
Noname manuscript No.
(will be inserted by the editor)

Convergence analysis of a finite difference scheme
for a two-point boundary value problem with a
Riemann-Liouville-Caputo fractional derivative
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The research of José Luis Gracia was partly supported by the Institute of Mathematics and Applications
(IUMA), the project MTM2016-75139-R and the Diputación General de Aragón (E24-17R). The research
of Martin Stynes was supported in part by the National Natural Science Foundation of China under grant
NSAF-U1530401.
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1 Introduction

1.1 Types of fractional derivative

Differential equations with fractional space derivatives have been used in the litera-
ture to model various physical processes (see [4, 11, 15] and the references therein).
Two of the most widely studied fractional derivatives are the Riemann-Liouville frac-
tional derivative Dβ

RLv and the Caputo fractional derivative Dβ

Cv of order β , where
n−1 < β < n and n is a positive integer. For all sufficiently regular functions, these
derivatives are defined by (see, for example, [3]): For all x ∈ (0,L],

Dβ

RLv(x) :=
1

Γ (n−β )

(
d
dx

)n ∫ x

t=0
(x− t)n−1−β v(t)dt,

Dβ

Cv(x) :=
1

Γ (n−β )

∫ x

t=0
(x− t)n−1−β v(n)(t)dt, where v(n)(t) :=

dnv(t)
dtn . (1.1)

Recently, modellers of physical processes [1, 2, 5, 16] suggested an alternative
definition of fractional derivative for 1 < β < 2 that is intermediate to the above two
definitions. Following [10] we call this new derivative a Riemann-Liouville-Caputo
fractional derivative; it is also known as a Patie-Simon fractional derivative [1, 12, 16]
and as a conservative Caputo derivative [22].

The Riemann-Liouville-Caputo (RLC) fractional derivative Dα
RLC of order α ∈

(1,2) is defined by

Dα
RLCv(x) :=

d
dx

Dα−1
C v(x) =

d
dx

(∫ x

t=0

(x− t)1−α v′(t)
Γ (2−α)

dt
)

for x > 0,

provided this derivative exists.
If v′ is absolutely continuous on [0,L], then Dα

RLv(x) and Dα
C v(x) exist for all

x ∈ (0,L], and integrations by parts show that Dα
RLCv(x) also exists with

Dα
RLv(x) = Dα

RLCv(x)+
x−α

Γ (1−α)
v(0)

and

Dα
C v(x) = Dα

RLCv(x)− x1−α

Γ (2−α)
v′(0). (1.2)

Observe from (1.2) that if v′(0) = 0, then Dα
C v(x) = Dα

RLCv(x). Note also that the
RLC fractional derivative has Dα

RLC1 = Dα
RLCxα−1 = 0, while it is well known that

Dα
C 1 = Dα

C x = 0 and Dα
RLxα−1 = Dα

RLxα−2 = 0. These differences between the ker-
nels of the various derivatives imply that the character of the solution of a fractional
differential equation depends strongly on the choice of fractional derivative used.
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1.2 Topics of the paper

In this paper we shall consider the differential equation

−Dα
RLCu+b(x)u′+ c(x)u = f (x) for x ∈ (0,L), (1.3)

where the given functions b,c and f are smooth. The formulation of our boundary
value problem will be completed by the imposition of boundary conditions at x = 0
and x = L in addition to (1.3).

A careless choice of boundary condition at x = 0 can yield a solution that lies
in C[0,L] but not in C1[0,L]. For example, in the case b ≡ c ≡ 0 in (1.3), one wants
a boundary condition that excludes the kernel function xα−1 of Section 1.1 from the
solution. We shall show that a choice of boundary condition at x = 0 that has been ad-
vocated by several modellers yields a solution u ∈C1[0,L]; nevertheless u′′(x) blows
up as x approaches 0, so the solution is weakly singular at x = 0. A standard (clas-
sical) Robin boundary condition is imposed at x = L, where the solution is smooth.
The full description of the boundary value problem will be given in (2.3).

As well as discussing the correct formulation of the boundary value problem
for (1.3), our paper investigates the approximate solution of the boundary value prob-
lem by a finite difference method on a uniform mesh, where our discretisation of the
RLC derivative is based on (1.2) and the well-known L1 approximation of the Ca-
puto fractional derivative. A standard central difference approximation is used for the
convective term bu′ in (1.3). The weakly singular behaviour of the solution at x = 0
is taken into account in deriving truncation error estimates for the scheme. Error esti-
mates are then deduced using a discrete comparison principle with a suitable barrier
function; we prove first-order convergence (up to a logarithmic factor).

The structure of the paper is as follows. In Section 2 we discuss the choice of
boundary condition at x = 0 and the properties of the solution of the boundary value
problem. Furthermore, a maximum principle for the differential operator is estab-
lished. The finite difference scheme is presented in Section 3 and the finite differ-
ence operator is shown to satisfy a discrete maximum principle. We prove first-order
convergence (up to a logarithmic factor) of the numerical method in Section 4 by a
consistency and stability argument. Numerical results are presented in Section 5.

Notation: In this paper C denotes a generic constant that can depend on the data
of the boundary value problem but it is independent of the mesh of the numerical
method used for its approximation. Note that C can take different values in different
places. We write ∥ · ∥∞ for the norm in the Lebesgue space L∞[0,L].

2 Properties of the two-point boundary value problem

2.1 Choice of boundary condition at x = 0

Modelling with variants of the differential equation (1.3) is discussed in [1, 2, 5],
where the authors advocate the use of the boundary condition

0 = Dα−1
C u(0) := lim

x→0+
Dα−1

C u(x) (2.1)
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to avoid a troublesome singularity in the solution u at x = 0.
A related theoretical result appears when we examine a special case of (1.3)

whose solution can be determined exactly:

−Dα
RLCw+bw′ = f on (0,L), (2.2)

where b and f are constants. Using Laplace transforms (see Appendix) one can show
easily that the general solution of (2.2) is given by

w(x) =− f xα Eα−1,α+1(bxα−1)+
[
Dα−1

C w(0)
]

xα−1Eα−1,α(bxα−1)+w(0)

for 0 < x ≤ L, where Eβ ,γ(·) is the two-parameter Mittag-Leffler function defined by

Eβ ,γ(z) :=
∞

∑
k=0

zk

Γ (kβ + γ)
for β ,γ > 0 and all real numbers z.

It follows that w ∈C1[0,L] (in fact, w′ is absolutely continuous on [0,L]) if and only
if (2.1) is satisfied.

Furthermore, every function v ∈C1[0,L] satisfies (2.1), by [3, Lemma 3.11].
All this evidence leads us to impose the boundary condition (2.1) at x = 0.

Remark 2.1 The wellposedness of the problem −Dα
RLCu = f with various boundary

conditions and the regularity of its solution are considered in [10, 22]. In particular,
different types of Neumann boundary conditions are considered in [22].

2.2 The two-point boundary value problem

The discussion of Section 2.1 leads us to consider the two-point boundary value prob-
lem

−Dα
RLCu(x)+b(x)u′(x)+ c(x)u(x) = f (x) for x ∈ (0,L), (2.3a)

Dα−1
C u(0) = 0, u(L)+β1u′(L) = γ1, (2.3b)

where the constants β1 ≥ 0 and γ1 and the functions b,c, f ∈ C[0,L] are given. We
seek solutions u of (2.3) such that u′ is absolutely continuous on [0,L] to ensure that
Dα

RLCu(x) is defined; we say such solutions are admissible solutions. In (2.3b) we are
able to permit a general classical boundary condition at x = L, as all the technical
difficulties associated with (2.3a) are at x = 0.

To discuss existence and uniqueness of an admissible solution to (2.3), the next
result will be helpful.

Lemma 2.1 Suppose that u is an admissible solution of the two-point boundary value
problem (2.3). Then u′(0) = 0.
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Proof The continuity of bu′+ cu− f on [0,L] and (2.3a) imply that Dα
RLCu ∈C[0,L].

In particular, Dα
RLCu(0) exists. That is,

Dα
RLCu(0) =

d
dx

(
Dα−1

C u
)
(x)
∣∣∣∣
x=0

= lim
x→0+

Dα−1
C u(x)−Dα−1

C u(0)
x

exists.

But Dα−1
C u(0) = 0, so for existence of this limit one must have |Dα−1

C u(x)| ≤Cx for
all x ∈ [0,δ1] for some δ1 > 0, where C is some constant.

If u′(0) ̸= 0, then there exists δ2 > 0 such that u′(x) has constant sign with
|u′(x)| ≥ 1

2 |u
′(0)| for 0 ≤ x ≤ δ2. Hence, for 0 < x < min{δ1,δ2} one has

|Dα−1
C u(x)|=

∣∣∣∣ 1
Γ (2−α)

∫ x

s=0
(x− s)1−α u′(s)ds

∣∣∣∣
≥ |u′(0)|

2Γ (2−α)

∫ x

s=0
(x− s)1−α ds

=
|u′(0)|

2Γ (3−α)
x2−α ,

which contradicts |Dα−1
C u(x)| ≤Cx above. Consequently u′(0) = 0.

Lemma 2.1 and (1.2) yield Dα
C u(x) = Dα

RLCu(x) for all x ∈ (0,L), if u is any ad-
missible solution of our problem (2.3).

2.3 Existence and uniqueness of a solution

We can now see that (2.3) is equivalent to the following Caputo boundary value prob-
lem:

−Dα
C u(x)+b(x)u′(x)+ c(x)u(x) = f (x) for x ∈ (0,L), (2.4a)

u′(0) = 0, u(L)+β1u′(L) = γ1. (2.4b)

For the arguments of Section 2.2 have shown that any admissible solution of (2.3)
is also a solution of (2.4). Conversely, if u is a solution of (2.4) with u′ absolutely
continous on [0,L], then by (1.2) one has Dα

C u(x) = Dα
RLCu(x) for all x ∈ (0,L), and

by [3, Lemma 3.11] one has Dα−1
C u(0) = 0.

This equivalence of (2.3) and (2.4) will enable us to obtain quickly an existence
result for the solution of (2.3), since problems such as (2.4) have been studied previ-
ously in the literature; for example, see [13, 14, 17, 19].

For each positive integer q and −∞ < ν < 1, let Cq,ν(0,L] be the space of all
functions y ∈C[0,L] that are q-times continuously differentiable on (0,L] with

∥y∥q,ν := sup
0<x≤L

|y(x)|+
q

∑
k=1

sup
0<x≤L

[
xk−(1−ν) |y(k)(x)|

]
< ∞.

In other words, Cq,ν(0,L] is the space of functions y ∈ C[0,L]∩Cq(0,L] such that
|y(x)| ≤C and |y(k)(x)| ≤C′(1+x(1−ν)−k) for k = 1, . . . ,q and x ∈ (0,L), where C′ is
some constant. By [20], Cq,ν(0,L] is a Banach space. Note that Cq[0,L]⊂Cq,ν(0,L].

Invoking [17, Theorem 2.1] (alternatively, see [13]), one now obtains
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Theorem 2.1 Let b,c, f ∈Cq,µ(0,L] for some positive integer q and some µ ∈ (−∞,1).
Assume that the problem (2.3) (equivalently, the problem (2.4)) has only the trivial
solution u ≡ 0 when f ≡ 0 and γ1 = 0. Then (2.3) has a unique solution u ∈C1[0,L]
with Dα

RLCu ∈Cq,ν(0,L], where ν := max{µ,2−α}.

In the statement of Theorem 2.1 we omitted a further condition that appears in the
general result of [17, Theorem 2.1] because it is evidently satisfied in our problem:
the only polynomial of degree at most 1 that satisfies the boundary conditions (2.4b)
when γ1 = 0 is the polynomial 0.

Corollary 2.1 Let b,c, f ∈Cq,µ(0,L] for some positive integer q and some µ ∈ (−∞,1),
with µ ≤ 2−α . Then the solution u of (2.3) that is guaranteed by Theorem 2.1 lies
in Cq+1(0,L] and satisfies

|u(i)(x)| ≤

{
C if i = 0,
Cxα−i if i = 1,2,3, . . . ,q+1,

for 0 < x < L and some constant C.

Proof Combining Theorem 2.1 and [19, Theorem 3.4], one has

|u(i)(x)| ≤

{
C if i = 0,1,
Cxα−i if i = 2,3, . . . ,q+1.

These bounds and the condition u′(0) = 0 imply the improved bound

|u′(x)|=
∣∣∣∣∫ x

0
u′′(t)dt

∣∣∣∣≤C
∫ x

0
tα−2dt ≤Cxα−1.

Corollary 2.1 provides derivative estimates that are useful for numerical analy-
sis, and also shows that the solution u of Theorem 2.1 is admissible (i.e., that u′ is
absolutely continuous on [0,L]).

2.4 Comparison principle

In this subsection we discuss a comparison/maximum principle for the problem (2.3).
As in the study of comparison principles for classical second-order boundary value
problems, we assume from now on that

c(x)≥ 0 for x ∈ [0,L]. (2.5)

Lemma 2.2 (Comparison Principle) Assume that v ∈C1[0,L]∩C2,µ(0,L] for some
µ ∈ (−1,0), and that v satisfies

−Dα
RLCv(x)+b(x)v′(x)+ c(x)v(x) = g(x) for x ∈ (0,L), (2.6a)

Dα−1
C v(0)≤ 0, v(L)+β1v′(L)≥ 0, (2.6b)

where g ∈ C[0,L] with g > 0 on [0,L]. Assume also that (2.5) holds. Then v(x) ≥ 0
for x ∈ [0,L].
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Proof By contradiction. Suppose that v(x) achieves its absolute minimum at x = x∗ ∈
[0,L] with v(x∗)< 0. Clearly x∗ ̸= L, as it would imply v(L)< 0 and v′(L)≤ 0.

From (2.6a), b,c,g ∈ C[0,L] and v ∈ C1[0,L], clearly Dα
RLCv ∈ C[0,L]. One can

easily modify the proof of Lemma 2.1 to show that our hypothesis Dα−1
C v(0) ≤ 0

implies that v′(0) ≤ 0. Suppose x∗ = 0. Then v′(0) ≥ 0 and consequently v′(0) = 0.
Furthermore, v(0) = v(x∗)< 0, and we recall that c ≥ 0, so taking the limit as x → 0+

in (2.6a) yields Dα
RLCv(0) < 0. Therefore, there exists δ3 > 0 such that Dα

RLCv <

0 on [0,δ3]. But Dα
RLCv(x) = (d/dx)Dα−1

C v(x) and Dα−1
C v(0) ≤ 0; it follows that

Dα−1
C v(x) < 0 on (0,δ3]. Now, invoking [3, Theorem 3.8] and (as in [3]) writing

Jα−1 for the Riemann-Liouville integral operator of order α −1, we get

v(δ3)− v(0) = Jα−1Dα−1
C v(δ3)< 0,

which contradicts our supposition that v(x) has an absolute minimum at x = 0.
Thus one must have x∗ ∈ (0,L). As v ∈ C1[0,L]∩C2,µ(0,L] with −1 < µ < 0,

by [19, p.700] one has

Dα
C v(x∗)≥ (x∗)−α

Γ (2−α)
(α −1)[v(0)− v(x∗)]− (x∗)1−α

Γ (2−α)
v′(0).

Hence (1.2) yields

Dα
RLCv(x∗)≥ (x∗)−α

Γ (2−α)
(α −1)[v(0)− v(x∗)]≥ 0,

by the definition of x∗. But this inequality and (2.5) give

(−Dα
RLCv+bv′+ cv)(x∗) = (−Dα

RLCv+ cv)(x∗)≤ 0,

which contradicts (2.6a).

Remark 2.2 In [14], the problem (2.4) with b constant, c(x) ≡ 0 for x ∈ [0,L] and
more general boundary conditions than in (2.4b) is considered. Using the associated
Green’s function, the authors deduce sufficient conditions that ensure a maximum
principle.

Corollary 2.2 Let b,c, f ∈Cq,µ(0,L] for some positive integer q and some µ ∈ (−∞,1).
Assume that (2.5) holds. Then (2.3) has a unique solution u ∈C1[0,L] with Dα

RLCu ∈
Cq,ν(0,L], where ν := max{µ,2−α}.

Proof From Lemma 2.2 it follows that the problem (2.3) has in C1[0,L] only the
trivial solution u ≡ 0 when f ≡ 0 and γ1 = 0. Thus Theorem 2.1 can now be invoked
to give the desired result.



8 José Luis Gracia et al.

3 Finite difference scheme

We use a uniform mesh on [0,L]. Let N be a positive integer. Set h = L/N. Set x j =
jh for j = 0,1, . . . ,N. Define ωN := {x j : j = 1,2, . . . ,N − 1} and ω̄N := {x j : j =
0,1, . . . ,N}.

Our discretisation of (2.3) is: Find {U j}N
j=0 such that

LNU j :=−D+(Dα−1
C,L1U j)+b jD0U j + c jU j = f j for j = 1,2, . . . ,N −1, (3.1a)

−D+U0 = 0, UN +β1D+UN−1 = γ1, (3.1b)

where b j := b(x j) and similarly for c j and f j, while D+Z j := (Z j+1 − Z j)/h and
D0Z j := (Z j+1 −Z j−1)/(2h) denote the standard forward difference and central dif-
ference quotients.

In the remaining term D+(Dα−1
C,L1U j) in (3.1), Dα−1

C,L1U j is the well-known L1 dis-
cretization of the Caputo fractional derivative Dα−1

C u(x j), viz.,

Dα−1
C,L1U j :=

1
Γ (2−α)

∫ x j

t=0
(x− t)1−α Ū ′(t)dt for x j > 0 (3.1c)

where Ū(x) := ∑
N
k=0 φk(x)Uk is the linear interpolant of the nodal values {(x j,U j)},

with each φk the piecewise linear “hat” function associated with the point xk. A short
calculation shows that

Dα−1
C,L1Z j =

1
hα−1Γ (3−α)

j−1

∑
k=0

(Zk+1 −Zk)d j−k for j = 1,2, . . . ,N, (3.2)

with dk := (2−α)
∫ k

s=k−1 s1−α ds for k = 1,2, . . . . (For later use we also set dk = 0
for k ≤ 0.) Thus,

−D+(Dα−1
C,L1Z j) =

1
h

(
Dα−1

C,L1Z j+1 −Dα−1
C,L1Z j

)
=− 1

hαΓ (3−α)

[
j

∑
k=0

(Zk+1 −Zk)d j+1−k −
j−1

∑
k=0

(Zk+1 −Zk)d j−k

]

=− 1
hαΓ (3−α)

[
(Z1 −Z0)d j+1 +

j−1

∑
k=0

(Zk+2 −2Zk+1 +Zk)d j−k

]

=− 1
hαΓ (3−α)

[
(Z1 −Z0)d j+1

]
−Dα

C,L2Z j,

where Dα
C,L2 is the L2 discretization [19, (4.1)] of the Caputo fractional derivative

Dα
C u(x j). Evidently this formula is a discretisation of (1.2).

It is easy to see that the terms d j in (3.2) satisfy

(2−α)( j−1)1−α ≤ d j ≤ (2−α) j1−α and d j−1 > d j for j ≥ 2, (3.3)

and the proof of [19, Lemma 4.2] shows that for j = 1,2, . . . ,N −1 one has −d j−k +
2d j−k+1 −d j−k+2 < 0 for k = 2,3, . . . , j−1 and k = j+1.
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Analogously to the continuous problem, the finite difference operator (3.1) sat-
isfies a discrete comparison principle. This principle guarantees the existence and
uniqueness of the solution of (3.1).

Lemma 3.1 (Discrete Comparison Principle for LN) Assume (2.5) and that the
mesh width h satisfies

h ≤
[

2(d1 −2d2 +d3)

∥b∥∞Γ (3−α)

]1/(α−1)

. (3.4)

Let {Z j}N
j=0 be a mesh function that satisfies −D+Z0 ≥ 0, ZN +β1D+ZN−1 ≥ 0 and

LNZ j ≥ 0 for j = 1,2, . . . ,N −1. Then Z j ≥ 0 for j = 0,1, . . . ,N.

Proof Let the (N + 1)× (N + 1) matrix A = (a jk)
N
j,k=0 be associated with the dis-

cretisation (3.1). The entries of the 0th and Nth rows of A are, from the boundary
conditions (3.1b),

a00 = 1/h, a01 =−1/h, a0k = 0 if 1 < k ≤ N

and

aN j = 0 for 0 ≤ j < N −1, aN,N−1 =−β1/h, aNN = 1+β1/h.

For 0 < j < N, the entries of the jth row of A correspond to the difference formula
LNZ j of (3.1a), viz.,

a j0 =
d j+1 −d j

hαΓ (3−α)
−δ j,1

b1

2h
, (3.5a)

a jk =
−d j−k +2d j−k+1 −d j−k+2

hα Γ (3−α)
+

b j

2h
(δ j,k−1 −δ j,k+1)+δ j,kc j

for k = 1,2, . . . , j+1, (3.5b)
a jk = 0 for k = j+2, j+3, . . . ,N, (3.5c)

where

δ j,k =

{
1 if j = k,
0 otherwise.

For the main diagonal entries one has

a j j =
2d1 −d2

hα Γ (3−α)
+ c j > 0 for 0 < j < N.

Recalling that −d j−k+2d j−k+1−d j−k+2 < 0 for k ∈ {1,2,3, . . . , j−1} and k = j+1,
we obtain

a jk ≤ 0 if | j− k|> 1 and j = 1,2, . . . ,N −1.

Using d j+1 < d j, we have
a j0 < 0 for j > 1.



10 José Luis Gracia et al.

It remains to discuss the signs of the entries a j, j−1 and a j, j+1 for j = 1,2, . . . ,N−
1; here we distinguish two cases depending on the sign of b j. If b j ≥ 0, then from (3.5)
one has a j, j−1 < 0, and the entries

a j, j+1 =
−1

hαΓ (3−α)
+

b j

2h
< 0 for j = 1,2, . . . ,N −1,

because the assumption (3.4) implies (see [9, Remark 1]) that

h <

[
2

∥b∥∞Γ (3−α)

]1/(α−1)

.

If b j ≤ 0, then a j, j+1 < 0 for j = 1,2, . . . ,N −1 from (3.5), and the entries

a j, j−1 =
−d1 +2d2 −d3

hαΓ (3−α)
−

b j

2h
≤ 0, for j = 2, . . . ,N −1,

from the hypothesis (3.4). Finally, a10 < 0 because

h <

[
2(d1 −d2)

∥b∥∞Γ (3−α)

]1/(α−1)

,

which follows from (3.4) since d3 < d2.
In summary, the matrix A has positive diagonal entries and non-positive off-

diagonal entries.
From (3.1) and (3.2), we have

N

∑
k=0

a jk = c j ≥ 0 for j = 1,2, . . . ,N −1,
N

∑
k=0

a0k = 0 and
N

∑
k=0

aNk = 1,

and hence the matrix A is diagonally dominant. In addition, if β1 ̸= 0 the matrix
A is irreducible (see for example [21, p.18]). Therefore, the matrix A is irreducibly
diagonally dominant [21, p.23] and invoking [21, Corollary 3.20, p.91] one has A−1 >
0. But by hypothesis AZ⃗ ≥ 0 where Z⃗ = (Z0,Z1, . . . ,ZN)

T , and the result of the lemma
follows. If β1 = 0, one can apply the same argument to the submatrix Ã = {ai j}N−1

i, j=0
formed by eliminating the last row and last column of A. This submatrix is irreducible
and satisfies

N−1

∑
k=0

a jk = c j ≥ 0 for j = 1,2, . . . ,N −2,
N−1

∑
k=0

a0k = 0 and

N−1

∑
k=0

aN−1,k ≥ cN−1 −aN−1,N > 0 as aN−1,N < 0.

Thus, Ã is irreducibly diagonally dominant and therefore Ã−1 > 0 by [21, Corollary
3.20, p.91]. By hypothesis ZN ≥ 0 and we have now that Ã(Z0,Z1, . . . ,ZN−1)

T ≥
(0,0, . . . ,0,−aN−1,NZN)

T with −aN−1,NZN ≥ 0, which completes the proof.
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Remark 3.1 The mesh restriction (3.4) can be removed if, instead of the central dif-
ference approximation D0U j in (3.1a), one approximates the term bu′ using upwind-
ing, viz.,

b(x j)u′(x j)≈

{
b jD+U j if b(x j)< 0,
b jD+U j−1 if b(x j)≥ 0.

We have used central differencing because, in general, it can be more accurate than
upwinding.

We shall also use the following result in our error analysis of the scheme (3.1).

Lemma 3.2 (Discrete Comparison Principle for Dα−1
C,L1) Let {Z j}N

j=0 be a mesh
function that satisfies Z0 ≥ 0 and Dα−1

C,L1Z j ≥ 0 for j = 1,2, . . . ,N. Then Z j ≥ 0 for
j = 0,1, . . . ,N.

Proof The discrete operator (3.2) can be written as

Dα−1
C,L1Z j =

1
hα−1Γ (3−α)

(
Z j −d jZ0 +

j−1

∑
k=1

Zk(d j+1−k −d j−k)

)
for j ≥ 1.

Hence, the hypothesis Dα−1
C,L1Z j ≥ 0 implies that

Z j ≥ d jZ0 +
j−1

∑
k=1

Zk(d j−k −d j+1−k) for j = 1,2, . . . ,N.

Here d j > 0 and d j−k − d j+1−k > 0 from (3.3). The result follows using a simple
inductive argument.

4 Error analysis

We now prove some error estimates for the scheme (3.1) by a truncation error estimate
combined with a stability argument.

4.1 Truncation error

The truncation errors of our discretisation (3.1) of (2.3) are given by

LN(u−U)(x j) =−D+Dα−1
C,L1(u−U)(x j)+b jD0(u−U)(x j)+ c j(u−U)(x j)

=−(D+Dα−1
C,L1 −Dα

RLC)u(x j)+b j

(
D0 − d

dx

)
u(x j) for 0 < x j < L,

−D+(u−U)(0) =
u(0)−u(h)

h
,

(u−U)(xN)+β1D+(u−U)(xN−1) = β1

(
u(xN)−u(xN−1)

h
−u′(xN)

)
.
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Our analysis uses two standard interpolation estimates. If ū is the piecewise linear
interpolant of u on ω̄N and x j−1 < x < x j, then

|(u− ū)′(x)|= 1
h

∣∣∣∣∫ x j

s=x j−1

(∫ x

t=s
u′′(t)dt

)
ds
∣∣∣∣≤C min{xα−1

j ,hxα−2
j−1 } (4.1a)

and

|(u− ū)(x)|= 1
h

∣∣∣∣∫ x

r=x j−1

(∫ x j

s=x j−1

∫ r

t=s
u′′(t)dt ds

)
dr
∣∣∣∣≤Chxα−1

j , (4.1b)

where we have used |u′′(t)| ≤ Ctα−2 from Corollary 2.1. For brevity, we denote the
interpolation error by v := u− ū.

Lemma 4.1 (Truncation error bound) Assume (2.5) and that b,c, f ∈Cq,µ(0,L] with
q ≥ 2 and µ ≤ 2−α . Then the truncation errors satisfy

|D+(u−U)(0)| ≤Chα−1, |(u−U)(xN)+β1D+(u−U)(xN−1)| ≤Cβ1h, (4.2a)

|LN(u−U)(x j)| ≤Chx−1
j for j = 1,2, . . . ,N. (4.2b)

Proof The hypothesis (2.5) ensures (by Corollary 2.2) that (2.3) has a unique solu-
tion. Consequently we can invoke the bounds of Corollary 2.1.

Recall that u′(0) = 0 by Lemma 2.1. Then (3.1b) and the estimates of Corol-
lary 2.1 yield

|D+(u−U)(0)|= h−1
∣∣∣∣∫ h

t=0

(∫ t

s=0
u′′(s)ds

)
dt
∣∣∣∣≤Ch−1

∫ h

t=0

(∫ t

s=0
sα−2 ds

)
dt ≤Chα−1.

Consider xN = L. If β1 = 0, then (u−U)(xN) = 0. If β1 > 0, then we use again
the estimates from Corollary 2.1 to deduce that

|(u−U)(xN)+β1D+(u−U)(xN−1)|= β1

∣∣∣∣u(xN)−u(xN−1)

h
−u′(xN)

∣∣∣∣
≤ β1

h

∫ xN

r=xN−1

(∫ xN

s=r
|u′′(s)|ds

)
dr

≤Cβ1hxα−2
N−1

≤Cβ1h.

Hence, the truncation error bounds (4.2a) have been established.
For 0< x j < L, the truncation error is decomposed into three terms, each of which

we estimate separately:

LN(u−U)(x j) =

(
D+Dα−1

C,L1
− d

dx
Dα−1

C

)
u(x j)+b j

(
D0 − d

dx

)
u(x j)

=

(
D+− d

dx

)
Dα−1

C u(x j)+D+
(

Dα−1
C,L1 −Dα−1

C

)
u(x j)

+b j

(
D0 − d

dx

)
u(x j). (4.3)
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Consider the first term in (4.3). Define G(x) := Dα−1
C u(x). Then by Theorem 2.1 one

has G′ ∈Cq,2−α(0,L]. Thus, |G′′(x)| ≤Cxα−2 and∣∣∣∣(D+− d
dx

)
G(x j)

∣∣∣∣= ∣∣∣∣1h
∫ xi+1

t=x j

(∫ t

s=x j

G′′(s)ds
)

dt
∣∣∣∣

≤ C
h

∫ x j+1

t=x j

(∫ t

s=x j

sα−2 ds
)

dt

≤Chxα−2
j . (4.4)

For the second term in (4.3), equations (1.1) and (3.1c) give

T (x j) := D+
(

Dα−1
C,L1 −Dα−1

C

)
u(x j)

=
1

hΓ (2−α)

(∫ x j+1

s=0
(x j+1 − s)1−α v′(s)ds−

∫ x j

s=0
(x j − s)1−α v′(s)ds

)
for j ≥ 1. At the first interior mesh point, one has

|T (x1)|=
1

hΓ (2−α)

∣∣∣∣∫ 2h

s=0
(2h− s)1−α v′(s)ds−

∫ h

s=0
(h− s)1−α v′(s)ds

∣∣∣∣
=

1
hΓ (2−α)

∣∣∣∣∫ h

0
(2h− s)1−α v′(s)ds+

∫ h

s=0
(h− s)1−α

(
v′(s+h)− v′(s)

)
ds
∣∣∣∣

≤Ch−α

∫ h

s=0
|v′(s)|ds+Ch−1

∫ h

s=0
(h− s)1−α

(∫ s+h

t=s
|v′′(t)|dt

)
ds

≤C+Ch−1
∫ h

s=0
(h− s)1−α

(∫ s+h

t=s
|u′′(t)|dt

)
ds

≤C+Ch−1
∫ h

s=0
(h− s)1−α

(∫ s+h

t=s
tα−2dt

)
ds

≤C+C
∫ h

s=0
(h− s)1−α sα−2 ds,

where we used (4.1a) and Corollary 2.1. The standard bound on Euler’s Beta function
(see, for example, [3, Theorem D.6]) now gives

|T (x1)| ≤C. (4.5)

For j = 2,3, . . . ,N −1 we split T (x j) into two parts:

T (x j) = TL(x j)+TR(x j)

=
1

hΓ (2−α)

(∫ x⌈ j/2⌉+1

s=0
(x j+1 − s)1−α v′(s)ds−

∫ x⌈ j/2⌉

s=0
(x j − s)1−α v′(s)ds

)
+

1
hΓ (2−α)

(∫ x j+1

s=x⌈ j/2⌉+1

(x j+1 − s)1−α v′(s)ds−
∫ x j

s=x⌈ j/2⌉
(x j − s)1−α v′(s)ds

)
.
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We use the property v(x j) = 0 for all j when integrating by parts below:

hΓ (2−α)TL(x j) =
∫ x⌈ j/2⌉+1

s=0
(x j+1 − s)1−α v′(s)ds−

∫ x⌈ j/2⌉

s=0
(x j − s)1−α v′(s)ds

=
∫ x⌈ j/2⌉+1

s=x⌈ j/2⌉
(x j+1 − s)1−α v′(s)ds+

∫ x⌈ j/2⌉

s=0

(
(x j+1 − s)1−α − (x j − s)1−α

)
v′(s)ds

=
∫ x⌈ j/2⌉+1

s=x⌈ j/2⌉
(x j+1 − s)1−α v′(s)ds+(1−α)

∫ x⌈ j/2⌉

s=0

(
(x j+1 − s)−α − (x j − s)−α

)
v(s)ds

=
∫ x⌈ j/2⌉+1

s=x⌈ j/2⌉
(x j+1 − s)1−α v′(s)ds+(α −1)α

∫ x⌈ j/2⌉

s=0

(∫ x j+1−s

t=x j−s
t−1−α dt

)
v(s)ds.

By the interpolation bound (4.1), one gets

h|TL(x j)| ≤Cx1−α

⌈ j/2⌉

∫ x⌈ j/2⌉+1

s=x⌈ j/2⌉
|v′(s)|ds+Ch

∫ x⌈ j/2⌉

s=0
(x j − s)−1−α |v(s)|ds

≤Ch2x1−α

⌈ j/2⌉x
α−2
⌈ j/2⌉+Ch2xα−1

⌈ j/2⌉

∫ x⌈ j/2⌉

s=0
(x j − s)−1−α ds

≤Ch2x−1
⌈ j/2⌉+Ch2x−1

⌈ j/2⌉

≤Ch2x−1
j .

Thus,
|TL(x j)| ≤Chx−1

j for j ≥ 2. (4.6)

Next, for s ∈ [xk−1,xk] with k > ⌈ j/2⌉, we have

v′(s+h)− v′(s) = u′(s+h)−u′(s)− 1
h

(∫ xk+1

t=xk

u′(t) dt −
∫ xk

t=xk−1

u′(t)dt
)

=
1
h

∫ xk

t=xk−1

[
u′(s+h)−u′(s)− (u′(t +h)−u′(t))

]
dt

=
1
h

∫ xk

t=xk−1

∫ s

r=t

[
u′′(r+h)−u′′(r)

]
dr dt

=
1
h

∫ xk

t=xk−1

∫ s

r=t

∫ r+h

w=r
u′′′(w)dwdr dt;

consequently

|v′(s+h)− v′(s)| ≤Ch2 max
xk−1≤x≤xk+1

|u′′′(x)| ≤Ch2xα−3
k−1 for s ∈ [xk−1,xk].

Substituting this bound into

TR(x j) =Ch−1
∫ x j

s=x⌈ j/2⌉
(x j − s)1−α

(
v′(s+h)− v′(s)

)
ds

gives
|TR(x j)| ≤Chx2−α

j xα−3
j =Chx−1

j . (4.7)
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Finally, consider the third term in (4.3). If j = 1, then from Corollary 2.1 one has

|D0u(h)−u′(h)|= 1
2h

∣∣∣∣∫ 2h

s=0

(∫ s

t=h
u′′(t)dt

)
ds
∣∣∣∣

≤Ch−1
∫ 2h

s=0

(∫ 2h

t=0
tα−2 dt

)
ds

≤Chα−1. (4.8)

If j ≥ 2, then using again Corollary 2.1 and x j ≤ 2x j−1, we obtain

|D0u(x j)−u′(x j)|=
1

2h

∣∣∣∣∫ x j+1

s=x j−1

(∫ s

t=x j

u′′(t)dt
)

ds
∣∣∣∣

≤Ch−1
∫ x j+1

s=x j−1

(∫ x j+1

t=x j−1

tα−2 dt
)

ds

≤Chxα−2
j−1

≤Chxα−2
j . (4.9)

The bound (4.2b) now follows from (4.3)–(4.9).

4.2 Discrete barrier functions

We use the discrete comparison principle of Lemma 3.1 to deduce appropriate error
estimates for the scheme (3.1). More specifically, we shall define a grid function
{Ψj}N

j=0 (called a discrete barrier function) such that

|−D+(U −u)(x0)| ≤ −D+
Ψ0,

|LN(U −u)(x j)| ≤ LNΨj for j = 1,2, . . . ,N −1,

and

|(u−U)(xN)+β1D+(u−U)(xN−1)| ≤ΨN +β1D+
ΨN−1.

Then |(U −u)(x j)| ≤Ψj for j = 0,1, . . . ,N by Lemma 3.1.
The following technical result is very useful for constructing barrier functions.

Lemma 4.2 If a grid function {B j}N
j=0 satisfies B0 = 0 and B j ≤ Bk for j ≤ k, then

Dα−1
C,L1B j ≥

B j

xα−1
j Γ (2−α)

for j = 1,2, . . . ,N −1.
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Proof Using (3.2), (3.3) and the hypotheses on {B j}, one gets

Dα−1
C,L1B j =

1
hα−1Γ (3−α)

j−1

∑
k=0

(Bk+1 −Bk)d j−k

≥
d j

hα−1Γ (3−α)

j−1

∑
k=0

(Bk+1 −Bk)

=
d j

hα−1Γ (3−α)
(B j −B0)

≥ 1
xα−1

j Γ (2−α)
B j.

Remark 4.1 An alternative proof of Lemma 4.2 follows from [8, Lemma 5] by re-
placing the piecewise power basis functions (which generate the fitted scheme of
that paper) by the standard piecewise-linear hat functions (which generate the L1
scheme).

We now define a grid function {M j}N
j=0 that will be central in the construction

of our discrete barrier functions. Some properties for {M j}N
j=0 are also given that we

shall use later.
This discrete function is defined by

Dα−1
C,L1M j =

1
Γ (2−α)

x| lnh|−1

j , j ≥ 1, M0 = 0. (4.10)

From Lemma 3.2, this function satisfies M j ≥ 0 for all j. We explicitly determine M1
as it is required later. From (4.10) with j = 1, one has

Dα−1
C,L1M1 =

M1 −M0

hα−1Γ (3−α)
=

1
Γ (2−α)

h| lnh|−1
=

e−1

Γ (2−α)
.

Hence,
M1 = (2−α)e−1hα−1. (4.11)

We prove now that M j is a non-decreasing function. Noting that

0 ≤
x| lnh|−1

j+1 − x| lnh|−1

j

Γ (2−α)

=
1

hα−1Γ (3−α)

(
j

∑
k=0

(Mk+1 −Mk)d j+1−k −
j−1

∑
k=0

(Mk+1 −Mk)d j−k

)
,

we obtain
j−1

∑
k=0

(Mk+1 −Mk)(d j−k −d j+1−k)≤ (M j+1 −M j),

with M1−M0 = (2−α)e−1hα−1 ≥ 0. Using (3.3), a simple inductive argument yields

M j+1 −M j ≥ 0, for 0 ≤ j < N.
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We also give an upper bound for M j. Define

B j = x| lnh|−1+α−1
j , 0 ≤ j ≤ N.

It is an increasing function with B0 = 0. From Lemma 4.2, one has

Dα−1
C,L1B j ≥

1
Γ (2−α)

B j

xα−1
j

=
1

Γ (2−α)
x| lnh|−1

j . (4.12)

Comparing (4.10) and (4.12), we deduce that B j is a barrier function for M j, i.e.,

0 ≤ M j ≤ B j = x| lnh|−1+α−1
j , 0 ≤ j ≤ N. (4.13)

4.3 Convergence of the scheme

In this section we establish an error estimate for our scheme. In the proof, we dis-
tinguish between the two cases of a Dirichlet boundary condition when β1 = 0 and
the case where β1 > 0 in the right boundary condition u(L)+β1u′(L) = γ1 of prob-
lem (2.3). In each case an appropriate barrier function will be defined in terms of (4.10).
Difficulties in the construction of a suitable barrier arise if b > 0, which emanate pri-
marily from the non-decreasing character of the grid function (4.10). For this reason,
in order to establish an error bound we shall assume that b(x)≤ 0 for x ∈ [0,L]. The
general case (without any sign restriction on b) requires further investigation and it
will be investigated in a future paper.

Theorem 4.1 Assume that the hypotheses of Lemmas 3.1 and 4.1 are satisfied. As-
sume also that b(x)≤ 0 for x ∈ [0,L]. Then there exists a constant C such that

|u(x j)−U j| ≤Ch| lnh|, 0 ≤ j ≤ N.

Proof The proof involves two cases: β1 = 0 and β1 > 0. In the first case, define the
discrete function

Ψj =C1h| lnh|(L| lnh|−1+α−1 −M j), 0 ≤ j ≤ N, (4.14)

where M j is defined in (4.10). We want to prove that |u(x j)−U j| ≤Ψj. Observe that
Ψj ≥ 0 for all j by (4.13). In particular, |u(xN)−UN |= 0 ≤ΨN . At the endpoint x = 0,
from (4.11),

−D+
Ψ0 =−C1h| lnh| (M1 −M0)

h
=−C1(2−α)e−1hα−1| lnh|.
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If 0 < x j < L, using c ≥ 0 and b ≤ 0 on [0,L], Ψj ≥ 0 and M j an increasing function
so D0M j ≥ 0, we have

LNΨj =−D+Dα−1
C,L1Ψj +b jD0

Ψj + c jΨj

≥C1h| lnh|D+Dα−1
C,L1M j −C1h| lnh|b jD0M j

≥ C1h| lnh|
Γ (2−α)

D+x| lnh|−1

j by (4.10)

≥ C1h
Γ (2−α)

x| lnh|−1−1
j+1 by the mean value theorem

≥ C1he−1

Γ (2−α)
x−1

j+1 as x j+1 ≥ h and h| lnh|−1
= e−1,

≥ C1he−1

2Γ (2−α)
x−1

j as x j+1 ≤ 2x j.

Thus, Ψj is a barrier function for the error |u(x j)−U j| and the result follows from
Lemma 3.1. This completes the case β1 = 0.

When β1 > 0, note that

ΨN +β1D+
ΨN−1 =C1h| lnh|(L| lnh|−1+α−1 −MN)+C1β1| lnh|(MN−1 −MN)

≥C1β1| lnh|(MN−1 −MN),

and MN−1 −MN ≤ 0. From [7, Theorem 4], we have

MN−1 −MN = (L−h)| lnh|−1+α−1 −L| lnh|−1+α−1 ±Ch ≥−C2h.

Therefore,
ΨN +β1D+

ΨN−1 ≥−C1C2β1h| lnh|. (4.15)

Hence, to deal with the case β1 > 0 we require a modification to the barrier function.
Consider the discrete function

Ψ̃j =Ψj +Φ j

where Ψj is defined in (4.14) and

Φ j =C3h| lnh|×

{
h

β1
+2, if 0 ≤ j ≤ N −1,

2, if j = N.

Note that at x = 0

−D+
Ψ̃0 =−D+

Ψ0 −D+
Φ0 =−D+

Ψ0 =−C1(2−α)e−1hα−1| lnh|.

In addition, the discrete function Φ j also satisfies

Dα−1
C,L1Φ j = 0, for 1 ≤ j ≤ N −1, D+(Dα−1

C,L1Φ j) = 0, for 1 ≤ j ≤ N −2.
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Thus,

LN
Ψ̃j = LN

Ψj+LN
Φ j = LN

Ψj+c jΦ j ≥ LN
Ψj ≥

C1he−1

2Γ (2−α)
x−1

j , for 1≤ j ≤N−2.

We now analyse LNΦN−1. Note that

Dα−1
C,L1ΦN =

1
hα−1Γ (3−α)

N−1

∑
k=0

(Φk+1 −Φk)dN−k

=
ΦN −ΦN−1

hα−1Γ (3−α)

=−C3h3−α | lnh|
β1Γ (3−α)

≤ 0.

Thus, −D+Dα−1
C,L1ΦN−1 ≥ 0. Using b ≤ 0, we then have

LN
Ψ̃N−1 = LN

ΨN−1 +LN
ΦN−1

≥ LN
ΨN−1 +bN−1

ΦN −ΦN−2

2h

= LN
ΨN−1 −

C3bN−1h| lnh|
2β1

≥ LN
ΨN−1

≥ C1he−1

2Γ (2−α)
x−1

N−1.

Finally, from (4.15), at x = L one has

Ψ̃N +β1D+
Ψ̃N−1 =

(
ΨN +β1D+

ΨN−1
)
+
(
ΦN +β1D+

ΦN−1
)

≥ (C3 −C1C2β1)h| lnh|.

Choosing C3 sufficiently large so that C3 −C1C2β1 > C, then Ψ̃N + β1D+Ψ̃N−1 ≥
Ch| lnh|. Therefore, Ψ̃j is a barrier function and the result follows for the case β1 > 0.

5 Numerical experiments

In this section numerical results for two examples are given. The coefficients of the
first example are constant and the exact solution can be obtained using Laplace trans-
forms. The solution of the second example is unknown and the orders of convergence
are estimated using the two-mesh principle [6]. The computed orders of convergence
in both examples corroborate the convergence of our scheme for all the values of α

considered.

Example 5.1 In this problem b and f are constants. Consider

−Dα
RLCu−0.5u′ = 1 on (0,1), Dα−1u(0) = 0, u(1) = 0.
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The exact solution can be obtained in closed form (see Appendix). The maximum
error in the computed solution {U j} is denoted by

EN := max
0≤ j≤N

|U j −u(x j)|.

The orders of convergence are computed from these values in a standard way:

pN := log2

(
EN

E2N

)
.

The exact solution u of Example 5.1 and its derivative u′ are displayed for N = 256
and α = 1.3,1.6 in Figures 5.1 and 5.2, respectively. In Figure 5.2 we see that u′′

blows up at x = 0.
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Fig. 5.1 Example 5.1: Exact solution for α = 1.3,1.6
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Fig. 5.2 Example 5.1: Derivative of u for α = 1.3,1.6

The numerical results in Table 5.1 indicate that the method is first-order conver-
gent for all values of α , which is slightly better than the almost first-order conver-
gence (due to the logarithmic factor) proved in Theorem 4.1.
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Table 5.1 Example 5.1: Maximum errors EN and orders of convergence pN

N=64 N=128 N=256 N=512 N=1024 N=2048
α = 1.1 8.946E-03 4.473E-03 2.237E-03 1.118E-03 5.592E-04 2.796E-04

1.000 1.000 1.000 1.000 1.000
α = 1.2 9.207E-03 4.605E-03 2.303E-03 1.152E-03 5.759E-04 2.880E-04

0.999 1.000 1.000 1.000 1.000
α = 1.3 9.457E-03 4.734E-03 2.368E-03 1.185E-03 5.925E-04 2.963E-04

0.998 0.999 0.999 1.000 1.000
α = 1.4 9.681E-03 4.852E-03 2.430E-03 1.216E-03 6.085E-04 3.044E-04

0.997 0.998 0.998 0.999 0.999
α = 1.5 9.848E-03 4.948E-03 2.482E-03 1.244E-03 6.231E-04 3.119E-04

0.993 0.995 0.997 0.998 0.998
α = 1.6 9.902E-03 4.994E-03 2.513E-03 1.263E-03 6.338E-04 3.178E-04

0.987 0.991 0.993 0.995 0.996
α = 1.7 9.748E-03 4.943E-03 2.500E-03 1.261E-03 6.353E-04 3.195E-04

0.980 0.984 0.987 0.989 0.991
α = 1.8 9.236E-03 4.711E-03 2.396E-03 1.216E-03 6.156E-04 3.111E-04

0.971 0.975 0.979 0.982 0.984
α = 1.9 8.142E-03 4.160E-03 2.122E-03 1.080E-03 5.493E-04 2.789E-04

0.969 0.971 0.974 0.976 0.978

Example 5.2 Consider the following variable-coefficient problem:

−Dα
RLCu− (1+ x2)u′+ xu =−ex for x ∈ (0,1),

Dα−1u(0) = 0, u(1)+u′(1) = 1.

The solution of Example 5.2 that is computed by our scheme for N = 256 and α =
1.3,1.6 is shown in Figure 5.3.
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Fig. 5.3 Example 5.2: Computed solution for N = 256 and α = 1.3,1.6

The exact solution of Example 5.2 is unknown and the orders of convergence are
estimated using the two-mesh principle [6]. That is, solutions {U j}N

j=0 and {Û j}2N
j=0

are computed by the scheme (3.1) on two uniform meshes {x j}N
j=0 and {x̂ j}2N

j=0 re-
spectively. Observe that x j = x̂2 j for j = 0,1, . . . ,N. These computed solutions are
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used to calculate the two-mesh differences

DN := max
0≤ j≤N

|U j −Û2 j|,

and the orders of convergence are estimated by

qN := log2

(
DN

D2N

)
.

The numerical results for Example 5.2 are given in Table 5.2 and, similarly to Exam-
ple 5.1, first-order convergence of the method is apparent.

Table 5.2 Example 5.2: Maximum two-mesh differences DN and orders of convergence qN

N=64 N=128 N=256 N=512 N=1024 N=2048
α = 1.1 5.718E-03 2.853E-03 1.425E-03 7.123E-04 3.560E-04 1.780E-04

1.003 1.001 1.001 1.000 1.000
α = 1.2 5.859E-03 2.925E-03 1.462E-03 7.306E-04 3.653E-04 1.826E-04

1.002 1.001 1.000 1.000 1.000
α = 1.3 6.003E-03 3.000E-03 1.500E-03 7.502E-04 3.752E-04 1.876E-04

1.001 1.000 1.000 1.000 1.000
α = 1.4 6.146E-03 3.076E-03 1.540E-03 7.707E-04 3.856E-04 1.929E-04

0.999 0.998 0.999 0.999 0.999
α = 1.5 6.277E-03 3.149E-03 1.579E-03 7.915E-04 3.965E-04 1.985E-04

0.995 0.996 0.996 0.997 0.998
α = 1.6 6.381E-03 3.210E-03 1.614E-03 8.110E-04 4.071E-04 2.041E-04

0.991 0.992 0.993 0.994 0.996
α = 1.7 6.429E-03 3.246E-03 1.638E-03 8.254E-04 4.155E-04 2.089E-04

0.986 0.987 0.989 0.990 0.992
α = 1.8 6.366E-03 3.223E-03 1.632E-03 8.255E-04 4.170E-04 2.104E-04

0.982 0.982 0.983 0.985 0.987
α = 1.9 6.090E-03 3.080E-03 1.560E-03 7.899E-04 3.998E-04 2.022E-04

0.983 0.982 0.982 0.982 0.983
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7. José Luis Gracia, Eugene O’Riordan, and Martin Stynes. Convergence in pos-
itive time for a finite difference method applied to a fractional convection-
diffusion problem. Comput. Methods Appl. Math., 18(1):33–42, 2018.
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24 José Luis Gracia et al.

22. Hong Wang and Danping Yang. Wellposedness of Neumann boundary-value
problems of space-fractional differential equations. Fract. Calc. Appl. Anal.,
20(6):1356–1381, 2017.

Appendix: Constant coefficient problem

We use Laplace transforms to derive the general solution of the differential equation

−Dα
RLCw+bw′ = f on (0,L), (5.1)

where b and f are nonzero constants. The Laplace transform of the Caputo fractional
derivative is given by [18, (2.253)]

L {Dα−1
C w}= sα−1L (w)− sα−2w(0), 1 < α ≤ 2.

Hence, using the well-known property L ( f ′(s)) = sL ( f (s))− f (0+), one obtains

L {Dα
RLCw}= s

[
sα−1L (w)− sα−2w(0)

]
−Dα−1

C w(0).

Thus, applying a Laplace transform to (5.1), we obtain

−s
[
sα−1L (w)− sα−2w(0)

]
+Dα−1

C w(0)+b(sL (w)−w(0)) =
f
s
, (5.2)

which gives

L (w) =− f
s2(sα−1 −b)

+
Dα−1

C w(0)
s(sα−1 −b)

+
w(0)

s
.

The two-parameter Mittag-Leffler function is defined by

Eδ ,γ(z) =
1

Γ (γ)
+

∞

∑
k=1

zk

Γ (δk+ γ)
for δ ,γ,z ∈ R with δ > 0,

From [18, (1.80),(1.82)], one has

L
{

xγ−1Eδ ,γ(±bxδ )
}
=

sδ−γ

sδ ∓b
. (5.3)

Therefore, from (5.2) and (5.3), we obtain

w(x) =− f xα Eα−1,α+1(bxα−1)+Dα−1
C w(0)xα−1Eα−1,α(bxα−1)+w(0). (5.4)

Thus, near x = 0 the solution of (5.1) behaves like xα if Dα−1
C w(0) = 0 and like xα−1

otherwise.
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Remark 5.1 (Reaction-diffusion problem) The general solution of the differential equa-
tion

−Dα
RLCv+ cv = f , x ∈ (0,L), (5.5)

with nonzero constants c and f can also be obtained using Laplace transforms. Here

−s
[
sα−1L (v)− sα−2v(0)

]
+Dα−1

C v(0)+ cL (v) =
f
s
,

so

L (v) =− f
s(sα − c)

+
Dα−1

C v(0)
(sα − c)

+
sα−1v(0)

sα − c
.

Invoking (5.3), one gets

v(x) =− f xα Eα,1+α(cxα)+Dα−1
C v(0) xα−1Eα,α(cxα)+ v(0)Eα,1(cxα).

Near x = 0 this solution behaves similarly to w(x) in (5.4); it again depends on
whether Dα−1

C v(0) = 0.


