000130779 001__ 130779
000130779 005__ 20240131210811.0
000130779 0247_ $$2doi$$a10.2166/hydro.2020.002
000130779 0248_ $$2sideral$$a120633
000130779 037__ $$aART-2020-120633
000130779 041__ $$aeng
000130779 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000130779 245__ $$aA 1D shallow-flow model for two-layer flows based on FORCE scheme with wet-dry treatment
000130779 260__ $$c2020
000130779 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130779 5203_ $$aThe two-layer problem is defined as the coexistence of two immiscible fluids, separated by an interface surface. Under the shallow-flow hypothesis, 1D models are based on a four equations system accounting for the mass and momentum conservation in each fluid layer. Mathematically, the system of conservation laws modelling 1D two-layer flows has the important drawback of loss of hyperbolicity, causing that numerical schemes based on the eigenvalues of the Jacobian become unstable. In this work, well-balanced FORCE scheme is proposed for 1D two-layer shallow flows. The FORCE scheme combines the first-order Lax-Friedrichs flux and the second-order Lax-Wendroff flux. The scheme is supplemented with a hydrostatic reconstruction procedure in order to ensure the well-balanced behaviour of the model for steady flows even under wet-dry conditions. Additionally, a method to obtain high-accuracy numerical solutions for two-layer steady flows including friction dissipation is proposed to design reference benchmark tests for model validation. The enhanced FORCE scheme is faced to lake-at-rest benchmarking tests and steady flow cases including friction, demonstrating its well-balanced character. Furthermore, the numerical results obtained for highly unsteady two-layer dambreaks are used to analyse the robustness and accuracy of the model under a wide range of flow conditions.
000130779 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000130779 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130779 590__ $$a2.376$$b2020
000130779 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b68 / 111 = 0.613$$c2020$$dQ3$$eT2
000130779 591__ $$aWATER RESOURCES$$b59 / 97 = 0.608$$c2020$$dQ3$$eT2
000130779 591__ $$aENVIRONMENTAL SCIENCES$$b182 / 273 = 0.667$$c2020$$dQ3$$eT3
000130779 591__ $$aENGINEERING, CIVIL$$b72 / 136 = 0.529$$c2020$$dQ3$$eT2
000130779 592__ $$a0.654$$b2020
000130779 593__ $$aAtmospheric Science$$c2020$$dQ2
000130779 593__ $$aWater Science and Technology$$c2020$$dQ2
000130779 593__ $$aGeotechnical Engineering and Engineering Geology$$c2020$$dQ2
000130779 593__ $$aCivil and Structural Engineering$$c2020$$dQ2
000130779 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130779 700__ $$aRamos-Pérez, A.
000130779 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000130779 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130779 773__ $$g22, 5 (2020), 1015-1037$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000130779 8564_ $$s2339090$$uhttps://zaguan.unizar.es/record/130779/files/texto_completo.pdf$$yPostprint
000130779 8564_ $$s1373470$$uhttps://zaguan.unizar.es/record/130779/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130779 909CO $$ooai:zaguan.unizar.es:130779$$particulos$$pdriver
000130779 951__ $$a2024-01-31-19:20:15
000130779 980__ $$aARTICLE