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Abstract

We propose a model for the transmission of perturbations across the
amino acids of a protein represented as an interaction network. The dy-
namics consists of a Susceptible-Infected (SI) model based on the Caputo
fractional-order derivative. We find an upper bound to the analytical solu-
tion of this model which represents the worse-case scenario on the propaga-
tion of perturbations across a protein residue network. This upper bound is
expressed in terms of Mittag-Leffler functions of the adjacency matrix of the
network of inter-amino acids interactions. We then apply this model to the
analysis of the propagation of perturbations produced by inhibitors of the
main protease of SARS CoV-2. We find that the perturbations produced
by strong inhibitors of the protease are propagated far away from the bind-
ing site, confirming the long-range nature of intra-protein communication.
On the contrary, the weakest inhibitors only transmit their perturbations
across a close environment around the binding site. These findings may
help to the design of drug candidates against this new coronavirus.
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1. Introduction

The presence of a networked structure is one of the fundamental char-
acteristics of complex systems in general [11, 21]. It could be argued that
the main function of such networks is that of allowing the communication
between the entities that form its structure. In the case of proteins, the
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non-covalent interactions between residues in their three-dimensional struc-
tures form inter-residue networks [11, 20]. These networks facilitate that
information about one site is transmitted to and influences the behavior of
another. This phenomenon–the transmission of any perturbation in protein
structure and function from one site to another–is known as allostery, which
represents an essential feature of protein regulation and function [10, 22].
Allostery permits that two residues geometrically distant can interact with
each other. As observed experimentally by Ottemann et al. [32] a confor-
mational change of 1Å in a residue can be transmitted to another 100Å
apart. As stated long time ago, such allosteric effects can occur even when
the average protein structure remains unaltered [7]. An important kind
of allosteric effect is the transmission of the changes produced by a lig-
and interacting with a protein. Such transmission occurs from the residues
proximal to the binding site to other residues distant from it. Such kind
of allosteric interaction is very important for understanding the effects of
drugs on their receptors, which directly impacts the drug design process
[24].

It has been stressed by Berry [6] that there are striking similarities be-
tween organization schemes at different observation scales in complex sys-
tems, such as allosteric-enzyme networks, cell population and virus spread-
ing. Recently, Miotto et al. [29] exploited these similarities between epi-
demic spreading and a diffusive process on a protein residue network to
prove the capability of propagating information in complex 3D protein
structures. Their analogy proved useful in estimating important protein
properties ranging from thermal stability to the identification of functional
sites [29]. In the current work, we go a step further in the exploitation of the
analogy between epidemiological models and communication processes in
proteins by considering the inclusion of long-range transmission effects. For
this purpose, we develop here a new fractional-order Susceptible-Infected
(SI) model for the transmission of perturbations through the amino acids of
a protein residue network. Such perturbations are produced, for instance,
by the interactions of the given protein with inhibitors, such as drugs or
drug candidates. We obtain an upper bound to the exact soluction of this
fractional-order SI model which is expressed in terms of the Mittag-Leffler
matrix functions, and which generalizes the upper bound found by Lee et
al. [23] to the non-fractional (classical) SI model.

Due to its current relevance, we apply the present approach to the
study of the long-range inter-residue communication in the main protease
of the new coronavirus named SARS-CoV-2 [37, 36]. This new coronavirus
has produced an outbreak of pulmonary disease expanding from the city
of Wuhan, Hubei province of China to the rest of the World in about
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3 months [40]. One of the most important targets for the development of
drugs against SARS-CoV-2 is its main protease, Mpro, whose 3-dimensional
structure has been recently resolved and deposited [39] in the Protein Data
Bank (PDB) [1]. It is a key enzyme for proteolytic processing of polypro-
teins in the virus and some chemicals have been found to bind this protein,
representing potential specific drug candidates against CoV-2 [39]. Here we
find that important communication between amino acids in CoV-2 Mpro oc-
curs from the proximities of the binding site to very distant amino acids
in other domains of the protein. These effects produced by the interaction
with inhibitors are transmistted up to 50Å away from the binding site, con-
firming the long-range nature of intra-protein communication. According
to our results, it seems that stronger inhibitors transmit such perturba-
tions to longer inter-residue distances. Therefore, the current findings are
important for the understanding of the mechanisms of drug action on CoV-
2 Mpro, which may help to the design of drug candidates against this new
coronavirus.

2. Antecedents and motivations

2.1. Protein residue networks. The protein residue networks (PRN)
(see ref. [11], Chapter 14 for details) are simple, undirected and connected
graphs G = (V,E), therefore their adjacency matrices are symmetric matri-
ces of order n×n and have eigenvalues λ1 > λ2 ≥ · · · ≥ λn. As the matrices
are traceless, the spectral radius λ1 > 0. Here vi ∈ V, i = 1, . . . , n are the
nodes corresponding to the amino acids of a protein and two nodes vi and vj
are connected by an edge {vi, vj} ∈ E if the corresponding residues (amino
acids) interacts physically in the protein. They are built here by using the
information reported on the Protein Data Bank [1] for the protease of CoV-
2 as well as its complexes with three inhibitors (see further). The nodes of
the network represent the α-carbon of the amino acids. Then, we consider
cutoff radius rC , which represents an upper limit for the separation be-
tween two residues in contact. The distance rij between two residues i and
j is measured by taking the distance between Cα atoms of both residues.
Then, when the inter-residue distance is equal or less than rC both residues
are considered to be interacting and they are connected in the PRN. The
adjacency matrix A of the PRN is then built with elements defined by

Aij =

{
H (rC − rij) i �= j,

0 i = j,
(2.1)

where H (x) is the Heaviside function which takes the value of one if x > 0
or zero otherwise. Here we use the typical interaction distance between
two amino acids, which is equal to 7.0 Å. We have tested distances below
and over this threshold obtaining, in general, networks which are either too
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sparse or too dense, respectively. In this work we consider the structures
of the free SARS CoV-2 main protease with PDB code 6Y2E as well as the
ones of the SARS CoV-2 with inhibitors 6M0K [8], 6YZE [8] and 6Y2G
[39]. For details of preprocessing the reader is directed to [12].

2.2. Standard SI model. Here we state the main motivation of using a
Susceptible-Infected (SI) model for studying the effects of inhibitor binding
to a protein residue network in a similar way as an SIS has been used by
Miotto et al. [29]. The selection of an SI model can be understood by
the fact that we are interested in the early times of the dynamics. At this
stage, it has been shown [23] that the SI model is most suitable than any
other model. To motivate the SI model in the PRN context let us consider
that an amino acid is in the binding site of a protein. Then, this amino
acid is susceptible to be perturbed by the interaction with this inhibitor.
Consequently, this residue can be in one of two states, either waiting to be
perturbed (susceptible) or being perturbed by the interaction. Of course,
this amino acid can transmit this perturbation to any other amino acid in
the protein to which it interacts with. Then, if β is the rate at which such
perturbation is transmitted between amino acids, and if si (t) and xi (t) are
the probabilities that the residue i is susceptible or get perturbed at time
t, respectively, we can write the dynamics

dsi (t)

dt
= −βsi (t)xi (t) , (2.2)

dxi (t)

dt
= βsi (t) xi (t) . (2.3)

Because the amino acids can only be in the states “susceptible” or
“perturbed” we have that si (t) + xi (t) = 1, such that we can write

dxi (t)

dt
= β (1− xi (t)) xi (t) . (2.4)

When we consider all the interactions between pairs of residues in the
PRN we should transform the previous equation into a system of equations
of the following form [28]:

dxi (t)

dt
= β (1− xi (t))

∑
j∈N

Aijxj (t) , t ≥ t0, (2.5)

where Aij are the entries of the adjacency matrix of the PRN for the pair of
amino acids i and j, and N = {1, . . . , n}. In matrix-vector form becomes:

dx (t)

dt
= β [In − diag (x (t))]Ax (t) , (2.6)
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with initial condition x (0) = x0. The evolution of dynamical systems based
on the adjacency matrix of a network have been analyzed by Mugnolo [31].
It is well-known that [23]:

(1) if x0 ∈ [0, 1]n then x(t) ∈ [0, 1]n for all t > 0;
(2) x(t) is monotonically non-decreasing in t;
(3) there are two equilibrium points: x� = 0, i.e. no epidemic, and

x� = 1, i.e. full contagion;
(4) the linearization of the model around the point 0 is given by

dx (t)

dt
= βAx (t) , (2.7)

and the solution diverges when t → ∞, due to the fact that the
spectral radius of A is positive;

(5) each trajectory with x0 �= 0 converges asymptotically to x� = 1, i.e.
the epidemic spreads monotonically to the entire network.

The SI model can be rewritten as

1

1− xi(t)

dxi (t)

dt
= β

∑
j∈N

Aij

(
1− e−(− log(1−xj(t)))

)
, (2.8)

which is equivalent to

dyi (t)

dt
= β

∑
j∈N

Aijf (yj (t)) , (2.9)

where

yi (t) := g (xi (t)) = − log (1− xi (t)) ∈ [0,∞] , (2.10)

and f (y) := 1− e−y = g−1 (y).
Lee et al. [23] have considered the following linearized version of the

previous nonlinear equation

dŷ (t)

dt
= βAdiag (1− x (t0)) ŷ (t) + βb (x (t0)) , (2.11)

where x̂ (t) = f (ŷ (t)) in which x̂ (t) is the approximate solution to the SI
model, ŷ (t0) = g (x (t0)) and

b (x) := x+ (1− x) log (1− x) . (2.12)

They have found that the solution to this linearized model is [23]:

ŷ (t) = eβ(t−t0)Adiag(1−x(t0))g (x (t0))

+
∞∑
k=0

(β (t− t0))
k+1

(k + 1)!
[Adiag (1− x (t0))]

k Ab (x (t0)) .
(2.13)
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When t0 = 0, xi (0) = c/n, i = 1, 2, . . . , n for some positive c, the previous
equation is transformed to

ŷ (t) = (1/γ − 1) eγβtA�1− (1/γ − 1 + log (γ))�1, (2.14)

where γ = 1 − c/n and �1 is the all-ones vector. Note that the condition
xi (0) = c/n indicates that at initial time every amino acid has the same
probability of being perturbed by the inhibitor. Lee et al. [23] have proved
that this solution is an upper bound to the exact solution of the SI model.
This result indicates that the upper bound to the solution of the SI model
is proportional to the exponential of the adjacency matrix of the network,
which is the source of the subgraph centrality [14] and of the communica-
bility function [13] between pairs of nodes in it. In the next section of this
work we obtain a generalization of this upper bound based on a fractional-
order SI model, which will also be formulated there.

3. Mathematical results

3.1. Definition of the fractional-order SI model. In the following we
will consider a fractional SI model based on the Caputo fractional derivative
of the logarithmic function of 1− xi. Here, xi also denotes the probability
that the residue i get perturbed at time t.

First of all, we recall the definition of Caputo fractional derivative.
Given 0 < α < 1 and a function u : [0,∞) → R, we denote by Dα

t u the
Caputo fractional derivative of u of order α, which is given by [25]

Dα
t u (t) =

∫ t

0
h1−α (t− τ)u′ (τ) dτ :=

(
h1−α ∗ u′) (t) , t > 0,

where ∗ denotes the classical convolution product on (0,∞) and hγ (t) :=
tγ−1

Γ(γ) , for γ > 0. Observe that the previous fractional derivative has sense

whenever the function is derivable and the convolution is defined (for ex-
ample if u′ is locally integrable). The notation hγ is very useful in the
fractional calculus theory, mainly by the property hγ ∗ hδ = hγ+δ for all
γ, δ > 0.

Before presenting our model, we state a technical lemma which plays a
key role in the main result of this section.

Lemma 3.1. Let u : [0,∞) → R be a derivable function with u (0) = 0,
and 0 < α < 1. If Dα

t u (t) ≥ 0 for all t > 0, then u (t) ≥ 0.

P r o o f. Observe that by hypothesis (h1−α ∗ u′) (t) ≥ 0, therefore

u (t) =

∫ t

0
u′ (τ) dτ =

(
h1 ∗ u′

)
(t) =

(
hα ∗ h1−α ∗ u′) (t) ≥ 0.
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�

Now, we recall that β will denote the perturbation rate and let si (t)
and xi (t) be the probabilities that residue i is susceptible or get perturbed
at time t, respectively. Let 0 < α < 1, we consider the following fractional
model inspired by (2.2) and (2.3):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

0
h1−α (t− τ)

s′i (τ)
xi (τ)

dτ = −βαsi (t) ,

∫ t

0
h1−α (t− τ)

x′i (τ)
si (τ)

dτ = βαxi (t) .

Since si (t) + xi (t) = 1, we have∫ t

0
h1−α (t− τ)

x′i (τ)
1− xi (τ)

dτ = βαxi (t) . (3.1)

Observe that the left-hand side of the above system is the Caputo fractional
derivative of the minus logarithmic function of 1−xi (see for instance [30]),
that is,

Dα
t (− log(1− xi))(t).

As in the classical SI model happens, this equation is transformed into a
system of equations when we consider the interactions between the different
residues in the protein according to the PRN. So, the fractional SI model
which we will study is given by∫ t

0
h1−α (t− τ)

x′i (τ)
1− xi (τ)

dτ = βα
∑
j∈N

Aijxj, i ∈ N , t > 0, xi(0) ∈ [0, 1].

(3.2)
We can rewrite (3.2) in a matrix-vector form:

Dα
t (− log(1− x))(t) = βαAx (t) , (3.3)

with initial condition x (0) = x0, where A is the adjacency matrix of the
PRN. This fractional SI model, based on the fractional-order derivative, has
not been considered in the literature under our knowledge. Other fractional
compartmental models have been previously discussed in the literature (see
for instance [4] and references therein).

Note that if xi(0) = 1, then by (3.2) we have
x′i (τ)

1− xi (τ)
≥ 0 for s close

to 0, and that case is not possible. So, we will consider that x�i = 1 is an
equilibrium point. The same happens if x�i = 0 by the equations given for
si. Furthermore, if xi(0) ∈ (0, 1), by Lemma 3.1 we have − log(1− xi(t)) ≥
− log(1−xi(0)) > 0, then xi(t) ∈ (0, 1), and therefore xi is non-decreasing.
We deduce that if x(0) ∈ [0, 1]n then x(t) ∈ [0, 1]n for all t > 0, and there
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are two equilibrium points: x� = 0, i.e. no epidemic, and x� = 1, i.e., full
contagion. Also, each trajectory with x0 �= 0 converges asymptotically to
x� = 1, i.e. the epidemic spreads monotonically to the entire network.

One of the objects of greatest importance in the fractional calculus
theory are the Mittag-Leffler functions. Let α, ν > 0, they are defined by

Eα,ν(z) =
∞∑
k=0

zk

Γ(αk + ν)
, z ∈ C. (3.4)

For more details on fractional calculus and Mittag-Leffler functions, see the
seminal works [9, 19, 26, 33, 18]. Let us note that when α = 1 this function
reduces to ez. As the exponential function, the Mittag-Leffler functions can
be considered in a matrix framework. We refer the reader to Section 3.2
for more details on the Mittag-Leffler matrix functions.

Now we consider the linearization of (3.3)

Dα
t x̃(t) = βαAx̃(t). (3.5)

It is known that the solution of (3.5) is given by

x̃(t) = Eα,1 ((βt)
αA) x0 :=

∞∑
k=0

(βt)αkAkx0
Γ (αk + 1)

, (3.6)

where x0 is the same initial condition that in the non-linearized problem.
In fact the solution diverges as t goes to infinity, that is,

lim
t→∞ x̃i (t) = lim

t→∞Eα,1 ((βt)
α λ1)ψ1i

n∑
j=1

ψ1jx0j

= lim
t→∞

∞∑
k=0

((βt)α λ1)
k

Γ (αk + 1)
ψ1i

n∑
j=1

ψ1jx0j

= ∞,

(3.7)

for all vi ∈ V in G = (V,E) , and where ψ1j is the jth entry of the eigen-
vector associated to the spectral radius λ1.

Observe that the fractional SI model (3.2) can be rewritten as

Dα
t yi (t) = βα

∑
j∈N

Aijf (yj (t)) ,

where yi(t) is defined as in (2.10).
Now we consider the Lee-Tenneti-Eun (LTE) type transformation [23],

which is also given in (2.11), which produces the following linearized equa-
tion

Dα
t ŷ (t) = βαÂŷ(t) + βαAb (x0) , (3.8)
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where Â = AΩ and Ω := diag (1− x0). Analogous to the notation used
in (2.11), x̂ (t) = f (ŷ (t)) in which x̂ (t) is an approximate solution to
the fractional SI model, ŷ is the solution of (3.8) with initial condition
ŷ (0) = g (x (0)) and b (x0) is given in (2.12).

Theorem 3.1. For any t ≥ 0, we have

x(t) 	 x̂(t) = f(ŷ(t)) 	 x̃(t),

under the same initial conditions x0 := x(0) = x̂(0) = x̃(0), where x(t) 	
x̂(t) if xi ≤ x̂i for all i = 1, 2, . . . , n. The solution ŷ of (3.8) is given by

ŷ (t) = Eα,1

(
(βt)αÂ

)
g (x0) +

∞∑
k=0

(βt)α(k+1)ÂkAb (x0)

Γ (α (k + 1) + 1)
, (3.9)

and x̃ is given by (3.6). Furthermore, ‖x̂(t)−x(t)‖ → 0 and ‖x̃(t)−x(t)‖ →
∞ as t goes to infinity.

P r o o f. First of all, by the theory of fractional calculus, it is well-
known that the solution of the linearized problem (3.8) is given by

ŷ (t) = Eα,1

(
(βt)αÂ

)
g (x0) +

∫ t

0
τα−1Eα,α

(
(βτ)αÂ

)
βαAb (x0) dτ,

(3.10)
where the functions Eα,1(·) and Eα,α(·) are defined as in (3.4). Therefore,
since ∫ t

0
ταk+α−1 dτ =

tαk+α

αk + α
,

from (3.10) we get (3.9). For more details about linear fractional models
see [2, 3, 5], and references therein. Notice that Eq. (3.9) is the generalized
fractional version of the one obtained by LTE by means of their Theorem

3.1. Their specific solution is recovered when α = 1 where E1,1

(
βtÂ

)
=

exp
(
βtÂ

)
and Γ (n+ 2) = (n+ 1)!.

We have assumed that x0 = x (0) = x̂ (0) = x̃ (0) , with y (t) = g (x (t))
and ŷ (t) = g (x̂ (t)) . Since y, ŷ are non-decreasing functions of x, x̂, it is
enough to prove that y (t) 	 ŷ (t) to get x (t) 	 x̂ (t) . Following the paper
of Lee et all, since f is a concave function with f ′ (y) = e−y, we have

Dα
t yi (t) ≤ βα

∑
j∈N

Aij (1− xj (0)) yj (t) + βα
∑
j∈N

Aijb (xj (0)) .

Then, since y (0) = ŷ (0) , Dα
t y (t) 	 Dα

t ŷ (t) , so Lemma 3.1 implies x (t) 	
x̂ (t) .
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Now, note that

Dα
t x̂i (t) = Dα

t f (ŷi (t)) =

∫ t

0
h1−α (t− s) e−ŷi(s)ŷ′i (s) ds.

Furthermore (3.9) shows that y′i (s) ≥ 0 for all s > 0, then

0 ≤ Dα
t x̂i (t) ≤

∫ t

0
h1−α (t− s) ŷ′i (s) ds = Dα

t ŷi (t) .

Also, it is well-known [9, 18, 34] (or more recently [2, 3, 5]) that the
previous Mittag-Leffler matrix functions satisfy

Eα,1

(
(βt)αÂ

)
=

(
h1−α ∗ sα−1Eα,α

(
(βs)αÂ

))
(t)

=

∫ t

0
h1−α (t− s) sα−1Eα,α

(
(βs)αÂ

)
ds (3.11)

and

Eα,1

(
(βt)αÂ

)
I = I + βαÂ

(
hα ∗Eα,1

(
(βs)αÂ

))
(t)

= I + βαÂ

∫ t

0
hα (t− s)Eα,1

(
(βs)αÂ

)
ds. (3.12)

Then, by (3.8), (3.10), (3.11) and (3.12) one gets

Dα
t ŷ (t) = βαÂEα,1

(
(βt)αÂ

)
g (x0) + βαÂ

(
h1 ∗ sα−1Eα,α

(
(βs)αÂ

))
(t)

× βαAb (x0) + βαAb (x0)

= βαÂEα,1

(
(βt)αÂ

)
g (x0) + βαÂ

(
hα ∗ h1−α ∗ sα−1

× Eα,α

(
(βs)αÂ

))
(t)βαAb (x0) + βαAb (x0)

= βαÂEα,1

(
(βt)αÂ

)
g (x0) + βαÂ

(
hα ∗ Eα,1

(
(βs)αÂ

))
(t)

× βαAb (x0) + βαAb (x0)

= βαÂEα,1

(
(βt)αÂ

)
g (x0) + Eα,1

(
(βt)αÂ

)
βαAb (x0)

= βαAEα,1

(
(βt)αÂ

)
x0,

where in the last equality we have used that Ωg (x0) + b (x0) = x0. By
definition of Mittag-Leffler matrix function, it is easy to see that

Eα,1

(
(βt)αÂ

)
x0 	 Eα,1 ((βt)

αA) x0,

since Â = AΩ with Ω = diag (1− x0) . Therefore

Dα
t x̂ (t) 	 Dα

t ŷ (t) 	 βαAEα,1 ((βt)
αA) x0 = Dα

t x̃ (t) ,
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and Lemma 3.1 implies x̂ (t) 	 x̃ (t) .
Finally, it is known that limt→∞ x̃i (t) = ∞ and limt→∞ ŷi (t) = ∞.

Since f is continuous, limt→∞ ŷi (t) = ∞, then

lim
t→∞ x̂i (t) = lim

t→∞ f (ŷi) (t) = 1.

Therefore, since limt→∞ xi (t) = 1 we conclude ‖x̂ (t) − x (t) ‖ → 0 and
‖x̃ (t)− x (t) ‖ → 0 as t→ ∞. �

Corollary 3.1. Let x0 	 1, then the solution of (3.8) can be written
as

ŷ (t) = g (x0) +
[
Eα,1

(
(βt)αÂ

)
− I

]
Ω−1x0. (3.13)

P r o o f. Let us write Eq. (3.10) in the following way

ŷ (t) = Eα,1

(
(βt)αÂ

)
g (x0) +

∫ t

0
sα−1Eα,α

(
(βs)αÂ

)
βαAΩΩ−1b (x0) ds,

(3.14)
which can be reordered as

ŷ (t) = Eα,1

(
(βt)αÂ

)
g (x0) +

[
βαÂ

∫ t

0
sα−1Eα,α

(
(βs)αÂ

)
ds

]
Ω−1b (x0) .

(3.15)
So, by (3.12) we have

ŷ (t) = Eα,1

(
(βt)αÂ

)
g (x0) +

[
Eα,1((βt)

αÂ)− I
]
Ω−1b (x0) . (3.16)

Now, it is easy to check that Ω−1b (x0) = Ω−1x0 − g (x0) . Therefore,

ŷ (t) = Eα,1

(
(βt)αÂ

)
Ω−1x0 − Ω−1x0 + g (x0) , (3.17)

which by reordering gives the final solution. �

Let us now consider xi (0) = c/n, i = 1, 2, . . . , n, where c is a positive
real, and let γ = 1− c/n. Noting that diag (1− x0) = γI, then

ŷ (t) =

(
1− γ

γ

)
Eα,1

(
tαβαÂ

)
�1−

(
1− γ

γ
+ log γ

)
�1

=

(
1− γ

γ

)
Eα,1

(
tαβαAdiag (1− x0)

)
�1−

(
1− γ

γ
+ log γ

)
�1

=

(
1− γ

γ

)
Eα,1

(
tαβαγA

)
�1−

(
1− γ

γ
+ log γ

)
�1. (3.18)

We should remark that according to the result in Theorem 3.1 the
solution to the fractional-order SI model obtained here represents an upper
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bound to the exact solution. Therefore, we will use it here as the worse-
case scenario for the analysis of perturbations in real-world PRNs. This
means that our results should be interpreted here not as an approximation
to the solution but as the most extreme situation that can happen in the
propagation of a perturbation through a protein.

3.2. Why are fractional derivatives needed to study PRNs? As
we have seen in Section 2.2 the upper bound of the SI model is linearly
proportional to eαβtA�1, where A is the adjacency matrix of the graph. That
is, the only structural information about the graph which appears in the
solution of the SI model is contained in eζA where ζ is a parameter. Here
we first explain how is this information encoded in the matrix exponential.
Let us start by writing

eζA =

∞∑
k=0

(ζA)k

k!
. (3.19)

We recall that a walk of length k in G is a set of nodes i1, i2, . . . , ik, ik+1

such that for all 1 ≤ l ≤ k, (il, il+1) ∈ E. A closed walk is a walk for which
i1 = ik+1 [11]. Then, we state the following well-known result (see [11] and
references therein).

Theorem 3.2. The number of walks of length k between the nodes u
and v of the graph G is given by

(
Ak

)
uv
.

This means that
(
eζA

)
uv

counts the number of walks of any length

between the nodes u and v of G penalizing them by (k!)−1 , where k is
the length of the walk. Obviously,

(
eζA

)
uv

penalizes too heavily relatively

long walks. For instance, while a walk of length two contributes 0.5ζ2 to(
eζA

)
uv
, a walk of length 6 contributes 0.0014ζ6. Then, if ζ < 1 the last

contribution is practically null.
It is known that the transmission of perturbations through a PRN is

characterized by two main properties:

(1) there is a wide range of time frames, ranging from 10−3 seconds
for conformational transitions to 10−12 seconds for hydrogen bond
breaking, rotational relaxation and translational diffusion [38];

(2) the existence of long-range transmission of effects, which has been
observed to take place even between amino acids separated 100
Å apart [32]. Notice that in terms of the PRN this represents
a transmission between two nodes separated by 14 edges in the
network.

The function eζA along cannot account for the previously mentioned im-
portant characteristics of protein perturbations. Once we consider a given
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network and a fixed value of ζ, the function eζA can describe only one
process in the wide time-window previously described. For instance, sup-
pose that such process is one occurring at the 10−3 seconds scale. For the
same network and conditions we cannot model another process occurring
at the 10−10 seconds scale with the same mathematical model. At the
same time this function penalizes very heavily the long-range transmission
of perturbation effects, also avoiding a complete characterization of the
physico-chemical process.

In contrast, the Mittag-Leffler matrix functions, which appear in the
solution of the fractional-order SI model, are expressed in the following way
([27, 16, 35, 15]):

Eα,ν

(
ζA

)
=

∞∑
k=0

(ζA)k

Γ (αk + ν)
, α, ν > 0. (3.20)

Then, for a fixed network topology and fixed external conditions ζ we can
still model several processes at different time-windows by changing the
Mittag-Leffler parameter α. For instance, we can consider a process oc-
curring at the micro-second scale modeled by using α = 1.0, while another
process occurring in the same network at the pico-second scale by using
α = 0.25. This is illustrated in Fig. 1(a) were we plot the time evolution
of the propagation of perturbations on a cycle of 15 nodes for ζ = 1. As
can be seen the time at which 50% of the nodes are perturbed changes
from 242 with α = 1 to 21 for α = 0.25. This simple graph, a cycle, is a
good example of some structures appearing in PRNs, named the chordless
cycles or holes. A chordless cycle, also known as induced cycle, is a cycle
which contains no edge which does not itself belongs to the cycle. Holes
are ubiquitous in proteins [20] and they may represent important binding
sites in them.

The Mittag-Leffler matrix functions also allow to describe the second
characteristic of the propagation of perturbations through proteins, i.e., the
existence of long-range interactions. While

(
eζA

)
uv

penalizes very heavily

long-range perturbations, Eα,1

(
ζA

)
allows us to modulate such effects by

changing the parameter α. For instance, let us consider a perturbation
at a given node of the cycle of 15 nodes previously considered here. This
perturbation can be transmitted across the cycle in no more than 7 steps,

i.e., the diameter of the graph. When α = 1, i.e., E1,1

(
ζA

)
= exp

(
ζA

)
,

the transmission of this perturbation to nodes at more than 5 steps from the
origin is practically null. As can be seen in Fig. 1(b) this situation changes
when we drop the value of α. When α = 0.5 we have 10% of transmission
to the farthest node relative to the transmission to the nearest neighbors.
When α = 0.25 the transmission to farthest neighbors is almost unchanged
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Figure 1. Illustration of the effects of changing the param-
eter α in the Mittag-Leffler function for the transmission of
perturbations in a cycle of 15 nodes.

in relation to that of the transmission to nearest neighbors, which may seem
exaggerated in physical conditions of proteins.

In closing, the Mittag-Leffler matrix functions, and consequently the use
of a fractional-order SI model, are important for modeling the transmission
of perturbations across PRNs because they allow to capture important
spatial and temporal characteristics of protein perturbations, which are
limited with the use of the classical SI model.

4. Computational results

Here we apply our model to the study of the Mpro of SARS CoV-2
complexed with three inhibitors: PDB codes 6M0K and 6LZE from [8] and
6Y2G from [39]. We compare the results obtained with the free protease
structure: PDB 6Y2E. All calculations are carried out on Matlab. For the
Mittag-Leffler matrix functions we use the Matlab function “ml matrix.m”
provided by Garrappa and Popolizio [16, 17]. The three inhibitors selected
for our study have been reported to display potent inhibitory capacity
against SARS CoV-2. This potency is measured through their inhibitory
concentration IC50, which is the concentration of the inhibitor needed in
vitro to inhibit the virus by 50%. For the simulations we use here β = 0.01,
c = 0.005, γ = 1 − c

n , and compare the results for α = 1
2 and when α = 1.

In Fig. 2 we illustrate the time evolution of the number of perturbed amino
acids in the complexes studied as well as in the free protease (the last curve
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Figure 2. Time evolution of the upper bounds of the nor-
mal (a) and fractional (b) SI model for the main protease
of CoV-2 bounded to three inhibitors as well as free with
β = 0.01, γ = 1− c

n , c = 0.005.

is overlapped by that of complex with 6LZE). There are two interesting
observations from these plots. First, the use of α = 1/2 produces a 10-fold
reduction of the time needed to reach the steady state of the process, i.e.,
to perturb 100% of the amino acids in the protease. The second is that
the order at which the different complexes reaches 50% of the amino acids
perturbed is: 6M0K<6LZE<6Y2G for both values of α, which is exactly
the order of potency of the inhibitors towards SARS CoV-2.

In order to gain more insights about the influence of the two different
dynamics on the propagation of a perturbation across the CoV-2 Mpro

when bounded with inhibitors we study the structural contributions from
each of the structures to the SI dynamics. In doing so we calculate the
relative differences in the individual components of the transmissibility of
this perturbation from one residue to another, Gα

ij ,

ΔGα
ij =

1

n (n− 1)

∑
i �=j

Gα
ij (bounded)−Gα

ij (free)

Gα
ij (free)

, (4.1)

where Gα
ij = [Eα,1

(
(βt)αγA

)
]ij .

We have selected the time at which 50% of the amino acids in the
protease are perturbed, which occurs at t = 6 (α = 1/2) and t = 50
(α = 1) for doing the calculations. The rest of the parameters remain the
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α = 1.0 α = 0.5
IC50(μM)

Inhibitor ΔGij (%) L̄ NBS ΔGij (%) L̄ NBS

6M0K 147.4 8.7 6 70.7 9.1 7 0.04 ± 0.002
6LZE 62.3 7.5 6 13.4 8.1 6 0.053 ± 0.005
6Y2G 57.2 7.8 6 -4.0 5.8 3 0.67± 0.18

Table 1. Average change individual transmissibility of per-
turbations between amino acids in CoV-2 Mpro bounded to
inhibitors relative to the free protease. The average path
length L̄ for paths between the top ten pairs of amino acids
according to ΔGij and the number of times a residues in one
of these paths is located in the binding site of the protease,
NBS .

same for both descriptors, i.e., β = 0.01, γ = 1 − c
n , c = 0.005. We also

selected the top ten pairs of amino acids according to their values of ΔGij.
For these pairs we have calculated the average length L̄ of the shortest
paths connecting the pair of residues. For instance, in 6M0K for α = 1.0
the largest value of ΔGij is for the pair L167-K269 for which the shortest
path has length 8. For the same complex but using α = 0.5 the largest
value of ΔGij is for the pair L167-M276 for which the shortest path has
length 10. In addition, we determine which NBS of these pairs of residues
in the top ten ranking according to ΔGij is involved directly in the binding
site of the protease or it is bounded to one of them. For instance, for the
case of the pair before mentioned for 6M0K (α = 1.0) the residue L167 is
directly bounded to two amino acids in the binding site, namely E166 and
P168.

According to the results given in Table 1 we can extract the following
conclusions. For α = 1.0, the values of ΔGij indicate that the three in-
hibitors increase the transmissibility of perturbations across the protein in
relation to the free protease. The trend in these percentages of change is
parallel to that of the inhibitory power of the inhibitors. That is, the most
potent inhibitor increases more the transmissibility of effects across the
protease than the second most powerful one, and the least powerful is the
one with the poorer increase in ΔGij . However, neither L̄ nor NBS display
a consistent pattern of change in relation to the values of IC50(μM). In
contrast, when α = 0.5 we observe some significant and physically sounded
trends for the three parameters studied. First, the most powerful inhibitor
increases by 71% the transmissibility of perturbations through the main
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protease after its binding. It is followed by the second most powerful in-
hibitor, which increases modestly the transmissibility of perturbations by
13%. However, the weakest inhibitor does not increases, but decreases, the
transmissibility of perturbations across the protein. Notice that there is
one order of magnitude between the potencies of the first two inhibitors
(6M0K and 6LZE) and the third one (6Y2G). In addition, here, the aver-
age length of the shortest paths connecting the pairs of residues with the
largest increase in the transmissibility of effects follow the same trend as
the inhibitory potency. The most potent inhibitor perturbs an average of
9 residues per perturbation path. The second most powerful inhibitor per-
turbs an average of 8 residues per shortest paths, and the weakest inhibitor
perturbs only 6. This is a physically sounded result as the most powerful
inhibitor produces a stronger effect on the protease which is “felt” by a
larger number of residues in the structure. Finally, it is also remarkable
that the number of residues in, or close to, the binding site, correlates with
the inhibitory power of the inhibitor. In this case, the most powerful one
starts 70% of the most important perturbations according to ΔGij at the
binding site, while the weakest initiates only 30% of these perturbations at
the binding site.

In terms of the geometric distance between the residues in the perturbed
protease we also observe similar characteristics as for the case of the length
of the shortest path. For instance, for α = 1 the average geometric sep-
aration of amino acids in the 10 most perturbed pairs is 33.4 Å(6M0K),
28.7 Å(6LZE) and 29.6 Å(6Y2G). Here again we observe a clear lack of
correlation with the potency of the inhibitors. However, for α = 0.5 we
have 35.8 Å(6M0K), 30.5 Å(6LZE) and 21.3 Å(6Y2G), in clear agreement
with the trend of inhibitory potency of the inhibitors.

5. Conclusions

There are two main conclusions in the current work. The first is that
we have proposed a generalized fractional-order SI model which includes
the classical SI model as a particular case. We have found an upper bound
to the exact solution of this model, which under given initial conditions de-
pends only on the Mittag-Leffler matrix function of the adjacency matrix
of the graph. The most important characteristic of this fractional-order SI
model is that it allows to account for long-range interactions between the
nodes of a network as well as for different time-windows on the transmis-
sion of perturbations on networks by tuning the fractional parameter α of
the model. Both characteristics are of great relevance in many different
applications of complex systems ranging from biological to social systems,
and in particular for the study of protein residue networks.
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The second main conclusion of this work is that the fractional-order
SI model allowed us to extract very important information about the in-
teraction of inhibitors with the main protease of the SARS CoV-2. This
structural information consists in the transmission of perturbations pro-
duced by the inhibitors at the binding site of the protease to very distant
amino acids in other domains of the protein. More importantly, our findings
suggest that the length of this transmission seems to reflect the potency of
the inhibitor. That is, the more powerful inhibitors transmit perturbations
to longer distances through the protein. On the contrary, weaker inhibitors
do not propagate such effect beyond 6 edges from the binding site as av-
erage. Consequently, these findings are important for understanding the
mechanisms of actions of such inhibitors on SARS CoV-2 Mpro and helping
in the design of more potent drug candidates against this new coronavirus.
Of course, the current approach can be extended and used for the analysis
of other inhibitors in other proteins not only using experimental data like
in here but using computational analysis of such interactions.
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