000130785 001__ 130785
000130785 005__ 20240202150202.0
000130785 0247_ $$2doi$$a10.1515/fca-2020-0033
000130785 0248_ $$2sideral$$a118940
000130785 037__ $$aART-2020-118940
000130785 041__ $$aeng
000130785 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, L$$uUniversidad de Zaragoza
000130785 245__ $$aFractional-order susceptible-infected model: definition and applications to the study of covid-19 main protease
000130785 260__ $$c2020
000130785 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130785 5203_ $$aWe propose a model for the transmission of perturbations across the amino acids of a protein represented as an interaction network. The dynamics consists of a Susceptible-Infected (SI) model based on the Caputo fractional-order derivative. We find an upper bound to the analytical solution of this model which represents the worse-case scenario on the propagation of perturbations across a protein residue network. This upper bound is expressed in terms of Mittag-Leffler functions of the adjacency matrix of the network of inter-amino acids interactions. We then apply this model to the analysis of the propagation of perturbations produced by inhibitors of the main protease of SARS CoV-2. We find that the perturbations produced by strong inhibitors of the protease are propagated far away from the binding site, confirming the long-range nature of intra-protein communication. On the contrary, the weakest inhibitors only transmit their perturbations across a close environment around the binding site. These findings may help to the design of drug candidates against this new coronavirus.
000130785 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26-17R$$9info:eu-repo/grantAgreement/ES/MCYTS-MTM2016-77710-P
000130785 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130785 590__ $$a3.126$$b2020
000130785 591__ $$aMATHEMATICS$$b10 / 330 = 0.03$$c2020$$dQ1$$eT1
000130785 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b27 / 108 = 0.25$$c2020$$dQ1$$eT1
000130785 592__ $$a1.397$$b2020
000130785 591__ $$aMATHEMATICS, APPLIED$$b22 / 265 = 0.083$$c2020$$dQ1$$eT1
000130785 593__ $$aApplied Mathematics$$c2020$$dQ1
000130785 593__ $$aAnalysis$$c2020$$dQ1
000130785 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130785 700__ $$aEstrada-Rodriguez, G
000130785 700__ $$0(orcid)0000-0002-3066-7418$$aEstrada, E
000130785 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000130785 773__ $$g23, 3 (2020), 635-655$$pFract. Calc. Appl. Anal.$$tFractional Calculus and Applied Analysis$$x1311-0454
000130785 8564_ $$s272390$$uhttps://zaguan.unizar.es/record/130785/files/texto_completo.pdf$$yPostprint
000130785 8564_ $$s1393853$$uhttps://zaguan.unizar.es/record/130785/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130785 909CO $$ooai:zaguan.unizar.es:130785$$particulos$$pdriver
000130785 951__ $$a2024-02-02-14:58:04
000130785 980__ $$aARTICLE