1,p2∈D

|f(p1)− f(p2)|
∥p1 − p2∥γ

.

The space Cn+γ(D) is defined by

Cn+γ(D) =

{
z :

∂i+jz

∂xi∂tj
∈ C0+γ(D), 0 ≤ i+ 2j ≤ n

}
,

and ∥ · ∥n+γ , ⌈·⌉n+γ are the associated norms and semi-norms.
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is written as the sum of two components u = s+ y. The function s matches
the incompatibility in the solution u and the other term y satisfies the sin-
gularly perturbed problem

Ly = f − Ls, in Q, y = g − s, on Q̄ \Q, where g − s ∈ C0(∂Q).

In this paper, we design a parameter-uniform numerical method for this
secondary problem, which generates a global approximation Ȳ to y. In this
way, we can generate parameter-uniform numerical approximations s + Ȳ
to the solution u of a singularly perturbed problem with an incompatibility
between the initial condition and a boundary condition. Note that here we
restrict the discussion to problems in one space dimension. Extensions of
the method to two space dimensions are not obvious [1] and require further
investigation.

In the numerical analysis section of the paper, we are required to estab-
lish a convergence result for the numerical approximations to a boundary-
initial layer component (wIB), which has a classical weak singularity at the
point (x, t) = (0, 0). This component is not in C2+γ on the closed domain
and so a further decomposition of wIB is considered. The a priori pointwise
bounds on the derivatives of these components of wIB can be viewed as the
main result of this paper. The now standard stability and consistency ar-
gument for piecewise-uniform Shishkin meshes is modified here in order to
deal with the lack of regularity in this particular component wIB. Further
details for the more standard aspects of the proof are available in [7].

The rest of the paper is structured as follows. In the next section, we
define the problem class to be examined, we decompose the continuous so-
lution into various components and we derive parameter-explicit bounds on
the derivatives of each of these components. In Section 3, we construct the
numerical method and we establish a parameter-uniform bound on the error.
In Section 4, we present the results of some numerical experiments with a
representative test problem. For the sake of completeness, we write out the
compatibility conditions of levels zero, one and two in the first appendix.
In a second appendix, we present some properties of fundamental solutions
of a singularly perturbed heat equation. Finally, in the last appendix, we
collect some technical details used in the proof of Theorem 3.
Notation. Throughout the paper, C denotes a generic constant that is in-
dependent of the singular perturbation parameter ε and of all discretization
parameters. The L∞ norm on the domain D shall be denoted by ∥ · ∥D and
the subscript is omitted if the domain is Q̄.
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2 Continuous problem

Consider the singularly perturbed parabolic problem: Find u : Q̄ → R with
Q := (0, 1)× (0, T ], such that

Lu := ε(ut − uxx) + b(x, t)u = f(x, t), (x, t) ∈ Q; (1a)

u(0, t) = gL(t), u(1, t) = gR(t) t ≥ 0, u(x, 0) = ϕ(x), 0 < x < 1; (1b)

ϕ(0+) ̸= gL(0), ϕ(1−) = gR(0), (1c)

bx(0, 0) = 0 and b(x, t) > β > 0, (x, t) ∈ Q; (1d)

f, b ∈ C4+γ(Q̄), gL, gR ∈ C2[0, T ], ϕ ∈ C4(0, 1). (1e)

Observe that the solution of this problem is discontinuous at the corner
(0, 0) of the domain Q̄. We define the related constant coefficient differential
operator

L0z := ε(zt − zxx) + b(0, 0)z, (2)

so that (by (1d))

|(L− L0)z(x, t)| ≤ C(x2 + t)|z(x, t)|.

It is important to point out that the coefficient b(x, t) can depend on both
the space and time variables. In the special case where this coefficient only
depends on time, then the singularity associated with the incompatibility at
(0, 0) can be found analytically. However, our final theoretical error bound
in Theorem 4 requires bx(0, 0) = 0. This restriction on the data appears
to be an artifact of our method of proof, as in our numerical experiments
there is no obvious difference in the performance of the method when this
restriction is ignored.

We also assume the compatibility conditions at the point (1, 0)

ε(g′R(0)− ϕxx(1
−)) + b(1, 0)gR(0) = f(1, 0); (3)

ε(g′′R(0)− ϕxxxx(1
−)) + b(1, 0)(g′R(0) + ϕxx(1

−))

+ bt(1, 0)gR(0) + 2bx(1, 0)ϕx(1
−) + bxx(1, 0)ϕ(1

−) =
(
ft + fxx

)
(1, 0); (4)

Here we simply assume these additional compatibility conditions in order
to concentrate on the issues near (0, 0), associated with the lack of corre-
sponding compatibility conditions being assumed at (0, 0). Thus, in this
section, the solution u is decomposed into a sum of terms, some associ-
ated with the layers in the solution and some terms (denoted below by
A0z0(x, t)+A1z1(x, t)+A2z2(x, t)) associated with the lack of compatibility
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being assumed at (0, 0); while, if we did not assume (3) and (4), then addi-
tional terms of the form AR

1 z1(1 − x, t) + AR
2 z2(1 − x, t) would be included

in the expansion of the continuous solution; and the influence of these addi-
tional terms on the numerical analysis, could be tracked in the exact same
way as the terms A1z1(x, t) + A2z2(x, t) are handled in the error analysis
below. Hence, it is solely for the sake of clarity of exposition in this section
of the paper, that we assume the compatibility conditions (3) and (4). In
other words, the numerical method presented below will satisfy the same
error bound, established in Theorem 4, even when the data does not satisfy
the constraints (3) and (4).

Decompose the solution of (1) into the sum

u = A0e
− b(0,0)t

ε erfc

(
x

2
√
t

)
+ y, A0 := gL(0)− ϕ(0+), (5)

where erfc(z) is the complementary error function

erfc(z) :=
2√
π

∫ ∞

s=z
e−s2 ds.

Note that the function

z0(x, t) := e−
b(0,0)t

ε erfc

(
x

2
√
t

)
is the first of a family of functions defined as the solutions of the constant
coefficient homogeneous quarter plane problems, where for all n = 0, 1, 2, . . .

L0zn = 0, x, t > 0, zn(0, t) = tne−
b(0,0)t

ε , t > 0, zn(x, 0) = 0, x > 0. (6)

In Appendix A.2, we explicitly write out several derivatives of these functions
and we discuss the regularity of these functions.

In this section, we establish a priori bounds on the derivatives of the
continuous function y := u−A0z0, which satisfies the problem

Ly = f(x, t)−A0(L− L0)z0(x, t), in Q; (7a)

y(0, t) = gL(t)−A0e
− b(0,0)t

ε , y(1, t) = gR(t)−A0z0(1, t), t ≥ 0; (7b)

y(x, 0) = ϕ(x), 0 < x < 1. (7c)

We introduce extended domains, where various subcomponents of the solu-
tion y will be defined: For arbitrary positive constants p, q, r,

Q̄∗ := [−p, 1+ q]× [−r, T ]; Q̄∗
S := [0, 1]× [−r, T ]; Q̄∗

B := [−p, 1+ q]× [0, T ].
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To avoid excessive notation, we shall denote smooth extensions of any func-
tion g to some larger domain by g∗ (such that g∗|Q̄ ≡ g), even though these
extensions will be taken over different domains. A discussion of this tech-
nical technique of extending the problem definition to a larger domain Q∗

may be found, for example, in [16, Chapter 12] or [17].
The solution of (7) can be decomposed into a sum of a regular component

v and several layer components w (with a subscript to identify the location
of the layer) defined as follows:

y = v + wL + wR + wI + wIB; (8a)

where the regular component v satisfies the problem

L∗v∗ = f∗, in Q∗, v∗ = v∗, on ∂Q∗ (8b)

and L∗v∗(x, y) ≡ Lv(x, y), ∀(x, y) ∈ Q. The boundary/initial values for
the regular component are determined from the reduced solution v0 and a
correction v1. We write v∗ = v∗0 + εv∗1, where the reduced solution v0 and
the correction v1 are defined via

v∗0 =
(f
b

)∗
, in Q∗; (8c)

L∗v∗1 = (v0)
∗
xx − (v0)

∗
t , in Q∗, v∗1 = 0, on ∂Q∗. (8d)

The boundary layer components wL, wR satisfy the homogeneous problems

L∗w∗
R = L∗w∗

L = 0, in Q∗
S ; (8e)

w∗
L(0, t) = (y − v∗)∗(0, t), w∗

L(x,−r) = 0, w∗
L(1, t) = 0, on ∂Q∗

S ; (8f)

w∗
R(0, t) = 0, w∗

R(x,−r) = 0, w∗
R(1, t) = (y − v∗)∗(1, t), on ∂Q∗

S . (8g)

The initial layer function wI satisfies the problem

L∗w∗
I = 0 in Q∗

B; (8h)

w∗
I (−p, t) = 0, w∗

I (x, 0) = (y − v∗)∗(x, 0), w∗
I (1 + q, t) = 0, on ∂Q∗

B. (8i)

Having defined the problems over the extended domains, to avoid compati-
bility issues, the components v, wL, wR, wI are all in C4+γ(Q̄).

Finally, the initial-boundary layer component wIB satisfies the problem

LwIB = −A0(L− L0)z0(x, t), (x, t) ∈ Q; (8j)

wIB(0, t) = −w∗
I (0, t), wIB(1, t) = −w∗

I (1, t), t ≥ 0; (8k)

wIB(x, 0) = −w∗
L(x, 0)− w∗

R(x, 0), 0 < x < 1. (8l)

The regularity of this key component wIB is discussed below in Theorem 3.
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Theorem 1. For all 0 ≤ i+ 2j ≤ 4, we have the following bounds. For the
regular component v ∈ C4+γ(Q̄),∥∥∥∥ ∂i+jv

∂xi∂tj

∥∥∥∥ ≤ C
(
1 + ε1−(i/2+j)

)
; (9a)

and, for all points (x, t) ∈ Q, the boundary layer components wL, wR ∈
C4+γ(Q̄) satisfy

|wL(x, t)| ≤ Ce
−
√

β
ε
x
; |wR(x, t)| ≤ Ce

−
√

β
ε
(1−x)

; (9b)∣∣∣∣ ∂i+j

∂xi∂tj
wL(x, t)

∣∣∣∣ ≤ Cε−(i/2+j)e
−
√

β
ε
x
, (9c)∣∣∣∣ ∂i+j

∂xi∂tj
wR(x, t)

∣∣∣∣ ≤ Cε−(i/2+j)e
−
√

β
ε
(1−x)

. (9d)

In addition, for 1 ≤ j ≤ 2, the time derivatives satisfy

max

{∥∥∥∥∂jwL

∂tj

∥∥∥∥ ,∥∥∥∥∂jwR

∂tj

∥∥∥∥} ≤ Cε1−j . (9e)

Proof. To deduce the bounds (9a), use the stretched variables ζ = x/
√
ε, η =

t/ε to transform problem (8d) to a classical problem, apply the a priori
bounds [13, Theorem 5.2, p. 320] on the derivatives of the solution and
then transform back to the original variables (x, t). A maximum principle,
the assumption b(x, t) > β and the argument from [15, Theorem 4] yield
the bounds on the boundary layer components wL, wR (9b)-(9d). See [7] for
further details on completing the proof for (9e).

Theorem 2. For the initial layer component wI ∈ C4+γ(Q̄) and

|wI(x, t)| ≤ Ce−
βt
ε , (x, t) ∈ Q; (10a)∣∣∣∣ ∂i+j

∂xi∂tj
wI(x, t)

∣∣∣∣ ≤ Cε−i/2ε−je−
βt
ε , 0 ≤ i+ 2j ≤ 4; (10b)∣∣∣∣ ∂i

∂xi
wI(x, t)

∣∣∣∣ ≤ C(1 + ε1−i/2)e−
βt
ε , i = 1, 2, 3, 4. (10c)

Proof. The argument follows the same lines as the proof of the previous
theorem. See [7] for details.
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We consider now the initial-boundary layer component wIB defined in (8j)-
(8l). As y is continuous and the components v, wL, wR, wI are smooth, zero-
order compatibility conditions (for wIB) are satisfied. We further decompose
the initial-boundary layer term via

wIB(x, t) = A1z1(x, t) + wC(x, t),

where the constant A1 is specified in (36) and the function z1 is defined in
(6). Note that z1 ̸∈ C2+γ(Q̄) and, moreover, y ̸∈ C2+γ(Q̄).

Theorem 3. The initial-boundary layer component wC ∈ C2+γ(Q̄). For all
(x, t) ∈ Q̄

|wC(x, t)| ≤ Ce−
βt
ε ; (11a)

and∣∣∣∣∂2wC

∂x2
(x, t)

∣∣∣∣+ ∣∣∣∣∂wC

∂t
(x, t)

∣∣∣∣ ≤ C + Cε−1

(
e
−
√

β
ε
x
+ e

−
√

β
ε
(1−x)

+ e−
βt
ε

)
(11b)∣∣∣∣∂4wC

∂x4
(x, t)

∣∣∣∣+ ∣∣∣∣∂2wC

∂t2
(x, t)

∣∣∣∣ ≤ Cε−1 + Cε−2

(
e
−
√

β
ε
x
+ e

−
√

β
ε
(1−x)

+ e−
βt
ε

)
(11c)

Proof. From Appendix A.3, the initial-boundary layer component wC can
be written in the form

wC(x, t) = (A2z2 +A0Ψ+RC)(x, t),

where the function z2 is defined in (6) and the other terms A2,Ψ(x, t) are
defined in (35), (34) and (37) in Appendix A.3. From this construction

RC = wC −A2z2 −A0Ψ = wIB −A1z1 −A2z2 −A0Ψ

= (u−A0z0 −A1z1 −A2z2 −A0Ψ)− (v + wL + wR + wI)

= y2 − (v + wL + wR + wI).

In Appendix A.3, it is established that y2 ∈ C4+γ(Q̄), which implies that
RC ∈ C4+γ(Q̄).

The remainder RC(x, t) satisfies the problem

LRC = Ly2 − f

RC(x, 0) = −(w∗
L + w∗

R)(x, 0), 0 < x < 1,

RC(0, t) = −
(
w∗
I +A1z1 +A2z2 +A0Ψ

)
(0, t), t > 0,

RC(1, t) = −
(
w∗
I +A1z1 +A2z2 +A0Ψ

)
(1, t), t > 0.
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Although the functions z2,Ψ ̸∈ C4+γ(Q̄), we still have the necessary bounds
on the higher derivatives of these functions. See Appendices A.2 and A.3
for details. It remains to bound the derivatives of RC .

Using the bounds in (38) we have that∣∣∣ ∂i+j

∂xi∂tj
(LRC(x, t))

∣∣∣ ≤ Cε−je−
βt
ε , 0 ≤ i+ 2j ≤ 2;

and, from the previous two theorems and the fact that RC ∈ C4+γ(Q̄), we
deduce that∣∣∣∣ ∂j

∂tj
RC(0, t)

∣∣∣∣+ ∣∣∣∣ ∂j

∂tj
RC(1, t)

∣∣∣∣ ≤ Cε−je−
βt
ε ; 0 ≤ j ≤ 2;∣∣∣∣ ∂i

∂xi
RC(x, 0)

∣∣∣∣ ≤ Cε−i/2

(
e
−
√

β
ε
x
+ e

−
√

β
ε
(1−x)

)
; 0 ≤ i ≤ 4.

From the maximum principle we then have that

|RC(x, t)| ≤ Ce−
βt
ε .

Using the stretched variables x/
√
ε, t/ε and the argument from the proofs

of the previous theorems, we can deduce that∣∣∣ ∂i+j

∂xi∂tj
RC(x, t)

∣∣∣ ≤ Cε−je−
βt
ε , 0 ≤ i+ 2j ≤ 4.

This completes the proof.

3 Numerical Method

To accurately capture the layers in both space and time, we use a tensor
product of two piecewise-uniform Shishkin meshes [2] Q̄N,M := ωN

x × ωM
t .

The space Shishkin mesh ωN
x := {xi}Ni=0 is fitted to the two boundary layers

by splitting the space domain as follows:

[0, σ] ∪ [σ, 1− σ] ∪ [1− σ, 1]. (12a)

The N space mesh points are distributed in the ratio N/4 : N/2 : N/4 across
these three subintervals. The transition point σ (in space) is taken to be

σ := min

{
0.25, 2

√
ε

β
lnN

}
. (12b)
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The Shishkin mesh ωM
t := {tj}Mj=0 splits the time domain into two subinter-

vals [0, τ ]∪ [τ, 1] and the mesh points in time are distributed equally between
these two subintervals. The transition point τ (in time) is taken to be

τ := min

{
0.5,

ε

β
lnM

}
. (12c)

We confine our attention to the case where σ < 0.25 and τ < 0.5. For the
other case, where σ = 0.25 or τ = 0.5, a classical argument can be applied.
We denote by QN,M := Q̄N,M ∩Q and ∂QN,M := Q̄N,M \QN,M .

We use a classical finite difference operator on this mesh to produce the
following discrete problem: Find Y such that

LN,MY (xi, tj) =
(
f −A0(b− b(0, 0))z0

)
(xi, tj), (xi, tj) ∈ QN,M , (13a)

Y (xi, tj) = y(xi, tj), (xi, tj) ∈ ∂QN,M , (13b)

where LN,MY (xi, tj) := (εD−
t − εδ2x + b(xi, tj)I)Y (xi, tj). (13c)

The finite difference operators are defined by

D+
x Y (xi, tj) := D−

x Y (xi+1, tj), D−
x Y (xi, tj) :=

Y (xi, tj)− Y (xi−1, tj)

hi
,

D−
t Y (xi, tj) :=

Y (xi, tj)− Y (xi, tj−1)

kj
, δ2xY (xi, tj) :=

(D+
x −D−

x )Y (xi, tj)

ℏi
,

and the mesh steps are hi := xi − xi−1, ℏi = (hi+1 + hi)/2, kj := tj − tj−1.
We prove below in Theorem 4 that the scheme (13) is uniformly conver-

gent using a truncation error argument. It is well known that the scheme (13)
satisfies a discrete maximum principle and it is used to derive error estimates
from appropriate truncation error estimates. We recall that the discrete
maximum principle establishes that if Z is a grid function that satisfies

LN,MZ ≥ 0 on QN,M and Z ≥ 0 on ∂QN,M , then Z ≥ 0 on Q̄N,M .

We now describe how the truncation error estimates are deduced. Away
from the transition points, the mesh is uniform and a classical truncation
error argument yields the bound∣∣LN,M (Y − y)(xi, tj)

∣∣ ≤ Ch2i ε∥yxxxx∥+ Ckjε∥ytt∥, xi ̸= σ, 1− σ.

In addition, the discrete solution can be decomposed along the same lines
as the continuous solution. That is,

Y = V +WL +WR +WIB +WI ,
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where these discrete functions are defined by

LN,MV = Lv(xi, tj), LN,MWL,R,IB,I(xi, tj) = LwL,R,IB,I(xi, tj)

and on the boundary

V (xi, tj) = v(xi, tj), WL,R,IB,I(xi, tj) = wL,R,IB,I(xi, tj), (xi, tj) ∈ ∂QN,M .

Theorem 4. Let Y be the solution of the finite difference scheme (13) and
y the solution of the problem (7). Then, the following nodal error estimates
are satisfied

∥y − Y ∥Q̄N,M ≤ C
(
N−2(max{ln2N, lnM}) +M−1 ln2M

)
. (14)

Proof. From the estimates (9a), the truncation error for the regular compo-
nent is bounded by:∣∣LN,M (V − v)(xi, tj)

∣∣ ≤ Ch2i ε∥vxxxx∥+ Ckjε∥vtt∥
≤ C(N−1 lnN)2 + CM−1 lnM, xi ̸= σ, 1− σ; (15a)∣∣LN,M (V − v)(xi, tj)
∣∣ ≤ C

√
εN−1 lnN + CM−1 lnM, xi = σ, 1− σ. (15b)

By employing a suitable barrier function, described in [15, pp. 183-184],
we can deduce from the estimates (15) and the discrete maximum principle
that

∥v − V ∥Q̄N,M ≤ C(N−1 lnN)2 + CM−1 lnM. (16)

Using the exponential bounds on the derivatives of the boundary layer com-
ponents wL and wR given in Theorem 1 and the definition of the space
Shishkin mesh ωN

x , we bound its truncation errors (see [15, Theorem 6] for
details) as follows:∣∣LN,M (WL − wL)(xi, tj)

∣∣ ≤ C(N−1 lnN)2 + CM−1 lnM, (17a)∣∣LN,M (WR − wR)(xi, tj)
∣∣ ≤ C(N−1 lnN)2 + CM−1 lnM, (17b)

for all (xi, tj) ∈ QN,M . The discrete maximum principle yields the bound

∥WL − wL∥Q̄N,M ≤ C(N−1 lnN)2 + CM−1 lnM, (18a)

∥WR − wR∥Q̄N,M ≤ C(N−1 lnN)2 + CM−1 lnM. (18b)

In the case of the initial layer function, note that

e−b(0,0)kj/ε ≤
(
1 +

b(0, 0)kj
ε

)−1

12



and, using a discrete barrier function B(tj), we deduce that

|WI(xi, tj)| ≤
j∏

m=1

(
1 +

βkm
ε

)−1

=: B(tj),

as
εD−

t B(tj) + b(xi, tj)B(tj) = (b(xi, tj)− β)B(tj) ≥ 0.

This barrier function B(tj) and the estimates (10) are used to deduce bounds
for truncation error associated with the component wI . First, outside the
initial layer, where tj ≥ τ, we have

|WI(xi, tj)− wI(xi, tj)| ≤ |WI(xi, tj)|+ |wI(xi, tj)| ≤ CM−1, (19)

and within the initial layer, where tj < τ ,∣∣LN,M (WI − wI)(xi, tj)
∣∣

≤ C(N−1 lnN)2 + CM−1 lnM, xi ̸= σ, 1− σ, (20a)∣∣LN,M (WI − wI)(xi, tj)
∣∣

≤ C
√
εN−1 lnN + CM−1 lnM, xi = σ, 1− σ. (20b)

As in the case of the continuous initial-boundary layer component wIB,
we introduce the secondary decomposition

WIB = WC +A1Z1,

where the components WC , Z1 are defined as the solutions of

LN,M
0 WC := (εD−

t − εδ2x + b(0, 0))WC = 0, on QN,M , WC = wC on ∂QN,M ;

LN,M
0 Z1 = 0, on QN,M , Z1 = z1 on ∂QN,M .

Note that, using a discrete maximum principle,

|WC(xi, tj)| ≤ C

j∏
m=1

(
1 +

βkm
ε

)−1

, |Z1(xi, tj)| ≤ Cε

j∏
m=1

(
1 +

βkm
ε

)−1

.

The error WIB − wIB is decomposed into the sum

WIB − wIB = WC − wC +A1(Z1 − z1), ε|A1| ≤ C.

13



From the earlier exponential bounds on each of the four individual terms
WC , wC , Z1, z1 we establish that for tj ≥ τ

|(WIB − wIB)(xi, tj)| ≤ |WC(xi, tj)|+ |wC(xi, tj)|
+A1(|Z1(xi, tj)|+ |z1(xi, tj)|)
≤ CM−1. (21)

Within the initial layer, from Theorem 3, we have that for tj < τ ,∣∣LN,M (WC − wC)(xi, tj)
∣∣

≤ C(N−1 lnN)2 + CM−1 lnM, xi /∈ [σ, 1− σ], (22a)∣∣LN,M (WC − wC)(xi, tj)
∣∣≤ C

√
ε(N−1 lnN) + C

H√
ε
e
−β(σ+H)√

ε + CM−1 lnM

≤ C
√
ε(N−1 lnN) + C(N−1 lnN)2 + CM−1 lnM, xi = σ, 1− σ, (22b)∣∣LN,M (WC − wC)(xi, tj)

∣∣
≤ C(N−1 lnN)2 + C

H2

ε
e
−β(σ+H)√

ε + CM−1 lnM

≤ C(N−1 lnN)2 + CM−1 lnM, xi ∈ (σ, 1− σ), (22c)

where H is the mesh width in the coarse region, i.e., H = 2(1 − 2σ)/N =
O(N−1).

Collecting the truncation error bounds (20) and (22) we have for tj < τ∣∣LN,M
[
(WI +WC)− (wI + wC)

]
(xi, tj)

∣∣
≤ C(N−1 lnN)2 + CM−1 lnM, xi ̸= σ, 1− σ,∣∣LN,M

[
(WI +WC)− (wI + wC)

]
(xi, tj)

∣∣
≤ C

√
ε(N−1 lnN) + CM−1 lnM, xi = σ, 1− σ,

and |[(WI +WC)− (wI +wC)](xi, τ)| ≤ CM−1. Hence, the truncation error
is first order only along the spatial transition lines xi = σ, 1 − σ. By em-
ploying again a suitable barrier function, described in [15], we can deduce
for (xi, tj) ∈ [0, 1]× [0, τ ]∣∣∣[(WI + wC)− (wI + wC)

]
(xi, τ)

∣∣∣ ≤ C(N−1 lnN)2 + CM−1 lnM. (23)

We employ a different argument to bound the error

Ej
i := A1(Z1 − z1)(xi, tj), for 1 ≤ j ≤ M/2.

14



From Appendix A.2, ε|A1| ≤ C and below we bound the truncation error

Ti,j := |(LN,M
0 − L0)A1z1(xi, tj)|

using the bounds on the derivatives of z1 given in Appendix A.2. The
truncation error at the first time level t = t1 is thus bounded as follows

Ti,1 ≤ C

∥∥∥∥∂2z1
∂x2

∥∥∥∥
X1

i

+ C

∥∥∥∥∂z1∂t

∥∥∥∥
T 1
i

≤ C

where Xj
i := [xi−1, xi+1] × {tj}, T j

i := {xi} × [tj−1, tj ]. For the other time
levels 2 ≤ j ≤ M/2, we have for xi ∈ (0, σ) ∪ (1− σ, 1)

Ti,j ≤ C

(
h2
∥∥∥∥∂4z1
∂x4

∥∥∥∥
Xj

i

+ k

∥∥∥∥∂2z1
∂t2

∥∥∥∥
T j
i

)
≤ C

(
h2
(
1 +

ε

tj

)
+

k

tj−1

)
and for xi ∈ [σ, 1− σ]

Ti,j ≤ C

(∥∥∥∥∂2z1
∂x2

∥∥∥∥
Xj

i

+ k

∥∥∥∥∂2z1
∂t2

∥∥∥∥
T j
i

)
≤ C

(
z0(xi−1, tj) +

k

tj−1

)
.

As in [18, p. 916] and also using (x− 2t
√

b(0, 0)/ε)2 ≥ 0, we have

erfc(z) ≤ e−z2

z +
√

z2 + 4/π
≤ Ce−z2 , z ≥ 0, e−

x2

4t ≤ e
b(0,0)t

ε e−
√

b(0,0)
ε

x;

which yield, for all xi ≥ σ,

z0(xi−1, tj) ≤ Ce−
√

b(0,0)
ε

xi−1 ≤ Ce

√
b(0,0)

ε
he−

√
b(0,0)

ε
σ ≤ CN−2.

Thus, for xi ∈ [σ, 1− σ], we have the truncation error bound

Ti,j ≤ C

(
k

tj−1
+N−2

)
.

We again follow the argument in [18] and note that at each time level,
t = tj , 1 ≤ j ≤ M/2,

−εδ2xE
j
i +

(
b(xi, tj) +

ε

k

)
Ej

i = Ti,j +
ε

k
Ej−1

i .
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From this we can deduce that

|Ej
i | ≤ C

k

ε

(
Ti,1 +

j∑
n=2

Ti,n

)

≤ CM−1(lnM) + C
k

ε
MN−2 + C

(
k

ε
+ h2

)∫ M/2

s=1

ds

s

≤ C(M−1 lnM +N−2) lnM. (24)

The error estimates (16), (18), (19), (21), (23) and (24) prove the nodal
error bound (14) and the result follows.

One can extend the nodal error estimate (14) to a global error estimate
by applying the argument in [2, pp. 56-57]. Note that, in general, we
use a bound on the second space and time derivative (of each component)
to establish this global error bound. However, in the case of the terms
wIB, wC , z1, we use the alternative interpolation bound over each rectangle
Qi,j := (xi, xi+1)× (tj , tj+1) of the form

∥(z − z̄)(x, t)∥Qi,j ≤ C(tj+1 − tj)∥zt∥Qi,j + C(xi+1 − xi)
2∥zxx∥Qi,j .

Moreover, in the case of the term involving z1, note that

A1|(z1)t(x, t)| ≤
C

ε
e−βt/ε.

Corollary 1. Let Y be the solution of the finite difference scheme (13) and
y the solution of the problem (7). Then, the following global error estimates
are satisfied

∥y − Ȳ ∥ ≤ C
(
N−2(max{ln2N, lnM}) +M−1 ln2M

)
, (25)

where Ȳ denotes the bilinear interpolant of the discrete function Y from the
the values of the grid Q̄N,M to the domain Q̄.

Note that it is the presence of the fitted mesh (in both space and time)
that yields global parameter-uniform convergence.

4 Numerical results

Consider the following sample problem from the problem class (1):

b(x, t) = 1 + x2 + t, f(x, t) = e−x, (26a)

ϕ(x) = 1− x, gL(t) = 0, gR(t) = −t2, (26b)
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and the domain is Q = (0, 1) × (0, 1]. Observe that 1 = φ(0+) �= gL(0) = 0
and the compatibility conditions (3) and (4) are not satisfied at x = 1, t = 0.
This problem is a minor variant of a problem considered on the half line
x > 0 in [9, 2] to illustrate the interaction of initial and boundary layers.

The component y, which is defined in (7), is the solution of the problem

Ly = e−x + (b(x, t)− b(0, 0))z0(x, t) (x, t) ∈ Q, (27a)

y(0, t) = z0(0, t), y(1, t) = −t2 + z0(1, t), t ≥ 0, (27b)

y(x, 0) = 1− x, 0 < x < 1, (27c)

where we recall that z0(x, t) = e−b(0,0)t/ε erfc
(
0.5x/

√
t
)
and y ∈ C0(∂Q).

Nevertheless, the component y for this example does not satisfy the first-
order compatibility condition (29c) at the corner (0, 0).

The exact solution of problem (27) is unknown. In Figure 1 the computed
approximation U (generated from the finite difference scheme (13)) to the
solution u of Example (26) is displayed. The solution surface reveals that u
has initial and boundary layers. In all the figures of this section we consider
the values of ε = 2−12 and N = M = 64.

1

-0.8

-0.6

-0.4

-0.2

0

0

0.2

C
om

pu
te

d 
so

lu
tio

n 0.4

0.6

0.8

0.2

Time Variable

0.50.4

Space variable

0.6 0.8 01

(a) Entire domain Q̄

0
1.5

0.2

0.4

0.6

Zo
om

 o
f t

he
 c

om
pu

te
d 

so
lu

tio
n

1 0.15

0.8

Time Variable

10-3

1

0.1

Space variable

0.5
0.05

0 0

(b) A zoom in on the corner (0, 0)

Figure 1: Example (26): The numerical approximation to the solution u
with ε = 2−12 and N = M = 64

The orders of convergence of the finite difference scheme (13) are esti-
mated using the two-mesh principle [2]. We denote by Y N,M and Y 2N,2M

the computed solutions with (13) on the Shishkin meshes QN,M and Q2N,2M ,
respectively. These solutions are used to compute the maximum two-mesh

17



global differences

DN,M
ε := ∥Ȳ N,M − Ȳ 2N,2M∥QN,M∪Q2N,2M

where Ȳ N,M and Ȳ 2N,2M denote the bilinear interpolation of the discrete
solutions Y N,M and Y 2N,2M on the mesh QN,M ∪Q2N,2M . Then, the orders
of global convergence PN,M

ε are estimated in a standard way [2]

PN,M
ε := log2

(
DN,M

ε

D2N,2M
ε

)
.

The uniform two-mesh global differences DN,M and their corresponding uni-
form orders of global convergence PN,M are calculated by

DN,M := max
ε∈S

DN,M
ε , PN,M := log2

(
DN,M

D2N,2M

)
,

where S = {20, 2−1, . . . , 2−30}. The maximum two-mesh global differences
DN,M

ε and the orders of global convergence PN,M
ε associated with the prob-

lem (27) are displayed in Table 1. The uniform two-mesh global differences
DN,M and their orders of convergence PN,M are given in the last row of this
table. These numerical results are in line with the error estimate (25) show-
ing that the method is an almost first-order uniformly global convergent
scheme.

Finally, we give some information about the distribution of the errors.
In Figure 2 we display the approximate errors |(Y 64,64 − Ȳ 1024,1024)(xi, tj)|
with (xi, tj) ∈ Q̄64,64; and it is observed that the largest errors occur within
the layers and, within the initial layer, the maximum errors occur at the
earlier times.
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A Appendices

A.1 Compatibility conditions

In this appendix, we explicitly write down the compatibility conditions (see
e.g. [8, 13]) of zero, first and second order associated with a singularly
perturbed parabolic problem in one space dimension. Consider the following
problem: Find s(x, t) such that

Ls = ε(st − sxx) + b(x, t)s = g(x, t), (x, t) ∈ Q, (28a)

s(0, t) = gL(t), s(1, t) = gR(t) t ≥ 0, s(x, 0) = ϕ(x), 0 < x < 1. (28b)
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Below we place certain regularity and compatibility restrictions on the data
in order that the solution s ∈ Cn+γ(Q), n = 2, 4.

Level zero-order compatibility conditions corresponds to:

ϕ(0+) = gL(0) and ϕ(1−) = gR(0). (29a)

Assuming (29a), we can write

s(x, t) = Φ(x, t) + z(x, t), (x, t) ∈ Q where

Φ(x, t) := ϕ(x) + (1− x)(gL(t)− gL(0)) + x
(
gR(t)− gR(0)

)
;

Lz = g − LΦ; and z(x, t) = 0, (x, t) ∈ ∂Q. Note that

LΦ = ε
(
(1− x)g′L(t) + xg′R(t)− ϕ′′(x)

)
+ b(x, t)Φ.

From [13], if b, g, LΦ ∈ C0+γ(Q̄) and the first-order compatibility conditions

ε(g′R(0)− ϕ′′(1−)) + b(1, 0)ϕ(1−) = g(1, 0) (29b)

ε(g′L(0)− ϕ′′(0+)) + b(0, 0)ϕ(0+) = g(0, 0) (29c)

are satisfied, then s ∈ C2+γ(Q̄). If b, g, LΦ ∈ C2+γ(Q̄) and we further
assume second-order compatibility conditions such that

(g − LΦ)t(0, 0
+) + (g − LΦ)xx(0

+, 0) = 0; (29d)

(g − LΦ)t(1, 0
+) + (g − LΦ)xx(1

−, 0) = 0; (29e)

then the solution of (28) s ∈ C4+γ(Q̄). Note that the constraint (29d)
corresponds to

(gt + gxx)(0, 0) = εg′′L(0) + b(0, 0)g′L(0) + bt(0, 0)gL(0)− εϕiv(0+)

+ 2bx(0, 0)ϕ
′(0+) + bxx(0, 0)ϕ(0

+) + b(0, 0)ϕ′′(0+).

A.2 Regularity of the function zn from (6)

Consider the solutions zn(x, t), n ≥ 0 of the following problems:

∂zn
∂t

− ∂2zn
∂x2

+
b(0, 0)

ε
zn = 0, x > 0, t > 0

zn(x, 0) = 0, x ≥ 0; zn(0, t) = tne−
b(0,0)t

ε , t > 0.

Note that

z0(x, t) = erfc

(
x

2
√
t

)
e−

b(0,0)t
ε ; ε

∣∣∣∣∂z0∂t
(x, t)

∣∣∣∣ ≤ C
1

t
(ε+ t)e−

βt
ε ;
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and

zn = n

∫ t

s=0
zn−1(x, s)e

− b(0,0)(t−s)
ε ds; (zn)t+

b(0, 0)

ε
zn = nzn−1, n ≥ 1. (30)

Observe that zn = vne
−b(0,0)t/ε and the functions {vn}4n=0 are explicitly

given in [4, (5), p.538] and we also note that (vn)xx = (vn)t = nvn−1. From
a maximum principle, we have the following bounds:

|zn(x, t)| ≤ tne−
b(0,0)t

ε ≤ Cεne−
βt
ε ; n = 0, 1, 2. (31)

Let us list some of the derivatives of the fundamental function z0(x, t)

∂z0
∂x

=
−1√
πt

e−
x2

4t e−
b(0,0)t

ε = O

(
1√
t

)
∂2z0
∂x2

=
∂z0
∂t

+
b(0, 0)

ε
z0 =

x

2t
√
πt

e−
x2

4t e−
b(0,0)t

ε = O

(
1

t

)
∂3z0
∂x3

=
1

2t
√
πt

(
1− x2

2t

)
e−

x2

4t e−
b(0,0)t

ε = O

(
1

t
√
t

)
∂4z0
∂x4

=
∂2z0
∂t2

+ 2
b(0, 0)

ε

∂z0
∂t

+

(
b(0, 0)

ε

)2

z0

=
−x

4t2
√
πt

(
3− x2

2t

)
e−

x2

4t e−
b(0,0)t

ε = O

(
1

t2

)
∂z0
∂t

= O

(
1

ε

)
z0 +O

(
1

t

)
,

∂2z0
∂t2

= O

(
1

ε2

)
z0 +O

(
1

εt

)
+O

(
1

t2

)
.

Observe that the function

h(x, t) :=

(
x√
t

)p

e−
x2

4t , t > 0, h(x, 0) := 0, 0 ≤ x ≤ 1, p ≥ 0;

is bounded, but not continuous on Q̄. From this and the explicit expressions
for the derivatives of z0 given above, we deduce 2 that

Si,j(x, t) := xitjz0 ∈ Cn−1+γ(Q̄), n = i+ 2j ≥ 1.

When i+2j = 4, the second derivative in time of these functions Si,j are all
bounded on Q̄, but are not continuous. Moreover, for i+ 2j ≥ 4, we have∣∣∣ ∂n+m

∂xn∂tm
Si,j(x, t)

∣∣∣ ≤ Cε−me−
βt
ε , 0 ≤ n+ 2m ≤ 4; (32)

2For example,

t2
∂2z0
∂x2

∈ C0+γ(Q̄) and x4 ∂z0
∂t

∈ C0+γ(Q̄).
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and for all integers m,n ≥ 1

L0(t
nz0) = εntn−1z0;

L0(t
nxmz0) = ε(xmntn−1z0 −m(m− 1)xm−2tnz0 − 2mxm−1tn(z0)x).

Using the recurrence relation (30) and the above properties of z0 we have
that ∣∣∣∣∂2z1

∂x2
(x, t)

∣∣∣∣+ ∣∣∣∣∂z1∂t
(x, t)

∣∣∣∣ ≤ Ce−
βt
ε ; (33a)∣∣∣∣∂3z1

∂x3
(x, t)

∣∣∣∣ ≤ C
1√
t
e−

x2

4t e−
b(0,0)t

ε ; (33b)∣∣∣∣∂4z1
∂x4

(x, t)

∣∣∣∣+ ε

∣∣∣∣∂2z1
∂t2

(x, t)

∣∣∣∣ ≤ C
1

t
(ε+ t)e−

βt
ε ; (33c)∣∣∣∣∂4z2

∂x4
(x, t)

∣∣∣∣+ ∣∣∣∣∂2z2
∂t2

(x, t)

∣∣∣∣ ≤ Ce−
βt
ε . (33d)

Note also that∣∣∣∣∂2z0
∂t2

(x, t)

∣∣∣∣ ≤ C

(ε+ t)2
e−

b(0,0)t
ε ;

∣∣∣∣∂2z1
∂t2

(x, t)

∣∣∣∣ ≤ C

t
e−

b(0,0)t
ε ;∣∣∣∣∂2z2

∂t2
(x, t)

∣∣∣∣ ≤ Ce−
b(0,0)t

ε .

A.3 Regularity of the function y2 from Theorem 3

Recall that the solution u of problem (1) is discontinuous at the point (0, 0)
and by subtracting the discontinuous function A0z0, we see that y = u−A0z0
satisfies zero order compatibility at the point (0, 0). Hence the solution
y of problem (7) is a continuous function. By subtracted off appropriate
multiples An of zn (see (30)) from u we can satisfy up to the nth order
compatibility conditions at the point (0, 0). Since L0zn = 0, one can check
that

L(u−A0z0), L(u−A0z0 −A1z1) ∈ C0+γ(Q̄)

and this implies that (u − A0z0) ∈ C2+γ(Q̄). Thus y ∈ C0(Q̄) and (y −
A1z1) ∈ C2+γ(Q̄), but (y − A1z1 − A2z2) ̸∈ C4+γ(Q̄). We now define the
following two functions

y1 := y −A1z1 and y2 := y1 −A2z2 −A0Ψ;
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where

Ψ(x, t) := bt(0, 0)χ0,1 +
bxx(0, 0)

2
χ2,0 + bxt(0, 0)χ1,1 +

bxxx(0, 0)

6
χ3,0; (34)

L0Ψ =

(
bt(0, 0)t+

bxx(0, 0)

2
x2 + bxt(0, 0)xt+

bxxx(0, 0)

6
x3
)
z0,

and the set of functions, {χi,j} are defined to be

L0χi,j = xitjz0(x, t); i, j = 0, 1, 2...

The first few functions in the set {χi,j} are explicitly given as

εχ1,0 = xtz0 + t2(z0)x and |χ1,0(0, t)| ≤ C
√
te−

βt
ε ; (35a)

εχ0,1 =
t2z0
2

and |χ0,1(0, t)| ≤ Cte−
βt
ε ; (35b)

εχ2,0 = (x2t+ t2)z0 + 2xt2(z0)x + (4/3)t3(z0)xx, (35c)

and εχ2,0(0, t) = t2e−
b(0,0)t

ε ;

εχ1,1 =
3xt2z0 + 2t3(z0)x

6
and |χ1,1(0, t)| ≤ Ct

√
te−

βt
ε , (35d)

εχ3,0 = (x3t+ 3xt2)z0 + (4t3 + 3x2t2)(z0)x + 4xt3(z0)xx + 2t4(z0)xxx,

and |χ3,0(0, t)| ≤ Ct
√
te−

βt
ε .

We shall see below that the additional term A0Ψ has been included so
that y2 ∈ C4+γ(Q̄). The amplitude A0 has been specified in (5). Below we
specify the amplitudes A1 and A2. Observe that the function y1 satisfies

Ly1 = f − (b(x, t)− b(0, 0))
(
A1z1 +A0z0

)
;

y1(0, t) = gL(t)− (A0z0 +A1z1)(0, t); y1(1, t) = gR(t)− (A0z0 +A1z1)(1, t);

y1(x, 0) = ϕ(x).

From (29c) in the first Appendix, first order compatibility is satisfied (for
y1) if A1 is such that

f(0, 0) = ε(g′L(0)−A1 − ϕ′′(0+)) + b(0, 0)(A0 + ϕ(0+)). (36)

In general, A1 = O(ε−1). Since Ly1 ∈ C0+γ(Q̄), then y1 ∈ C2+γ(Q̄).
Next we move onto the regularity of y2. Note first that, since bx(0, 0) = 0,

(L−L0)zn =

(
bt(0, 0)t+

bxx(0, 0)

2
x2 + bxt(0, 0)xt+

bxxx(0, 0)

6
x3
)
zn+H.O.T.
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(H.O.T. stands for high order terms). Hence,

Ly2 = Ly1 − (L− L0)(A2z2 +A0Ψ)−A0L0Ψ

= f − (L− L0)
(
A1z1 +A0z0

)
−A0L0Ψ− (b(x, t)− b(0, 0))(A2z2 +A0Ψ)

= f +O(t2 + x4 + x2t)A0z0 − (L− L0)
(
A1z1

)
− (b(x, t)− b(0, 0))(A2z2 +A0Ψ)

= f +O(t2 + x4 + x2t)A0z0 +O(t+ x2)A2z2 +O(t+ x2)A1z1

+
A0

ε
O(t+ x2)

(
O(x2t+ t2)z0 +O(xt2 + t3)(z0)x +O(t3)(z0)xx +O(t4)(z0)xxx

)
and the boundary and initial conditions are

y2(0, t) = gL(t)−
(
A0z0 +A1z1 +A2z2 +A0Ψ

)
(0, t)

= gL(t)−
(
A0 +A1t+A2t

2
)
e−

b(0,0)t
ε −A0

t2

2ε
bt(0, 0)e

− b(0,0)t
ε

−A0
t2

2ε

(
bxx(0, 0)

(
z0 +

4t

3

∂2z0
∂x2

)
+

2bxt(0, 0)t

3

∂z0
∂x

+
2bxxx(0, 0)

3

(
2t
∂z0
∂x

+ t2
∂3z0
∂x3

))
(0, t);

y2(1, t) = y(1, t)−
(
A1z1 +A2z2 +A0Ψ

)
(1, t); y2(x, 0) = ϕ(x).

Note that limt→0+ y2(0, t) = gL(0)−A0 and

lim
t→0+

∂y2(0, t)

∂t
= g′L(0)−A1 +A0

b(0, 0)

ε
=

f(0, 0)− b(0, 0)ϕ(0+) + εϕ′′(0+)

ε
,

lim
t→0+

∂2y2(0, t)

∂t2
= g′′L(0) + 2ε−1A1b(0, 0)− 2A2 − 2ε−1A0(bt(0, 0) + bxx(0, 0))

−A0

(
b(0, 0)

ε

)2

.

First order compatibility is satisfied (for y2) if A1 is such that (36) is satisfied
and the above construction has been designed in order that Ly2 ∈ C2+γ(Q̄).
Finally second order compatibility is satisfied (for y2) if A2 is such that

ε(g′′L(0)− ϕiv(0+)) + (A1 + g′L(0))b(0, 0)− 2εA2 − 2A0(bt + bxx)(0, 0)

+ bt(0, 0)(gL(0)−A0) + bxx(0, 0)ϕ(0
+) + b(0, 0)ϕ′′(0+)

=
(
ft + fxx

)
(0, 0). (37)

Note that A0 = O(1), A1 = O(ε−1) and A2 = O(ε−2). By this construction
we have that y2 ∈ C4+γ(Q̄). Moreover,∣∣∣ ∂i+j

∂xi∂tj
(Ly2(x, t))

∣∣∣ ≤ Cε−je−
βt
ε , 0 ≤ i+ 2j ≤ 2. (38)
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