
Applied Numerical Mathematics 190 (2023) 168–186
Contents lists available at ScienceDirect

Applied Numerical Mathematics

journal homepage: www.elsevier.com/locate/apnum

A singularly perturbed convection-diffusion parabolic problem 

with incompatible boundary/initial data

J.L. Gracia a,∗, E. O’Riordan b

a Department of Applied Mathematics, Institute of Mathematics and Applications, University of Zaragoza, Spain
b School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2022
Received in revised form 30 March 2023
Accepted 21 April 2023
Available online 28 April 2023

Keywords:
Convection diffusion
Incompatible boundary/initial data
Interior layer
Shishkin mesh

A singularly perturbed parabolic problem of convection-diffusion type with incompatible 
inflow boundary and initial conditions is examined. In the case of constant coefficients, 
a set of singular functions are identified which match certain incompatibilities in 
the data and also satisfy the associated homogeneous differential equation. When the 
convective coefficient only depends on the time variable and the initial/boundary data 
is discontinuous, then a mixed analytical/numerical approach is taken. In the case of 
variable coefficients and the zero level of compatibility being satisfied (i.e. continuous 
boundary/initial data), a numerical method is constructed whose order of convergence is 
shown to depend on the next level of compatibility being satisfied by the data. Numerical 
results are presented to support the theoretical error bounds established for both of the 
approaches examined in the paper.
© 2023 The Authors. Published by Elsevier B.V. on behalf of IMACS. This is an open access 

article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

In the case of sufficiently smooth and compatible data, the solution of the following singularly perturbed parabolic 
problem: Find u such that

Lu := −εuxx + a(x, t)ux + ut = f (x, t), (x, t) ∈ G := (0,1) × (0, T ], (1a)

u(0, t) = gL(t), u(1, t) = gR(t), t > 0, u(x,0) = φ(x), 0 ≤ x ≤ 1; (1b)

a(x, t) ≥ α > 0, (x, t) ∈ Ḡ; 0 < ε ≤ 1, (1c)

will contain a boundary layer of width O (ε) near the outflow boundary x = 1. Nevertheless, problems with incompatible 
data arise, for example, in geophysical fluid mechanics (see [5] and the references therein) and in the modeling of plasma 
sheaths [6]. In this paper, we examine the issues that arise when the problem data is not sufficiently compatible at the 
inflow point (0, 0).
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If the boundary and initial conditions are incompatible (φ(0) �= gL(0)), a strong [8] interior layer will appear for small 
values of the singular perturbation parameter. If φ(0) = gL(0), but the data are still not sufficiently compatible at (0, 0)

then a weak [8] interior layer appears in the solution. The path of any interior layer is located along the characteristic curve 
x = d(t), where d(t) is implicitly defined by

d′(t) = a(d(t), t), d(0) = 0.

To avoid the interior layer interacting with the outflow boundary, we assume that at the final time

d(T ) < 1. (1d)

See Remark 1 for necessary modifications when (1d) is not satisfied.
Let us recall the constraints on the data, a, f , φ, gL and gR , for the solution u to be sufficiently regular so that classical 

numerical analysis is applicable; i.e., for u ∈ C4+γ (Ḡ).1 From [14] we have the following result: If a, f ∈ C0+γ (Ḡ), φ ∈
C2+γ [0, 1], gL, gR ∈ C1+γ /2[0, T ] and

A0 = 0 with A0 := gL(0) − φ(0), (2a)

A1 = 0 with A1 := −εφ′′(0) + a(0,0)φ′(0) + g′
L(0) − f (0,0), (2b)

gR(0) = φ(1); −εφ′′(1) + a(1,0)φ′(1) + g′
R(0) = f (1,0), (2c)

then the solution of problem (1) satisfies u ∈ C2+γ (Ḡ). By differentiating with respect to the time variable the differential 
equation (1a) and applying the above conditions on the function ut (x, t), we arrive at the following result: If a, f ∈ C2+γ (Ḡ), 
φ ∈ C4+γ [0, 1], gl, gR ∈ C2+γ /2[0, T ] and in addition to the constraints (2a), (2b) and (2c) we have

A2 = 0 with

A2 := −ε2φ(iv)(0) + 2εa(0,0)φ′′′(0) − a2(0,0)φ′′(0) + g′′
L (0−)

+ ε(axx(0,0)φ′(0) + 2ax(0,0)φ′′(0)) + (at − aax)(0,0)φ′(0)

− ( ft + ε fxx − afx)(0,0), (2d)

− ε2φ(iv)(1) + 2εa(1,0)φ′′′(1) − a2(1,0)φ′′(1) + g′′
R(0−)

+ ε(axx(1,0)φ′(1) + 2ax(1,0)φ′′(1)) + (at − aax)(1,0)φ′(1)

= ( ft + ε fxx − afx)(1,0), (2e)

then the solution of problem (1) satisfies u ∈ C4+γ (Ḡ).
The literature on numerical methods for singularly perturbed partial differential equations continues to rapidly expand 

since the publication of the books [7] and [21]. The bulk of this literature concentrates on linear problems with regular 
exponential layers (occurring near outflow boundaries) or characteristic layers (occurring near boundaries parallel to the 
characteristics of the reduced problem). In these publications, the solution is sufficiently smooth when the magnitude of 
the singular perturbation parameter is of order one. The absence of compatibility conditions for the parabolic problem (1)
introduces new kinds of layer functions (see the discussion in [23, pp. 351–352] and the references therein). In the case of 
elliptic problems with incompatible data, we refer the reader to [2], [3] and [13], where the nature of the singularities (due 
to low compatibility) is identified.

In the case of problem (1) with constant coefficients and when (2a) is not satisfied, the discontinuous analytic solution 
in the quarter plane x, t > 0 is given, for example, in [20], whereas in [1] an asymptotic expansion is given in the domain Ḡ . 
In the case of a variable coefficient a(t) and when (2a) is satisfied, a uniformly valid asymptotic expansion to the continuous 
solution of the problem posed on the quarter plane is presented in [22].

1 As in [9], we define the space C0+γ (D), where D ⊂ R2 is an open set, as the set of all functions that are Hölder continuous of degree γ ∈ (0, 1) with 
respect to the metric ‖ · ‖, where for all pi = (xi , ti), ∈ R2, i = 1, 2; ‖p1 − p2‖2 = (x1 − x2)2 + |t1 − t2|. For f to be in C0+γ (D) the following semi-norm 
needs to be finite


 f �0+γ ,D = sup
p1 �=p2, p1,p2∈D

| f (p1) − f (p2)|
‖p1 − p2‖γ

.

The space Cn+γ (D) is defined by

Cn+γ (D) =
{

z : ∂ i+ j z

∂xi∂t j
∈ C0+γ (D), 0 ≤ i + 2 j ≤ n

}
,

and ‖ · ‖n+γ , 
·�n+γ are the associated norms and semi-norms.
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In this paper, we consider the convection-diffusion problem (1) where the compatibility conditions (2a), (2b) and (2d)
at (0, 0) are not all imposed. To avoid additional regularity issues with the data we will assume that a, f ∈ C5+γ (Ḡ), φ ∈
C7[0, 1], gL ∈ C5[0, T ], gR ∈ C3[0, T ] and that the compatibility conditions (2c) and (2e) at (1, 0) are all satisfied.

We examine the problem where the initial and left boundary condition do not match, i.e., (2a) is not satisfied. In this 
case, we only study problem (1) when the convection coefficient a(x, t) depends solely on the time variable. Moreover, we 
first separate off a singular function that matches the incompatibility at the point (0, 0) and then use a numerical method 
to approximate the difference between the solution u and this singular function.

We also examine the problem where the initial and boundary condition match, so that the zero level compatibility 
(2a) is satisfied; but the higher compatibility conditions (2b) and (2d) are not satisfied. As the solution is continuous, a 
numerical method can be applied directly to the problem. If (2a) is satisfied but the first level of compatibility (2b) is not 
satisfied, then the order of convergence of the standard numerical method constructed is shown to be 0.5. If the first level 
of compatibility (2a) and (2b) is satisfied, then that numerical method is essentially first order.

In §2 a set of functions Sn(x, t), n ≥ 0 are constructed to model the nature of any singularity in the solution related to 
a lack of compatibility between the initial and boundary condition at the point (0, 0). Parameter-explicit pointwise bounds 
on the partial derivatives of these functions are also established in §2. In §3, the solution u of (1) is expanded in terms of 
these special functions Sn(x, t) as follows:

u(x, t) =
1∑

i=0

Ai Si(x, t) +
3∑

i=2

Bi Si(x, t) + v(x, t) + w(x, t),

where the amplitudes Ai, i = 0, 1; Bi, i = 2, 3 are suitably chosen so that v, w ∈ C4+γ (Ḡ), where v is the regular component 
and w is the boundary layer component of the solution u. With the aid of this expansion, a numerical method is constructed 
in §4 to generate a numerical approximation to u − A0 S0 (including also the case A0 = 0). The order of convergence of this 
method depends on whether A1 is zero or not. In §5, numerical results are presented for sample test problems to illustrate 
the performance of the method and to validate the orders of convergence established in the two main Theorems 3 and 
4 in §4. Technical details associated with establishing bounds on the derivatives of the functions Sn(x, t) are given in the 
appendix.

Notation: Throughout the paper, C denotes a generic constant that is independent of the singular perturbation parameter 
ε and all the discretization parameters. The L∞ norm on the domain D will be denoted by ‖ · ‖D . We also define the 
following interior layer function

Eγ (x, t) := e− γ (x−d(t))2

4εt , 0 < γ ≤ 1.

If γ = 1, we simply write E1(x, t) = E(x, t).

2. A set of singular functions with incompatibilities

In [11] and [12], the parabolic problem (1) with compatible boundary/initial data is examined, but with a discontinuity 
in the initial condition φ(x) at some internal point x = d, 0 < d < 1. In this case, the interior layer function

0.5 erfc

(
d(t) − x

2
√

εt

)
, 0 < d(0) < 1, erfc(z) := 2√

π

∞∫
r=z

e−r2
dr,

captures the nature of the singularity. We now define a set of related singular functions Sn(x, t), which will form a basis for 
the regularity expansion of the solution u(x, t) of problem (1). The regularity expansion is constructed in Theorem 1 (for 
A0 �= 0 and a = a(t)) and Theorem 2 (for A0 = 0 and a = a(x, t)). For all n ≥ 0:

Sn(x, t) := ψ+
n (x, t) + (−1)nψ−

n (x, t)

an(0,0)
, (3)

where the functions ψ±
n (x, t), n ≥ 0 are defined by

ψ−
n (x, t) := (−1)n2n−1n!(εt)n/2 erfcn(χ

−(x, t)), (4a)

ψ+
n (x, t) := (−1)n2n−1n!(εt)n/2e

xd(t)
εt erfcn(χ

+(x, t)), (4b)

χ±(x, t) := x ± d(t)

2
√

εt
, (4c)

and the iterated complementary error functions are
170
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erfc−1(x) := 2√
π

e−x2
, erfcn(x) :=

∞∫
s=x

erfcn−1(s)ds, n ≥ 0.

Observe that the first function S0 is discontinuous and

S1 ∈ C0+γ (Ḡ), S2n, S2n+1 ∈ C2n+γ (Ḡ), n ≥ 1.

In the next lemma, we establish bounds on the derivatives of the first three functions Sn, n = 0, 1, 2. These bounds indicate 
both the strength of the singularity at t = 0 and how certain derivatives can depend on inverse powers of ε.

Lemma 1. The function S0(x, t) satisfies the bounds

|S0| ≤ C,

∣∣∣∣∣∂
i S0

∂ti

∣∣∣∣∣≤ C

[
1

t

(
1 +

√
t

ε

)]i

Eγ (x, t), i = 1,2, (5a)

∣∣∣∣∣∂
i S0

∂xi

∣∣∣∣∣≤ C

εi

(
ε

t
+
(ε

t

)i/2
)

Eγ (x, t), i = 1,2,3; (5b)

the function S1(x, t) satisfies

|S1| ≤ C,

∣∣∣∣∂ S1

∂t

∣∣∣∣≤ C,

∣∣∣∣∂2 S1

∂t2

∣∣∣∣≤ C
1

t

(
1 +

√
t

ε

)
Eγ (x, t) + C, (6a)

∣∣∣∣∂ S1

∂x

∣∣∣∣≤ C,

∣∣∣∣∂2 S1

∂x2

∣∣∣∣≤ C

ε
Eγ (x, t) + C,

∣∣∣∣∂3 S1

∂x3

∣∣∣∣≤ C

ε
√

εt
Eγ (x, t) + C; (6b)

and the function S2(x, t) satisfies

|S2| ≤ C,

∣∣∣∣∂ S2

∂x

∣∣∣∣≤ C, (7a)

∣∣∣∣∂ S2

∂t

∣∣∣∣≤ C,

∣∣∣∣∂2 S2

∂t2

∣∣∣∣≤ C
(

1 + ε

t

)(
1 +

√
t

ε

)
Eγ (x, t) + C, (7b)

∣∣∣∣∂2 S2

∂x2

∣∣∣∣≤ C

(
1 +

√
t

ε

)
Eγ (x, t), (7c)

∣∣∣∣∂3 S2

∂x3

∣∣∣∣≤ C

ε

(
1 +

√
t

ε
+
√

ε

t

)
Eγ (x, t). (7d)

Proof. In the appendix, bounds on the partial derivatives of the functions ψ±
n (x, t) are established. These are used to prove 

the bounds on Sn . The bounds on S0 follow directly from (27) and (31). Using (24a) and the recurrence relation (25) we 
deduce the following

∂ S1

∂t
= a(d(t), t)

a(0,0)
S0 + x

p(t)ψ+
1

εt2
, p(t) := ta(d(t), t) − d(t);

a2(0,0)
∂ S2

∂t
= 2

(
εS0 − a(0,0)a(d(t), t)S1 + d(t)

t
ψ+

1

)
− p(t)

εt2
(d(t)ψ+

2 − ψ+
3 ).

The bounds on the time derivatives of S1 and S2 follow. To deduce the bounds on the space derivatives of these components, 
we first note that from (25), we have

a(0,0)
∂ S1

∂x
= ψ+

0 − ψ−
0 + d(t)

εt
ψ+

1 , a(0,0)
∂2 S1

∂x2
= d(t)

tε

(
2ψ+

0 + d(t)

tε
ψ+

1

)
,

a(0,0)
∂3 S1

∂x3
= d(t)

tε

(
2
∂ψ+

0

∂x
+ d(t)

tε

(
ψ+

0 + d(t)

tε
ψ+

1

))
,

and from (32) the bounds on the space derivatives of S1 follow. Next, we deduce bounds on the space derivatives of S2. 
From the definitions in (4), the following bounds are obtained
171
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∣∣∣∣∣
∂ iψ−

j

∂xi

∣∣∣∣∣≤ C(
√

εt) j−i Eγ (x, t) + C, j = 1,2; i = 1,2,3,

and using the recurrence relation (25) we get the bounds∣∣∣∣∣∂ψ+
1

∂x

∣∣∣∣∣≤ C Eγ (x, t),

∣∣∣∣∣∂
2ψ+

1

∂x2

∣∣∣∣∣≤ C

ε

(
1 +

√
ε

t

)
Eγ (x, t), (8a)

∣∣∣∣∣∂
3ψ+

1

∂x3

∣∣∣∣∣≤ C

εt

(
1 +

√
t

ε

)
Eγ (x, t), (8b)

∣∣∣∣∣∂ψ+
2

∂x

∣∣∣∣∣≤ C
√

εt Eγ (x, t),

∣∣∣∣∣∂
2ψ+

2

∂x2

∣∣∣∣∣≤ C

(
1 +

√
t

ε

)
Eγ (x, t), (8c)

∣∣∣∣∣∂
3ψ+

2

∂x3

∣∣∣∣∣≤ C

ε

(
1 +

√
t

ε
+
√

ε

t

)
Eγ (x, t). (8d)

The bounds on the space derivatives of S2 follow immediately from the bounds above on the space derivatives of the 
singular functions ψ−

i and ψ+
i . �

Observe that the strength of the singularity at (0, 0) in each of the functions Sn weakens as n increases. Using the 
identities in (25), we can deduce bounds on the remaining functions Sn, n ≥ 3:∣∣∣∣∂ Sn

∂x

∣∣∣∣≤ C, n ≥ 2,

∣∣∣∣∂2 Sn

∂x2

∣∣∣∣≤ C, n ≥ 4,

∣∣∣∣∂3 Sn

∂x3

∣∣∣∣≤ C, n ≥ 6, (9a)

∣∣∣∣∂2 S3

∂x2

∣∣∣∣≤ C

(
1 + t

(
1 +

√
t

ε

)
Eγ (x, t)

)
, (9b)

∣∣∣∣∂3 S3+n

∂x3

∣∣∣∣≤ C

⎛
⎝1 + tn

(
1 +

√
t

ε

)3−n

Eγ (x, t)

⎞
⎠ , n = 0,1,2, (9c)

∣∣∣∣∂ Sn

∂t

∣∣∣∣≤ C, n ≥ 2,

∣∣∣∣∂2 S3

∂t2

∣∣∣∣≤ C

(
1 +

√
ε

t
Eγ (x, t)

)
,

∣∣∣∣∂2 Sn

∂t2

∣∣∣∣≤ C, n ≥ 4. (9d)

3. The continuous problem

In the following result the asymptotic behaviour of the solution u to problem (1) is given when the convective coefficient 
a depends only on the time variable and u is discontinuous at (0, 0).

Theorem 1. Assume that a(x, t) = a(t), ∀(x, t) ∈ Ḡ and at(0) = 0. The solution u of (1) can be expanded as follows

u(x, t) =
1∑

i=0

Ai Si(x, t) +
3∑

i=2

Bi Si(x, t) + v(x, t) + w(x, t), (10a)

where the constants Ai are defined in (2a) and (2b). The constants B2, B3 are defined such that for 0 ≤ i + 2 j ≤ 4∣∣∣∣∣∂
i v

∂xi

∣∣∣∣∣≤ C(1 + ε2−i),

∣∣∣∣∣∂
j v

∂t j

∣∣∣∣∣≤ C; (10b)

∣∣∣∣∣∂
i+ j w

∂xi∂t j

∣∣∣∣∣≤ Cε−i(1 + ε1− j)e−α(1−x)/ε. (10c)

Proof. With the assumptions a = a(t), at(0) = 0 and noting (24d), we have

L Si = p(t)
ψ+

i+1

εt2
, p(t) = t3 P (t), |P (t)| ≤ C and L S0 ∈ C2+γ (Ḡ). (11)

We identify the remainder R by
172
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R := u(x, t) −
1∑

i=0

Ai Si(x, t), R(0, t) = gL(t) − CL(t), R(x,0) = φ(x),

where

CL(t) :=
1∑

i=0

Ai Si(0, t) =
1∑

i=0

Ai

(
d(t)

a(0)

)i

.

Then CL(0) = A0, C ′
L(0) = A1 and the remainder function R satisfies

LR = f − p(t)

εt2

(
A0ψ

+
1 + A1

a(0)
ψ+

2

)
∈ C2+γ (Ḡ). (12)

Hence, R ∈ C2+γ (Ḡ) as the amplitudes Ai, i = 0, 1 have been chosen so that the compatibility conditions (2a) and (2b) are 
satisfied by the problem data defining R .

The remainder R is further decomposed as follows

R(x, t) =
3∑

n=2

Bn Sn(x, t) + v(x, t) + w(x, t), v :=
5∑

n=4

Bn Sn(x, t) + z + v S , (13)

with v, z, v S , w ∈ C4+γ (Ḡ). The functions z and v S of the regular component v of R are required in our decomposition due 
to the weak singular right-hand side of the differential equation (12). The boundary layer function w of R will satisfy the 
problem Lw = 0, w(0, t) = w(x, 0) = 0, w(1, t) �= 0. All these functions and the constants Bn are specified below.

Consider the following function

z(x, t) := φ(x) + z0(x, t) + εz1(x, t) + ε2 Rz(x, t);
where

L0z0 = f + εφ′′(x) − a(t)φ′(x), 0 < x ≤ 1, t > 0,

z0(0, t) = gL(t) − CL(t) − φ(0) −
5∑

n=2

Bn Sn(0, t), t > 0, z0(x,0) = 0, 0 ≤ x ≤ 1,

L0z1 = ∂2z0

∂x2
, 0 < x ≤ 1, t > 0, z1(0, t) = 0, t > 0, z1(x,0) = 0, 0 ≤ x ≤ 1,

LRz = ∂2z1

∂x2
, (x, t) ∈ G, Rz(0, t) = Rz(1, t) = 0, t > 0, Rz(x,0) = 0, 0 ≤ x ≤ 1,

with the reduced differential operator

L0 := ∂

∂t
+ a(t)

∂

∂x
.

From this construction, z(1, t) = z0(1, t) + εz1(1, t) and

Lz = f , z(0, t) = R(0, t) −
5∑

n=2

Bn Sn(0, t), z(x,0) = R(x,0).

Note that the Hölder space Cn+γ (D) is the standard function space used for parabolic problems. In the case of the first 
order problem L0z0 = f , a different function space Cn,γ (D) is required. This function space is defined by

Cn,γ (D) :=
{

z : ∂ i+ j z

∂xi∂t j
∈ C0+γ (D), 0 ≤ i + j ≤ n

}
.

Observe that the function z0 satisfies z0(0+, 0) = z0(0, 0+) and the first level compatibility condition

f (0,0) + εφ′′(0) − a(0)φ′(0) = g′
L(0) − C ′

L(0),

is satisfied automatically. Hence, from [4] and [16, Theorem 4.1], the function z0 belongs to the space C1,γ (Ḡ). Now the pa-
rameters Bn, n = 2, 3, 4, 5 are chosen so that the necessary compatibility conditions on the reduced solution z0 are imposed 
in order that z0 ∈ C5,γ (Ḡ). Then, z1 ∈ C4,γ (Ḡ) and Rz ∈ C4+γ (Ḡ). Hence, z ∈ C4+γ (Ḡ) and
173
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∣∣∣∣∣ ∂ i+ j z

∂xi∂t j

∣∣∣∣∣≤ C
(

1 + ε2−i
)

, 0 ≤ i + 2 j ≤ 4.

We next define the component v S as the solution of the initial-boundary value problem

Lv S = LR − Lz −
5∑

n=2

Bn L Sn = −
1∑

n=0

An L Sn −
5∑

n=2

Bn L Sn, (x, t) ∈ G,

v S(0, t) = v S(1, t) = 0, t > 0, v S(x,0) = 0, 0 ≤ x ≤ 1.

Observe that v S ∈ C4+γ (Ḡ) as

(Lv S)(0,0) = (Lv S)x(0,0) = (Lv S)xx(0,0) = (Lv S)t(0,0) = 0,

and Lv S ∈ C2+γ (Ḡ). To deduce bounds on the derivatives of the component v S consider the stretched variables

τ = t

ε
, ζ = x

ε
(14)

and we denote g̃(ζ, τ ) := g(x, t) for any function g . Then, we have

x + d(t)

2
√

εt
= ζ + d̃1(τ )

2
√

τ
, with d̃1(τ ) := 1

ε

ετ∫
s=0

a(s) ds =
τ∫

s=0

ã(s) ds.

Using (11), we have that

−∂2 ṽ S

∂ζ 2
+ ã(τ )

∂ ṽ S

∂ζ
+ ∂ ṽ S

∂τ
= −ε2�̃+(ζ, τ ),

where

�̃+(ζ, τ ) := τ P̃ (τ )

(
1∑

n=0

Anψ̃
+
n+1

ε
+

5∑
n=2

Bnψ̃
+
n+1

ε

)
.

Then, from the definition (4) of the basic functions ψ−
n and ψ+

n , we have∣∣∣∣∣∂
i+ j�̃+

∂ζ i∂τ j

∣∣∣∣∣≤ C, 0 ≤ i + 2 j ≤ 2.

From [9] and [14], we have the following estimates for the partial derivatives of ṽ S∣∣∣∣∣ ∂
i+ j ṽ S

∂ζ i∂τ j

∣∣∣∣∣≤ Cε2, 0 ≤ i + 2 j ≤ 4.

Returning to the original variables, we get that∣∣∣∣∣∂
i+ j v S

∂xi∂t j

∣∣∣∣∣≤ C
(

1 + ε2−(i+ j)
)

, 0 ≤ i + 2 j ≤ 4.

The regular component v , which is defined in (13), satisfies v ∈ C4+γ (Ḡ) and the bounds (10b) follow by its construction.
Finally, consider the boundary layer component w; it is the solution of

Lw = 0, (x, t) ∈ G, w(x,0) = 0, 0 ≤ x ≤ 1,

w(0, t) = 0, w(1, t) =
(

R − v −
3∑

n=2

Bn Sn

)
(1, t), t > 0.

The bounds on w are established as in [10, Theorem 1]. We note that we require the assumption (1d) to establish the 
bounds on the derivatives of the boundary layer function w . This assumption guarantees that d(T ) < 1 and then the interior 
and boundary layers do not interact with each other. �

In the next theorem, we consider the case where (2a) is satisfied and the solution is continuous. In this case we can 
relax the constraints on the coefficient a(x, t) and allow this coefficient to vary in both space and time.
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Theorem 2. Assume that ax(0, 0) = 0 and gL(0) = φ(0). The solution u of (1) can be expanded as follows:

u(x, t) = A1 S1(x, t) +
3∑

i=2

Bi Si(x, t) + v(x, t) + w(x, t), (15a)

where A1 is defined in (2b) and for 0 ≤ i + 2 j ≤ 4∣∣∣∣∣∂
i v

∂xi

∣∣∣∣∣≤ C(1 + ε2−i),

∣∣∣∣∣∂
j v

∂t j

∣∣∣∣∣≤ C, (15b)

∣∣∣∣∣∂
i+ j w

∂xi∂t j

∣∣∣∣∣≤ Cε−i(1 + ε1− j)e−α(1−x)/ε. (15c)

Proof. Follow the argument in Theorem 2, but now we define the remainder to be R := u(x, t) − A1 S1(x, t) which satisfies

LR = f − p(t)

εt2

A1

a(0,0)
ψ+

2 − (a(x, t) − a(d(t), t))A1
∂ S1

∂x
. (16)

We examine the regularity of the function R . Compare (16) with (12). As in Theorem 1, the term f − p(t)
εt2

A1
a(0,0)

ψ+
2 in 

the right-hand side of (16) belongs to C2+γ (Ḡ) since ψ+
2 (x, t) ∈ C2+γ (Ḡ). We now consider the other term (a(x, t) −

a(d(t), t))A1
∂ S1
∂x of (16). Observe that, if ax(0, 0) = 0 then

a(x, t) − a(d(t), t) =
x∫

s=d(t)

ax(s, t)ds =
x∫

s=d(t)

t∫
r=0

axt(s, r)dr ds +
x∫

s=d(t)

s∫
r=0

axx(r,0)dr ds.

Hence,

|a(x, t) − a(d(t), t)| ≤ Ct|x − d(t)| + C |(x − d(t))| |(x + d(t))|
≤ Ct|x − d(t)| + C(x − d(t))2.

In addition, we have that

a(0,0)
∂

∂t

(
∂ S1

∂x

)
= ∂

∂t

(
ψ+

0 − ψ0
)+ ∂

∂t

(
d(t)

εt
ψ+

1

)
and

∂

∂t

(
ψ+

0 − ψ0
)= d(t) − 2ta(d(t), t)

2t
√

επt
E(x, t) + p(t)x

εt2
ψ+

0 ,

∂

∂t

(
d(t)

εt
ψ+

1

)
= ψ+

1
∂

∂t

(d(t)

εt

)
+ d(t)

εt

∂ψ+
1

∂t
.

Recall (24c) and observe also that

(x − d(t))(x + d(t))
1

t
ψ+

0 ∈ C0+γ (Ḡ).

Together, these imply that

(x − d(t))t
∂ψ+

1

∂t
, (x − d(t))2 ∂ψ+

1

∂t
∈ C0+γ (Ḡ).

Therefore,

(x − d(t))t
∂2 S1

∂x∂t
, (x − d(t))2 ∂2 S1

∂x∂t
∈ C0+γ (Ḡ).

Thus, it follows that LR ∈ C2+γ (Ḡ) if we assume that ax(0, 0) = 0. Hence, R ∈ C2+γ (Ḡ). Furthermore, using the stretched 
variables τ and ζ defined in (14), we note that if

�1(x, t) := 1

a(0,0)
(a(x, t) − a(d(t), t))

(
(ψ+

0 − ψ−
0 ) + d(t)

ε
ψ+

1

)
,

then, as |ã(ζ, τ ) − ã(d(τ ), τ )| ≤ Cε2(ζ + τ )2, it follows that
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|�̃1(ζ, τ )| ≤ Cε2(ζ + τ )2
(
|ψ̃+

0 | + |ψ̃−
0 | + τ |ψ̃+

1 |
)

.

Use this expression and (32) to deduce bounds on the derivatives of the corresponding component v S of the solution u. 
The argument is then completed as in the proof of the previous theorem. �

In the next section, we describe a numerical method that will generate a numerical approximation to y = u − A0 S0. 
If A0 = 0 (i.e., the zero level compatibility is satisfied), note that y = u. The function y satisfies the singularly perturbed 
problem

Ly = f − A0L S0, (x, t) ∈ G, (17a)

y(0, t) = gL(t) − A0, y(1, t) = gR(t) − A0 S0(1,0), t > 0, (17b)

y(x,0) = φ(x), 0 ≤ x ≤ 1. (17c)

4. Numerical method

Let N and M = O (N) be two positive integers. We approximate problem (17) with a finite difference scheme on a mesh 
Ḡ N,M = {xi}N

i=0 × {t j}M
j=0. We denote by ∂G N,M := Ḡ N,M\G . The mesh Ḡ N,M incorporates a uniform mesh (t j := kj with 

k = T /M) for the time variable and a piecewise-uniform mesh for the space variable with hi := xi − xi−1. The piecewise 
uniform mesh {xi}N

i=0 is a Shishkin mesh [7] which splits the interval [0, 1] into the two subintervals

[0,1 − σ ] ∪ [1 − σ ,1], where σ := min
{

0.5,
ε

α
ln N

}
.

The N + 1 space mesh points are distributed in the ratio N/2 : N/2 across the two subintervals. The discrete problem2 is: 
Find Y such that

LN,M Y := −εδ2
x Y + aD−

x Y + D−
t Y = f − A0L S0, t j > 0, (18a)

Y (xi,0) = y(xi,0), 0 < xi < 1, (18b)

Y (0, t j) = y(0, t j), Y (1, t j) = y(1, t j), t j ≥ 0. (18c)

We form a global approximation Ȳ using simple bilinear interpolation:

Ȳ (x, t) :=
N,M∑

i=0, j=1

Y (xi, t j)ϕi(x)η j(t),

where ϕi(x) is the standard hat function centered at x = xi and η j(t) := (t − t j−1)/k, t ∈ (t j−1, t j], η j(t) := 0 otherwise.
In the next theorem, a convergence result is given in the particular case of a = a(t) and gL(0) �= φ(0). In this case, the 

solution of problem (1) is decomposed as in Theorem 1 and after separating off the singular function S0, the numerical 
method (18) is applied to approximate y = u − A0 S0.

Theorem 3. Assume that a(x, t) = a(t), ∀(x, t) ∈ Ḡ, at(0) = 0, and M = O (N). If Y is the solution of (18) and y is the solution of (17), 
then

‖Ȳ − y‖Ḡ ≤ C |A1|N−1/2 + C N−1 ln N.

Proof. As in the case of the continuous problem, the discrete solution can be decomposed into the sum Y = A1 S N
1 + A2 S N

2 +
V + W , where

LN,M V = Lv, (xi, t j) ∈ G N,M and V = v, (xi, t j) ∈ ∂G N,M;
LN,M W = 0, (xi, t j) ∈ G N,M and W = w, (xi, t j) ∈ ∂G N,M;
LN,M S N

k = L Sk, (xi, t j) ∈ G N,M and S N
k = Sk, (xi, t j) ∈ ∂G N,M , k = 1,2.

2 We use the following notation for the finite difference approximations of the derivatives:

D−
t Y (xi, t j) := Y (xi , t j) − Y (xi, t j−1)

k
, D−

x Y (xi, t j) := Y (xi , t j) − Y (xi−1, t j)

hi
,

D+
x Y (xi, t j) := Y (xi+1, t j) − Y (xi, t j)

hi+1
, δ2

x Y (xi, t j) := 2

hi + hi+1
(D+

x Y (xi, t j) − D−
x Y (xi, t j)).
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Using the bounds on the derivatives (10c) of the component w to obtain appropriate truncation error estimates, the discrete 
maximum principle with a suitable discrete barrier function and following the arguments in [17], we can establish the 
following bounds

|(w − W )(xi, t j)| ≤ C N−1 ln N, (xi, t j) ∈ Ḡ N,M . (19)

The error due to the regular component v can be bounded in a classical way [18] to deduce that

|(v − V )(xi, t j)| ≤ C N−1, (xi, t j) ∈ Ḡ N,M . (20)

Let us now consider the two weakly singular functions S1, S2 and their numerical approximations S N
1 , S N

2 . For both func-
tions, the truncation error is denoted by

TSk;i, j := LN,M(Sk − S N
k )(xi, t j),

then

|TSk;i, j| ≤ Cε(hi + hi+1)

∥∥∥∥∥∂3 Sk(x, t j)

∂x3

∥∥∥∥∥
(xi−1,xi+1)

+ C min

⎧⎨
⎩hi

∥∥∥∥∥∂2 Sk(x, t j)

∂x2

∥∥∥∥∥
(xi−1,xi)

,

∥∥∥∥∂ Sk(x, t j)

∂x

∥∥∥∥
(xi−1,xi)

⎫⎬
⎭

+ C min

⎧⎪⎨
⎪⎩

1

k

t j∫
w=t j−1

t j∫
r=w

∣∣∣∣∂2 Sk(xi, r)

∂t2

∣∣∣∣dr dw,

∥∥∥∥∂ Sk(xi, t)

∂t

∥∥∥∥
(t j−1,t j)

⎫⎪⎬
⎪⎭ ,

as

|D−
t Sk(xi, t j)| ≤ 1

k

t j∫
r=t j−1

∣∣∣∣∂ Sk(xi, r)

∂r
dr

∣∣∣∣≤ C

∥∥∥∥∂ Sk(xi, t)

∂t

∥∥∥∥
(t j−1,t j)

.

Note also that at each time level,(
−εδ2

x + aD−
x + 1

k
I

)
(Sk − S N

k )(xi, t j) = TSk;i, j + 1

k
(Sk − S N

k )(xi, t j−1), t j > 0.

In the case of the weaker singular function S2, we use the bounds (7) so that the truncation error at the first time level 
t = t1 is

|TS2;i,1| ≤ 2

(
ε

∥∥∥∥∂2 S2

∂x2

∥∥∥∥
(xi−1,xi+1)

+ a

∥∥∥∥∂ S2

∂x

∥∥∥∥
(xi−1,xi)

+
∥∥∥∥∂ S2

∂t

∥∥∥∥
(t0,t1)

)
≤ C(ε + √

εt1)e−γ
(xi−at1)2

4εT ≤ C .

At the next time levels tn, n ≥ 2, we again use the bounds (7) to deduce the truncation error bounds

|TS2;i, j| ≤ Cε(hi + hi+1)

∥∥∥∥∂3 S2

∂x3

∥∥∥∥
(xi−1,xi+1)

+ ahi

∥∥∥∥∂2 S2

∂x2

∥∥∥∥
(xi−1,xi)

+ Ck

∥∥∥∥∂2 S2

∂t2

∥∥∥∥
(t j−1,t j)

≤
(

C N−1

(
1 +

√
ε

t j
+
√

t j

ε

)
+ C M−1

(
1 +

√
ε

t j−1
+ ε

t j−1
+
√

t j

ε

))
Eγ (x, t)

≤ C

(
M−1

√
ε

+ M−1/2

√
j − 1

+ ε

j − 1

)
Eγ (x, t), j ≥ 2,

as M = C N . Then, we deduce the error bound

∣∣∣(S2 − S N
2 )(xi, t j)

∣∣∣≤ C M−1
j∑

n=1

|TS2;i,n| ≤ C M−1 + C M−1
j∑

n=2

|TS2;i,n|

≤ C M−1 + C M−1
j∑

n=2

M−1

√
ε

Eγ (x, t) + C M−3/2
j∑

n=2

1√
n − 1

+ C M−1ε

j∑
n=2

1

n − 1

≤ C M−1 + C M−3/2

j∫
s=1

ds√
s

+ C M−1ε

j∫
s=1

ds

s

≤ C M−1 + C M−1ε ln M ≤ C M−1.
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Finally, we consider the error due to the singular component S1. The argument splits into the two cases of ε ≤ C M−1 and 
ε ≥ C M−1. If Mε ≥ C , from (6) we obtain the following truncation errors bounds at the first time level t = t1

|TS1;i,1| ≤ 2

(
ε

∥∥∥∥∂2 S1

∂x2

∥∥∥∥
(xi−1,xi+1)

+ a

∥∥∥∥∂ S1

∂x

∥∥∥∥
(xi−1,xi)

+
∥∥∥∥∂ S1

∂t

∥∥∥∥
(t0,t1)

)
≤ C .

At the next time levels tn, n ≥ 2, use again (6) to deduce the truncation error bounds

|TS1;i, j| ≤ Cε(hi + hi+1)

∥∥∥∥∂3 S1

∂x3

∥∥∥∥
(xi−1,xi+1)

+ ahi

∥∥∥∥∂2 S1

∂x2

∥∥∥∥
(xi−1,xi)

+ Ck

∥∥∥∥∂2 S1

∂t2

∥∥∥∥
(t j−1,t j)

≤ C

(
N−1

ε
+ N−1 + M−1√

εt j−1
+ M−1

t j−1

)
Eγ (x, t) + C N−1

≤ C

(
M−1

ε
+ M−1/2

√
ε( j − 1)

+ 1

j − 1

)
Eγ (x, t) + C N−1, j ≥ 2,

as M = C N . Then,

∣∣∣(S1 − S N
1 )(xi, t j)

∣∣∣≤ C M−1
j∑

n=1

|TS1;i,n| ≤ C M−1 + C M−1
j∑

n=2

|TS1;i,n|

≤ C M−1 + C
M−1

√
ε

j∑
n=2

M−1

√
ε

Eγ (x, t) + C
M−3/2

√
ε

j∑
n=2

1√
n − 1

+ C M−1
j∑

n=2

1

n − 1

≤ C
M−1

√
ε

+ C
M−3/2

√
ε

j∫
s=1

ds√
s

+ C M−1

j∫
s=1

ds

s
,

≤ C M−1/2 + C M−1 ln M ≤ C M−1/2. (21)

In the other case of Mε ≤ C , from (8a) we first note the following bounds∣∣∣∣∣∂ψ+
1

∂x

∣∣∣∣∣+
∣∣∣∣∣∂

2ψ+
1

∂x2

∣∣∣∣∣≤ C

ε
Eγ (x, t),

and from (26b) and (32)∣∣∣∣∣∂ψ+
1

∂t

∣∣∣∣∣≤ |Lψ+
1 | + ε

∣∣∣∣∣∂
2ψ+

1

∂x2

∣∣∣∣∣+ a(t)

∣∣∣∣∣∂ψ+
1

∂x

∣∣∣∣∣≤ C Eγ (x, t),

which should be compared to (6). Also, a(0)L S1 = Lψ+
1 . Hence,

|TS1;i, j| ≤ Cε

∥∥∥∥∥∂2ψ+
1

∂x2

∥∥∥∥∥
(xi−1,xi+1)

+ C

∥∥∥∥∥∂ψ+
1

∂x

∥∥∥∥∥
(xi−1,xi)

+ C

∥∥∥∥∥∂ψ+
1

∂t

∥∥∥∥∥
(t j−1,t j)

≤ C Eγ (x, t).

We now have

∣∣∣(S1 − S N
1 )(xi, t j)

∣∣∣≤ C M−1
j∑

n=1

|TS1;i,n| ≤ C
√

ε

j∑
n=1

M−1

√
ε

Eγ (x, t)

≤ C
√

ε

j∑
n=1

M−1

√
ε

e−γ
(xi−at j )

2

4εT ≤ C
√

ε ≤ C M−1/2, (22)

where we have used that 
∫∞

r=−∞
1
p e− r2

p dr = √
π . From (21) and (22), we deduce∣∣∣(S1 − S N

1 )(xi, t j)

∣∣∣≤ C M−1/2.

Combining all of the bounds above, we deduce the nodal error bound

‖Y − y‖Ḡ N,M ≤ C |A1|N−1/2 + C N−1 ln N.

Use the arguments in [11] to extend this nodal error bound to the global error bound. �
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Table 1
Maximum two-mesh global differences and orders of convergence for Example 1.

N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024

ε = 20 2.593E-03 1.306E-03 6.567E-04 3.285E-04 1.643E-04 8.212E-05 4.106E-05
0.989 0.992 1.000 1.000 1.000 1.000

ε = 2−6 3.004E-02 1.768E-02 1.014E-02 5.522E-03 2.888E-03 1.467E-03 7.321E-04
0.764 0.802 0.877 0.935 0.977 1.003

ε = 2−12 3.547E-02 2.356E-02 1.598E-02 1.103E-02 7.581E-03 5.175E-03 3.442E-03
0.590 0.560 0.535 0.541 0.551 0.588

ε = 2−18 3.551E-02 2.363E-02 1.609E-02 1.118E-02 7.818E-03 5.502E-03 3.877E-03
0.588 0.554 0.526 0.516 0.507 0.505

ε = 2−24 3.551E-02 2.363E-02 1.609E-02 1.118E-02 7.820E-03 5.505E-03 3.882E-03
0.588 0.554 0.525 0.516 0.506 0.504

ε = 2−30 3.551E-02 2.363E-02 1.609E-02 1.118E-02 7.820E-03 5.506E-03 3.882E-03
0.588 0.554 0.525 0.516 0.506 0.504

D N,M 3.551E-02 2.363E-02 1.609E-02 1.118E-02 7.820E-03 5.506E-03 3.882E-03
P N,M 0.588 0.554 0.525 0.516 0.506 0.504

Remark 1. If the convective coefficient a(t) only depends on the time variable and the constraint (1d) is not imposed on 
the final time T , then the interior layer will interact with the boundary layer (see [1,11]) in an O (

√
ε) neighbourhood of 

the point (1, T∗), where d(T∗) = 1. To retain the parameter uniform error bound (as stated in Theorem 3), an additional 
piecewise uniform Shishkin mesh in time should be used either side of t = T∗ . See [11] for details of the mesh and the 
associated proof of uniform convergence. Minor modifications to the proof of the error bound are required to deal with the 
presence of additional terms involving ψ+

i (1, t), i = 0, 1, 2, 3, 4. Example 3 in the numerical section deals with this case of 
the interior layer and boundary layer interacting.

In the final theorem, we consider the case of gL(0) = φ(0), where the solution of (1) is continuous. In this case the 
solution of problem (1) with a = a(x, t) can be decomposed as in Theorem 2 and the numerical method (18) is applied 
directly to the problem without separating off the singular function S0. The proof of Theorem 3 is also valid for the following 
result.

Theorem 4. Assume that ax(0, 0) = 0, gL(0) = φ(0) and M = O (N). If Y is the solution of (18) and u is the solution of (1), then

‖Ȳ − y‖Ḡ ≤ C |A1|N−1/2 + C N−1 ln N.

Remark 2. From the hypothesis of Theorem 4, it is satisfied that A0 = gL(0) − φ(0) = 0 and then y = u and Y = U , where 
U is the numerical approximation of u at the mesh points of Ḡ N,M .

5. Numerical experiments

The solution of all the test examples presented below is unknown and the global orders of convergence are estimated 
using the two-mesh method [7, Chapter 8]. In this particular section, the computed solutions with (18) on the Shishkin 
meshes Ḡ N,M and Ḡ2N,2M are denoted, respectively, by Y N,M and Y 2N,2M . Let Ȳ N,M be the bilinear interpolation of the 
discrete solution Y N,M on the mesh Ḡ N,M . Then, compute the maximum two-mesh global differences

D N,M
ε := ‖Ȳ N,M − Ȳ 2N,2M‖Ḡ N,M∪Ḡ2N,2M

and use these values to estimate the orders of global convergence P N,M
ε

P N,M
ε := log2

(
D N,M

ε

D2N,2M
ε

)
.

The uniform two-mesh global differences D N,M and the uniform orders of global convergence P N,M are calculated by

D N,M := max
ε∈S

D N,M
ε , P N,M := log2

(
D N,M

D2N,2M

)
,

where S = {20, 2−1, . . . , 2−30}. In all of the tables below we display the maximum and uniform two-mesh global differences 
and the corresponding orders of convergence for N = 16, 32, . . . , 1024 and N = M . For the sake of brevity, we display the 
results in the tables for a smaller representative set of values of ε. Note that in the first three examples, the convective 
coefficient a(t) does not depend on the spatial variable.
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Fig. 1. Example 1 with ε = 2−10: Computed component Y with the scheme (18) for N = M = 64 and the numerical approximation U .

Table 2
Maximum two-mesh global differences and orders of convergence for Example 2.

N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024

ε = 20 6.959E-03 3.209E-03 1.541E-03 7.536E-04 3.725E-04 1.852E-04 9.233E-05
1.117 1.058 1.032 1.016 1.008 1.004

ε = 2−6 5.202E-02 2.956E-02 1.666E-02 9.232E-03 5.067E-03 2.751E-03 1.484E-03
0.816 0.827 0.852 0.865 0.881 0.891

ε = 2−12 6.938E-02 3.622E-02 2.037E-02 1.125E-02 6.138E-03 3.329E-03 1.792E-03
0.938 0.830 0.856 0.875 0.883 0.894

ε = 2−18 6.968E-02 3.634E-02 2.044E-02 1.130E-02 6.161E-03 3.342E-03 1.799E-03
0.939 0.830 0.855 0.875 0.882 0.894

ε = 2−24 6.969E-02 3.634E-02 2.044E-02 1.130E-02 6.162E-03 3.343E-03 1.799E-03
0.939 0.830 0.855 0.875 0.882 0.894

ε = 2−30 6.969E-02 3.634E-02 2.044E-02 1.130E-02 6.163E-03 3.340E-03 1.802E-03
0.939 0.830 0.855 0.874 0.884 0.890

D N,M 6.969E-02 3.634E-02 2.044E-02 1.130E-02 6.163E-03 3.343E-03 1.802E-03
P N,M 0.939 0.830 0.855 0.874 0.883 0.891

Example 1. We consider the following initial-boundary value problem

ut − εuxx + (1 − t2)ux = 2tx, (x, t) ∈ (0,1) × (0,0.5],
u(x,0) = 0, x ∈ (0,1),

u(0, t) = 1 + t, u(1, t) = 0, t ∈ [0,0.5].
Note that a′(0) = 0 and A1 = 1 �= 0 in this example. In Fig. 1 the computed component Y with the scheme (18) for ε = 2−10

and N = M = 64 is shown. The approximation U to the solution of Example 1 also appears in that figure; the interior layer 
emanating from the point (0, 0) and the boundary layer in the outflow boundary are observed. The numerical results are 
in Table 1 and they indicate that the numerical method (18) converges uniformly and globally with order O (N−1/2) in 
agreement with Theorem 3.

Example 2. Consider the example

ut − εuxx + (1 − t2)ux = 2tx, (x, t) ∈ (0,1) × (0,0.5],
u(x,0) = x3, x ∈ (0,1),

u(0, t) = 1 + t2, u(1, t) = 1, t ∈ [0,0.5].
In this example the data problem satisfy that a′(0) = 0 but A1 = 0. The numerical results obtained for Example 2 with the 
numerical method (18) are given in Table 2 and they indicate that the method converges with order O (N−1 ln N) (see [7, p. 
169]) as stated in Theorem 3.
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Fig. 2. Example 3 with ε = 2−10: Computed component Y with the scheme (18) for N = M = 64 and the numerical approximation U .

Table 3
Maximum two-mesh global differences and orders of convergence for Example 3.

N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024

ε = 20 4.394E-02 1.659E-02 8.327E-03 4.169E-03 2.087E-03 1.044E-03 5.220E-04
1.405 0.995 0.998 0.999 0.999 1.000

ε = 2−6 1.814E-01 1.194E-01 6.717E-02 4.134E-02 2.517E-02 1.435E-02 8.148E-03
0.604 0.830 0.700 0.716 0.811 0.816

ε = 2−12 1.805E-01 1.190E-01 6.693E-02 4.124E-02 2.514E-02 1.433E-02 8.143E-03
0.601 0.830 0.699 0.714 0.811 0.816

ε = 2−18 1.802E-01 1.187E-01 6.676E-02 4.117E-02 2.511E-02 1.432E-02 8.135E-03
0.603 0.830 0.698 0.713 0.811 0.815

ε = 2−24 1.802E-01 1.187E-01 6.674E-02 4.116E-02 2.511E-02 1.431E-02 8.134E-03
0.603 0.830 0.697 0.713 0.811 0.815

ε = 2−30 1.802E-01 1.187E-01 6.673E-02 4.116E-02 2.508E-02 1.432E-02 8.149E-03
0.603 0.830 0.697 0.715 0.808 0.813

D N,M 1.814E-01 1.231E-01 8.014E-02 4.140E-02 2.520E-02 1.437E-02 8.165E-03
P N,M 0.560 0.619 0.953 0.716 0.811 0.815

Example 3. Consider the example

ut − εuxx + (1 + 3t2 − 2t)ux = 4x(1 − x), (x, t) ∈ (0,1) × (0,1.5],
u(x,0) = x3(1 − x)3, x ∈ (0,1),

u(0, t) = 1 + 0.25t2, u(1, t) = 0, t ∈ [0,1.5].
Note that a′(0) �= 0 and A1 = 0. As regards the outflow point (1, 0), the compatibility condition (2c) is satisfied, but not 
(2e). Furthermore, condition (1d) is not fulfilled; then the interior and boundary layers interact with each other. This effect 
is observed in Fig. 2 where the approximations to the component y and the solution u are shown. The numerical results 
obtained with the scheme (18) combined with a modification to the mesh in time [11, (19)] (see also Remark 1) are given 
in Table 3. These results suggest that the method converges globally and uniformly with order O (N−1 ln N).

Example 4. Consider the example

ut − εuxx + (1 + x2)ux = 4x(1 − x), (x, t) ∈ (0,1) × (0,0.5],
u(x,0) = 0, x ∈ (0,1),

u(0, t) = u(1, t) = t2, t ∈ [0,0.5].
Note that ax(0, 0) = 0 and A0 = A1 = 0. The numerical results obtained with the scheme (18) are given in Table 4 and they 
indicate that the method converges with order O (N−1 ln N) as stated in Theorem 4.

Example 5. Consider the example

ut − εuxx + (1 + x)ux = 4x(1 − x), (x, t) ∈ (0,1) × (0,0.5],
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Table 4
Maximum two-mesh global differences and orders of convergence for Example 4.

N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024

ε = 20 2.960E-03 1.515E-03 7.615E-04 3.819E-04 1.912E-04 9.567E-05 4.785E-05
0.967 0.992 0.996 0.998 0.999 1.000

ε = 2−6 2.590E-02 1.643E-02 9.829E-03 5.503E-03 3.026E-03 1.634E-03 8.757E-04
0.656 0.742 0.837 0.863 0.889 0.900

ε = 2−12 3.115E-02 2.004E-02 1.201E-02 6.698E-03 3.677E-03 1.992E-03 1.070E-03
0.636 0.739 0.843 0.865 0.884 0.897

ε = 2−18 3.126E-02 2.011E-02 1.205E-02 6.718E-03 3.689E-03 1.999E-03 1.073E-03
0.637 0.739 0.843 0.865 0.884 0.897

ε = 2−24 3.126E-02 2.011E-02 1.205E-02 6.719E-03 3.689E-03 1.999E-03 1.073E-03
0.637 0.739 0.843 0.865 0.884 0.897

ε = 2−30 3.126E-02 2.011E-02 1.205E-02 6.718E-03 3.690E-03 1.998E-03 1.075E-03
0.637 0.739 0.843 0.865 0.885 0.894

D N,M 3.126E-02 2.011E-02 1.205E-02 6.719E-03 3.690E-03 1.999E-03 1.075E-03
P N,M 0.637 0.739 0.843 0.865 0.884 0.895

Table 5
Maximum two-mesh global differences and orders of convergence for Example 5.

N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024

ε = 20 1.426E-03 8.292E-04 4.557E-04 2.388E-04 1.222E-04 6.173E-05 3.099E-05
0.782 0.863 0.932 0.967 0.985 0.994

ε = 2−6 2.563E-02 1.562E-02 9.145E-03 5.113E-03 2.896E-03 1.600E-03 8.695E-04
0.714 0.772 0.839 0.820 0.856 0.879

ε = 2−12 3.099E-02 2.117E-02 1.437E-02 9.917E-03 6.914E-03 4.794E-03 3.258E-03
0.550 0.559 0.535 0.520 0.528 0.557

ε = 2−18 3.108E-02 2.128E-02 1.449E-02 1.007E-02 7.115E-03 5.061E-03 3.603E-03
0.547 0.554 0.525 0.501 0.492 0.490

ε = 2−24 3.108E-02 2.128E-02 1.449E-02 1.007E-02 7.119E-03 5.065E-03 3.609E-03
0.547 0.554 0.525 0.501 0.491 0.489

ε = 2−30 3.108E-02 2.128E-02 1.449E-02 1.007E-02 7.119E-03 5.065E-03 3.609E-03
0.547 0.554 0.525 0.501 0.491 0.489

D N,M 3.108E-02 2.128E-02 1.449E-02 1.007E-02 7.119E-03 5.065E-03 3.609E-03
P N,M 0.547 0.554 0.525 0.501 0.491 0.489

u(x,0) = 0, x ∈ (0,1),

u(0, t) = t; u(1, t) = t2, t ∈ [0,0.5].
Note that ax(0, 0) �= 0 and A0 = 0, A1 �= 0. The numerical results obtained with the scheme (18) are given in Table 5. They 
suggest that the method converges globally and uniformly with order O (N−1/2), but the theoretical justification of these 
results remains open, as the proof in Theorem 4 requires ax(0, 0) = 0.

Remark 3. In the numerical experiments performed, we have considered (28) when evaluating ψ+
0 and θ := d(t j)xi/(t jε) is 

a large number with (xi, t j) ∈ G N,M to prevent overflow problems. If θ ≥ 300, the value of the Mill’s ratio H in Examples 1, 
2 and 3 has been computed by using that

H(r) ∼ 1

r
√

π

(
1 +

∞∑
m=1

(−1)m 1.3 . . . (2m − 1)

(2r2)m

)
, as r → ∞.

This series has been approximated by the n-th partial sum and the maximum two-mesh global differences in Tables 1, 2
and 3 have been obtained with n = 5. Similar results have been obtained if larger values of n are considered.
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Appendix A. Bounds on the derivatives of the functions ψ±
i (x, t)

The functions ψ±
i (x, t) are defined by means of the iterated integrals of the complementary error function. Define

erfc−1(x) := 2√
π

e−x2
, erfcn(x) :=

∞∫
s=x

erfcn−1(s)ds, n ≥ 0.

Note that erfc0(x) = erfc(x)3 and

erfcn(x) = 2√
π

∞∫
s=x

(s − x)n

n! e−s2
ds.

In addition, we have the following identities [19]

n erfcn(x) + x erfcn−1(x) = 1

2
erfcn−2(x); n ≥ 1; (23a)

(−1)n erfcn(x) + erfcn(−x) = i−n

2n−1n! Hn(ix); n ≥ 0, (23b)

where i2 = −1 and Hn is the Hermite polynomial of degree n.
Recall the definitions in (4) and note that

ψ±
1 (x, t) = (x ± d(t))ψ±

0 (x, t) + 2εtψ±
−1(x, t), (24a)

2t
∂ψ−

1

∂t
= ψ−

1 − (2ta(d(t), t) + (x − d(t))
)
ψ−

0 , (24b)

2t
∂ψ+

1

∂t
=
(

1 + 2xp(t)

εt

)
ψ+

1 + (2ta(d(t), t) − (x + d(t))
)
ψ+

0 , (24c)

where

ψ±
−1(x, t) := − E(x, t)

2
√

επt
,

and

p(t) := ta(d(t), t) − d(t) =
t∫

s=0

a(d(t), t) − a(d(s), s)) ds. (24d)

Observe that p(t) ≡ 0, when a(x, t) = a is a constant.
Some recurrence relations are given below which are useful when bounding the derivatives of the functions ψ±

n (x, t).
For all n ≥ 1

∂ψ−
n

∂x
= nψ−

n−1,
∂ψ+

n

∂x
= nψ+

n−1 + d(t)

εt
ψ+

n , (25a)

and for all n ≥ 2 (using (23a)) we have

3 The first three iterated integrals of the complementary error function are

erfc1(x) = e−x2

√
π

− x erfc(x) = e−x2
(

1√
π

− xex2
erfc(x)

)
,

erfc2(x) = 1

4

(
(1 + 2x2) erfc(x) − 2xe−x2

√
π

)
,

erfc3(x) = 1

6

(
(1 + x2)e−x2

√
π

− (3x + 2x3)

2
erfc(x)

)
.
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ψ±
n (x, t) = (x ± d(t))ψ±

n−1(x, t) + 2(n − 1)εtψ±
n−2(x, t), (25b)

∂ψ−
n

∂t
= εn(n − 1)ψ−

n−2 − a(d(t), t)nψ−
n−1,

∂ψ+
n

∂t
= εn(n − 1)ψ+

n−2 +
(

2
d(t)

t
− a(d(t), t)

)
nψ+

n−1 − p(t)

εt2
(d(t)ψ+

n − ψ+
n+1).

In the case of constant coefficients one has Lψ−
n = Lψ+

n = 0, but for variable a(x, t), by using (23a) we have that for all 
n ≥ 0

Lψ−
n = (a(d(t), t) − a(x, t))

∂ψ−
n

∂x
, (26a)

Lψ+
n = (a(d(t), t) − a(x, t))

∂ψ+
n

∂x
+ p(t)

ψ+
n+1

εt2
. (26b)

Using the inequality erfc(z) ≤ Ce−z2 ≤ Ceγ 2/4e−γ z, ∀z ≥ 0 it follows (see [11] and [12]) that∣∣∣∣∣ ∂ j

∂t j
ψ−

0 (x, t)

∣∣∣∣∣ ,
∣∣∣∣∣ ∂ j

∂t j
E(x, t)

∣∣∣∣∣≤ C

(
1

t
+ 1√

εt

) j

Eγ (x, t); j = 1,2, (27a)

∣∣ψ−
0 (x, t)

∣∣≤ C and |ψ−
0 (x, t)| ≤ C E(x, t), if x ≥ d(t), (27b)∣∣∣∣∣ ∂ i

∂xi
ψ−

0 (x, t)

∣∣∣∣∣ ,
∣∣∣∣∣ ∂ i

∂xi
E(x, t)

∣∣∣∣∣≤ C

(
1√
εt

)i

Eγ (x, t), 1 ≤ i ≤ 4. (27c)

The following remark is used to prove bounds on the derivatives of the singular function ψ+
0 and to compute the 

numerical results presented in Section §5 (see Remark 3).

Remark 4. The function ψ+
0 can be written as

ψ+
0 (x, t) = 1

2
e

d(t)x
tε erfc

(
x + d(t)

2
√

εt

)
= 1

2
E(x, t) H

(
x + d(t)

2
√

εt

)
, (28)

where H is the Mill’s ratio and it is defined by H(x) := ex2
erfc(x). From [15], we have the inequality

1

π−1√
π

x +
√

1 + x2

π

≤ H(x) ≤ 1

2√
π

x +
√

1 + (π−2)2x2

π

. (29)

Hence, for all x > 0

(
1 − √

πxH(x)
)≤ min

{
1

2x2
,

1√
πx

}
,

and

e
d(t)x

tε erfc1

(
x + d(t)

2
√

εt

)
= E(x, t)√

π

(
1 − √

π

(
x + d(t)

2
√

εt

)
H

(
x + d(t)

2
√

εt

))
.

Hence,

1√
εt

(
e

d(t)x
tε erfc1

(
x + d(t)

2
√

εt

))
≤ C

E(x, t)

x + d(t)
min

{
1,

√
εt

x + d(t)

}
. (30)

In the next lemma bounds on the derivatives of the function ψ+
0 are deduced.

Lemma 2. For the singular function ψ+
0 , we have the following bounds

|ψ+
0 (x, t)| ≤ C min

{
1,

√
εt

x + d(t)

}
E(x, t), (31a)

∣∣∣∣ ∂
ψ+

0 (x, t)

∣∣∣∣≤ C
Eγ (x, t), (31b)
∂t t
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∣∣∣∣ ∂2

∂t2
ψ+

0 (x, t)

∣∣∣∣≤ C

t2

(
1 +

√
t

ε

)
Eγ (x, t), (31c)

∣∣∣∣ ∂

∂x
ψ+

0 (x, t)

∣∣∣∣≤ C

x + d(t)
Eγ (x, t), (31d)

∣∣∣∣ ∂2

∂x2
ψ+

0 (x, t)

∣∣∣∣≤ C

εt
Eγ (x, t), (31e)

∣∣∣∣ ∂3

∂x3
ψ+

0 (x, t)

∣∣∣∣≤ C

ε2t

(
1 +

√
ε

t

)
Eγ (x, t). (31f)

Proof. Note first that

p(t) = ta(d(t), t) − d(t).

Hence, |p(t)| ≤ Ct2.4 To prove (31a), we use that |H(r)| ≤ C and rH(r) ≤ C for all r ≥ 0, where H is defined in Remark 4. 
Then,

(x + d(t))ψ+
0 (x, t) ≤ C

√
εt E(x, t) and ψ+

0 (x, t) ≤ C E(x, t).

Using (30), (31a) and the identity (25b) we easily establish the following bounds

|ψ+
i (x, t)| ≤ C(

√
εt)i min

{
1,

√
ε

t

}
E(x, t), i = 1,2. (32)

To prove (31b), observe that

(x + d(t))
∂ψ+

0 (x, t)

∂t
= xp(t)

t

(
(x + d(t))

tε
ψ+

0 (x, t) − E(x, t)√
επt

)

+ (4xp(t) + (x + d(t))((x + d(t) − 2ta(t)))
E(x, t)

4t
√

επt

= xp(t)

εt2
ψ+

1 (x, t) + (x − d(t))2 E(x, t)

4t
√

επt
+ a(d(t), t)(x − d(t))

E(x, t)

2
√

επt
,

and use (30) and |p(t)| ≤ Ct2. Next, we prove (31c). We have that

(x + d(t))
∂2ψ+

0 (x, t)

∂t2 = ∂

∂t

( xp(t)

εt2 ψ+
1 (x, t) + (x + d(t) + 2p(t))

(x − d(t))E(x, t)

4t
√

επt

)
− a(d(t), t)

∂ψ+
0 (x, t)

∂t
,

and ∣∣∣∣ ∂

∂t

(
p(t)

t2

)∣∣∣∣≤ C + C
‖∇a(0,0)‖

t
≤ C

t
,

∣∣∣∣ (x − d(t))

2
√

εt

∂ E(x, t)

∂t

∣∣∣∣≤ C

t

(
1 +

√
t

ε

)
Eγ (x, t),

∣∣∣∣∣ψ
+
1 (x, t)

εt

∣∣∣∣∣≤ C

t
min

{
1,

√
t

ε

}
Eγ (x, t),

∂ψ+
1 (x, t)

∂t
=
(

1

2t
+ xp(t)

εt2

)
ψ+

1 (x, t) + 2p(t) − (x − d(t))

2t
ψ+

0 (x, t).

Collecting all of these bounds yields (31c). From

(x + d(t))
∂

∂x
ψ+

0 (x, t) = d(t)

(
x + d(t)

tε
ψ+

0 (x, t) − E(x, t)√
επt

)
− (x − d(t))E(x, t)

2
√

επt
,

and (30), we have (31d). Note also that for i = 2, 3

4 In the particular case of ∇a(0, 0) = (0, 0), one has |p(t)| ≤ Ct3.
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∂ i

∂xi
ψ+

0 (x, t) = d(t)

tε

∂ i−1

∂xi−1
ψ+

0 (x, t) − 1

2
√

επt

∂ i−1

∂xi−1
E(x, t),

from which (31e) and (31f) follows. �
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