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1. Introduction

Hilbert matrices Hn := (1/(i + j − 1))1≤i,j≤n+1, were introduced by Hilbert in [8], 
obtaining the following expression for their determinant

detHn =
(

n∏
k=1

(2k + 1)
(

2k
k

)2
)−1

. (1)

In Numerical Linear Algebra, Hilbert matrices are well-known Hankel (or catalecticant) 
matrices, that is, square matrices such that each ascending skew-diagonal from left to 
right takes a constant value. Their inverses H−1

n have integer entries and their integer 
expression was provided in [3]. Moreover, the inverse of the one-parameter extension of 
the Hilbert matrices given by H(α)

n := (α/(i + j + α− 2))1≤i,j≤n+1, for α > 0, was also 
obtained in [3].

In the literature, we can find combinatorial Hankel matrices, which are interesting 
extensions or analogues of Hilbert matrices, and are obtained by considering binomial 
coefficients, the Gaussian q-binomial coefficients or well-known sequences of integer num-
bers. Hankel matrices are well studied objects in mathematics with applications in various 
fields such as orthogonal polynomials, random matrices or operator theory. Hankel ma-
trices are usually used to characterize the solution of classical moment problems. The 
Hilbert matrices are the Hankel matrices with respect to the moment sequence

sn :=
1∫

0

xndx,

and the corresponding orthogonal polynomials are the Legendre polynomials for the 
interval [0, 1]. In recent years q-calculus has been studied rigorously because of its latent 
application in Mathematics, Mechanics and Physics. By considering quantum integers, 
quantum Hilbert matrices

H(α,q)
n :=

(
[α]q

[i + j + α− 2]q

)
1≤i,j≤n+1

were introduced in [1] as Hankel matrices with respect to a moment sequence obtained 
by considering a q-analogue of integration for a probability measure on [0, 1], which for 
q → 1 converges weakly to the Lebesgue measure on that interval. The corresponding 
orthogonal polynomials are certain little q-Jacobi polynomials. So, the quantum Hilbert 
matrix H(1,q)

n converges to the ordinary Hilbert matrices Hn when q → 1. For the 
particular value q = (1 −

√
5)/(1 +

√
5), quantum Hilbert matrices are closely related to 

Filbert matrices (cf. [18]).
Hilbert matrices and these analogues are very ill-conditioned for moderate values of 

their dimension, although within structured perturbations better results can be expected 
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(cf. [9,12,10]). Under general perturbations, standard routines implementing best tradi-
tional numerical methods for computing their singular values, inverses or the solution 
of linear systems of equations with this Hilbert-type coefficient matrices do not obtain 
accurate results. So, the design and analysis of procedures to high relative accuracy, 
achieving relative errors of the order of the machine precision, regardless of the dimen-
sion or the conditioning of the considered algebraic problem, has attracted the interest 
of many researchers.

It is well known that Hilbert matrices Hn are strictly totally positive, that is, all their 
minors are positive. In [16], the pivots and the multipliers of the Neville elimination of Hn

are explicitly derived and a bidiagonal factorization, accurately computed in O(n2) time, 
can be found in formulae (3.6) of Section 3 of [14]. Using this factorization, computations 
to high relative accuracy have been achieved for the resolution of algebraic problems with 
Hilbert matrices (cf. [14,16]). This paper describes the Neville elimination process for 
quantum Hilbert matrices. As a consequence, a bidiagonal factorization of these matrices 
is deduced and used to prove their total positivity and provide accurate computations 
in the resolution of algebraic problems related to these matrices.

In order to make this paper as self-contained as possible, Section 2 recalls basic con-
cepts and results related to total positivity, Neville elimination and high relative accuracy. 
Section 3 provides the pivots and multipliers of the Neville elimination of quantum 
Hilbert matrices. As a result, it is obtained an expression for the determinant of quan-
tum Hilbert matrices, generalizing the well-known formula (1) for the case of Hilbert 
matrices. Moreover, a bidiagonal factorization for quantum Hilbert matrices is also de-
rived, allowing the analysis of their total positivity, as well as the resolution, for q ∈ (0, 1], 
of algebraic problems with these matrices to high relative accuracy. The numerical errors 
appearing in the computation with a floating-point arithmetic of this factorization are 
studied in Section 4 and a structured condition number for quantum Hilbert matrices is 
deduced. Finally, Section 5 illustrates the numerical performed experimentation.

2. Notations and auxiliary results

An algorithm for the resolution of an algebraic problem is performed to high rela-
tive accuracy in floating-point arithmetic if the relative errors in the computations have 
the order of the unit round-off (or machine precision), without being affected by the 
dimension or the conventional conditionings of the problem. It is well known that al-
gorithms to high relative accuracy are those avoiding subtractive cancellations, that is, 
only requiring the following arithmetics operations: products, quotients, and additions of 
numbers of the same sign (see page 52 in [4]). Moreover, if the floating-point arithmetic 
is well-implemented, the subtraction of initial data can also be done without losing high 
relative accuracy (see page 53 in [4]).

We say that a matrix is totally positive if all its minors are nonnegative and strictly 
totally positive if all its minors are positive. Computations to high relative accuracy 
with totally positive matrices can be achieved by means of a proper representation of 
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the matrices in terms of bidiagonal factorizations, which is in turn closely related to their 
Neville elimination (cf. [5–7]).

The essence of the Neville elimination procedure is to make zeros in a column of a 
given matrix A ∈ R(n+1)×(n+1) by adding to each row an appropriate multiple of the 
previous one. In every major step, the Neville elimination calculates a matrix A(k+1), 
k = 2, . . . , n, from the matrix A(k), previously obtained, with A(1) := A. In more detail, 
A(k+1) is computed from A(k) according to the following formula

a
(k+1)
i,j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a
(k)
i,j , if 1 ≤ i ≤ k,

a
(k)
i,j − a

(k)
i,k

a
(k)
i−1,k

a
(k)
i−1,j , if k + 1 ≤ i, j ≤ n + 1, and a

(k)
i−1,j �= 0,

a
(k)
i,j , if k + 1 ≤ i ≤ n + 1, and a

(k)
i−1,k = 0.

(2)

The process finishes when U := A(n+1) is an upper triangular matrix. The entry

pi,j := a
(j)
i,j , 1 ≤ j ≤ i ≤ n + 1, (3)

is the (i, j) pivot and pi,i is called the i-th diagonal pivot of the Neville elimination of 
A. The Neville elimination of A can be done without row exchanges if all the pivots are 
nonzero. Then, the value

mi,j := a
(j)
i,j /a

(j)
i−1,j = pi,j/pi−1,j , 1 ≤ j < i ≤ n + 1, (4)

is called the (i, j) multiplier. The complete Neville elimination of A consists of performing 
the Neville elimination to obtain the upper triangular matrix U = A(n+1) and next, the 
Neville elimination of the lower triangular matrix UT .

Neville Elimination is a nice tool to deduce that a given matrix is STP, as shown in 
this characterization derived from Theorem 4.1, Corollary 5.5 of [5] and the arguments 
of p. 116 of [7].

Theorem 1. A given nonsingular matrix A is STP (resp., TP) if and only if the Neville 
elimination of A and AT can be performed without row exchanges, all the multipliers of 
the Neville elimination of A and AT are positive (resp., nonnegative), and the diagonal 
pivots of the Neville elimination of A are all positive.

In [7], it is shown that a nonsingular totally positive matrix A ∈ R(n+1)×(n+1) can be 
decomposed as follows,

A = FnFn−1 · · ·F1DG1G2 · · ·Gn, (5)

where Fi ∈ R(n+1)×(n+1) (respectively, Gi ∈ R(n+1)×(n+1)) is the TP, lower (respectively, 
upper) triangular bidiagonal matrix given by
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Fi =

⎛⎜⎜⎜⎜⎜⎝
1

. . .
1

mi+1,1 1
. . .

. . .
mn+1,n+1−i 1

⎞⎟⎟⎟⎟⎟⎠, (6)

GT
i =

⎛⎜⎜⎜⎜⎜⎝
1

. . .
1

m̃i+1,1 1
. . .

. . .
m̃n+1,n+1−i 1

⎞⎟⎟⎟⎟⎟⎠ (7)

and D is a diagonal matrix whose diagonal entries are pi,i > 0, i = 1, . . . , n + 1. The 
diagonal elements pi,i are the diagonal pivots of the Neville elimination of A. Moreover, 
the elements mi,j and m̃i,j are the multipliers of the Neville elimination of A and AT , 
respectively.

Remark 1. The transpose of a nonsingular totally positive matrix A is also totally positive 
and, using the factorization (5), can be written as follows

AT = GT
nG

T
n−1 · · ·GT

1 DFT
1 FT

2 · · ·FT
n .

If, in addition, A is symmetric, then we can deduce that Gi = FT
i , i = 1, . . . , n, and then

A = FnFn−1 · · ·F1DFT
1 FT

2 · · ·FT
n , (8)

where the matrices Fi, i = 1, . . . , n, are the lower triangular bidiagonal matrices described 
in (6), whose off-diagonal entries coincide with the multipliers of the Neville elimination 
of A and D is the diagonal matrix with the pivots of the Neville elimination of A.

Using Theorem 2.2 of [17], the inverse matrix A−1 can also be factorized as product 
of bidiagonal matrices,

A−1 = Ĝ1Ĝ2 · · · ĜnD
−1F̂nF̂n−1 · · · F̂1, (9)

where F̂i (respectively, Ĝi), i = 1, . . . , n, are the lower (respectively, upper) triangular 
bidiagonal matrices whose off-diagonal entries can also be obtained from the multipliers 
mi,j and m̃i,j of the Neville elimination as follows

F̂i =

⎛⎜⎜⎜⎜⎜⎝
1

. . .
1

−mi+1,i 1
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠,
−mn+1,i 1
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ĜT
i =

⎛⎜⎜⎜⎜⎜⎝
1

. . .
1

−m̃i+1,i 1
. . .

. . .
−m̃n+1,i 1

⎞⎟⎟⎟⎟⎟⎠.

Under certain conditions, the factorizations (5) and (9) are unique and in [2] more general 
classes of matrices admitting this bidiagonal factorization were obtained.

In the sequel, we shall use the matrix notation introduced in [14], allowing us to store 
the bidiagonal factorization (5) of A, as well as the bidiagonal factorization (9) of A−1, 
by means of a matrix BD(A) = (BD(A)i,j)1≤i,j≤n+1, whose diagonal entries are the 
diagonal pivots of the NE of A and the entries above and below its diagonal are the 
multipliers of the NE of AT and A, that is,

BD(A)i,j :=

⎧⎪⎪⎨⎪⎪⎩
mi,j , if i > j,

pi,i, if i = j,

m̃j,i, if i < j.

(10)

Let us recall that, given a nonsingular and totally positive matrix A, by providing 
B = BD(A) to high relative accuracy, the Matlab functions available in the software 
library TNTools in [15] compute to high relative accuracy A−1 (using the algorithm 
presented in [17]), the solution of Ax = b, for vectors b with alternating signs, and 
the singular values of A, which coincide with the eigenvalues when the matrix is also 
symmetric, as it happens in this paper. In particular,

• TNInverseExpand(B) returns A−1, requiring O(n2) arithmetic operations.
• TNSolve(B, d) returns the solution c of Ac = d. It requires O(n2) arithmetic opera-

tions.
• TNSingularValues(B) returns the singular values of A. Its computational cost is 

O(n3).

Let us notice that, taking into account the diagonal and bidiagonal structure of the 
matrix factors in (5), the determinant of the nonsingular totally positive matrices can be 
expressed as the product of the diagonal pivots of their Neville elimination. This fact is 
stated in the following result that we shall use in forthcoming sections to derive Hankel 
(or catalecticant) determinants.

Lemma 2. Let A ∈ R(n+1)×(n+1) be a nonsingular totally positive matrix. Then,

det A =
n+1∏
i=1

pi,i, (11)

where pi,i are the diagonal pivots of the Neville elimination of A given by (3).
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Proof. Let A = Fn · · ·F1DG1 · · ·Gn the factorization (5) of A. Since det Gi = det Fi =
1, i = 1, . . . , n, we have det A = det D =

∏n+1
i=1 pi,i. �

3. Bidiagonal factorization of Quantum Hilbert matrices

Quantum calculus (see [13]) uses q-integers, q-binomial coefficients, and other q-
analogues of classical calculus. Let us recall that the q-binomial coefficients 

[
n
k

]
q
, 

k = 0, . . . , n, are given by [
n

k

]
q

:= [n]q!
[k]q! [n− k]q!

,

where, for any non-negative integer n, the q-factorial [n]q! is defined by

[0]q! := 1, [n]q! := [n]q [n− 1]q · · · [1]q, n ∈ N,

and the q-integer [n]q is

[n]q :=

⎧⎨⎩1 + q + · · · + qn−1 = 1 − qn

1 − q
, if q �= 1

n, if q = 1.
(12)

Clearly, [n]q is a polynomial in q and [n]q > 0, for any q ∈ (0, 1], n ∈ N. Moreover, 
the q-binomial coefficients 

[
n
k

]
q
, k = 0, . . . , n, are also polynomials in q with integer 

polynomials, which are known as Gaussian polynomials.
It can be checked that the q-binomial coefficients satisfy the following useful identities

a) [α]q
[n]q

[
α− 1
n− 1

]
q

=
[
α

n

]
q

, (13)

b) [α− n]q
[n]q

[
α− 1
n− 1

]
q

=
[
α− 1
n

]
q

, (14)

c) [α]q
[α− n + 1]q

[
α− 1
n− 1

]
q

=
[

α

n− 1

]
q

. (15)

In the sequel, we shall use the following result.

Lemma 3. Given n, p, r ∈ N,

[n + p]q[n + r]q − [n]q[n + p + r]q = qn[p]q[r]q. (16)

Proof. Using definition (12) for the q-integers, identity (16) trivially holds for q = 1. 
Moreover, for q �= 1, we can write
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[n + p]q[n + r]q − [n]q[n + p + r]q = (1 − qn+p)(1 − qn+r) − (1 − qn)(1 − qn+p+r)
(1 − q)2

= qn(1 − qp − qr + qp+r)
(1 − q)2 = qn

1 − qp

1 − q

1 − qr

1 − q
= qn[p]q[r]q. �

For α ∈ N, we shall consider the following generalization of Quantum Hilbert matrices 
H

(α,q)
n := (H(α,q)

i,j )1≤i,j≤n+1 with

H
(α,q)
i,j := [α]q

[i + j + α− 2]q
, 1 ≤ i, j ≤ n + 1. (17)

Theorem 4. Let H(α,q)
n be the quantum Hilbert matrix (17). The multipliers mi,j of the 

Neville elimination of H(α,q)
n are given by

mi,j = m̃i,j = qj−1 [i + α− 2]2q
[i + j + α− 2]q[i + j + α− 3]q

, 1 ≤ j < i ≤ n + 1. (18)

Moreover, the diagonal pivots pi,i of the Neville elimination of H(α,q)
n are

pi,i = q(i−1)(i+α−2) [α]q
[2i + α− 2]q

[2i+α−3
i−1

]2
q

, 1 ≤ i ≤ n + 1, (19)

and can be recursively computed as follows

p1,1 = 1, p2,2 = qα
[α]q

[2 + α]q [1 + α]2q
,

pi+1,i+1 = q2i+α−2 [i]2q[i + α− 1]2q
[2i + α]q[2i + α− 1]2q[2i + α− 2]q

pi,i, i = 1, . . . , n.

(20)

Proof. Let H(k) := (h(k)
i,j )1≤i,j≤n+1, k = 1, . . . , n +1, be the matrices obtained after k−1

steps of the Neville elimination procedure for H(α,q)
n . Now, by induction on k, we shall 

see that, for k = 2, . . . , n + 1,

h
(k)
i,j = q(k−1)(i+α−2) [α]q

[
j−1
k−1

]
q

[k]q
[
i+j+α−2

k

]
q

[
i+k+α−3

k−1
]
q

, k ≤ j, i ≤ n + 1. (21)

It can be easily checked that h(1)
i,1/h

(1)
i−1,1 = [i + α− 2]q/[i + α− 1]q and then, from (2), 

we can write

h
(2)
i,j := h

(1)
i,j −

h
(1)
i,1

h
(1)
i−1,1

h
(1)
i−1,j = [α]q

(
1

[i + j + α− 2]q
− [i + α− 2]q

[i + α− 1]q
1

[i + j + α− 3]q

)
.

(22)
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From (22), and taking into account (16), with n := i + α− 2, p := 1 and r := j − 1, we 
have the following identities

h
(2)
i,j = [α]q

[i + α− 1]q[i + j + α− 3]q − [i + α− 2]q[i + j + α− 2]q
[i + j + α− 2]q[i + j + α− 3]q[i + α− 1]q

= qi+α−2[α]q
[1]q[j − 1]q

[2]q
[
i+j+α−2

2
]
q

[
i+α−1

1
]
q

= qi+α−2[α]q
[j − 1]q

[2]q
[
i+j+α−2

2
]
q

[
i+α−1

1
]
q

,

confirming (21) for k = 2. If (21) holds for some k ∈ {2, . . . , n},

h
(k)
i,k

h
(k)
i−1,k

= qk−1 [i + α− 2]2q
[i + k + α− 2]q[i + k + α− 3]q

, i = k + 1, . . . , n + 1. (23)

From (2), (23), and the following identity obtained from (15)

[i + k + α− 3]q
[i + α− 2]q

[
i + k + α− 4

k − 1

]
q

=
[
i + k + α− 3

k − 1

]
q

, (24)

we deduce that

h
(k+1)
i,j = q(k−1)(i+α−2) [α]q

[
j−1
k−1

]
q

[k]q
[
i+k+α−3

k−1
]
q

C
(k)
i,j (25)

with

C
(k)
i,j := 1[

i+j+α−2
k

]
q

− [i + α− 2]q
[i + α + k − 2]q

1[
i+j+α−3

k

]
q

,

for k+1 ≤ j, i ≤ n +1. Using in (25) the following identities derived from (14) and (13), 
respectively, [

i + j + α− 2
k

]
q

= [k + 1]q
[i + j − k + α− 2]q

[
i + j + α− 2

k + 1

]
q

,

[
i + j + α− 3

k

]
q

= [k + 1]q
[i + j + α− 2]q

[
i + j + α− 2

k + 1

]
q

,

and

[i + k + α− 2]q[i + j − k + α− 2]q − [i + α− 2]q[i + j + α− 2]q = qi+α−2 [k]q[j − k]q,

which is deduced from (16), with n := i + α− 2, p := k and r := j − k, we obtain
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h
(k+1)
i,j =

q(k−1)(i+α−2) [α]q
[
j−1
k−1

]
q

[k]q[k + 1]q
[
i+j+α−2

k+1
]
q

[
i+k+α−3

k−1
]
q

×

×
(

[i + j − k + α− 2]q −
[i + α− 2]q[i + j + α− 2]q

[i + k + α− 2]q

)

= qk(i+α−2) [α]q
[j − k]q

[
j−1
k−1

]
q

[k + 1]q
[
i+j+α−2

k+1
]
q
[i + k + α− 2]q

[
i+k+α−3

k−1
]
q

,

for k + 1 ≤ j, i ≤ n + 1. Finally, taking into account that, from (14) and (13), we can 
write

[j − k]q
[k]q

[
j − 1
k − 1

]
q

=
[
j − 1
k

]
q

,
[i + k + α− 2]q

[k]q

[
i + k + α− 3

k − 1

]
=

[
i + k + α− 2

k

]
q

,

we conclude that

h
(k+1)
i,j = qk(i+α−2) [α]q

[
j−1
k

]
q

[k + 1]q
[
i+j+α−2

k+1
]
q

[
i+k+α−2

k

]
q

, k + 1 ≤ j, i ≤ n + 1,

and (21) holds for k + 1.
Now, by (3) and (21), the pivots of the Neville elimination of H(α,q)

n satisfy

pi,j = h
(j)
i,j = q(j−1)(i+α−2)[α]q

1
[j]q

[
i+j+α−2

j

]
q

[
i+j+α−3

j−1
]
q

, 1 ≤ j < i ≤ n + 1. (26)

For the particular case i = j, we have

pi,i := q(i−1)(i+α−2) [α]q
[i]q

[2i+α−2
i

]
q

[2i+α−3
i−1

]
q

= q(i−1)(i+α−2) [α]q
[2i + α− 2]q

[2i+α−3
i−1

]2
q

,

corresponding to identity (19). It can be easily checked that pi,i = 1 and

pi+1,i+1

pi,i
= q2i+α−2 [i]2q[i + α− 1]2q

[2i + α]q[2i + α− 1]2q[2i + α− 2]q
,

confirming formula (20). Let us observe that, since the pivots of the Neville elimination 
of H(α,q)

n are nonzero, this elimination can be performed without row exchanges.
Finally, using (4) and (21), the multipliers mi,j can be described as

mi,j = pi,j
pi−1,j

= qj−1 [i + α− 2]2q
[i + j + α− 2]q[i + j + α− 3]q

, 1 ≤ j < i ≤ n + 1. (27)

Since H(α,q)
n is symmetric, using Remark 1, we deduce that m̃i,j = mi,j . �
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Taking into account Theorem 4, the decomposition (5) of H(α,q)
n and (9) of (H(α,q)

n )−1, 
can be stored by means of BD(H(α,q)

n ) = (BD(H(α,q)
n )i,j)1≤i,j≤n+1 with

BD(H(α,q)
n )i,j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qj−1 [i+α−2]2q

[i+j+α−2]q [i+j+α−3]q , if i > j,

q(i−1)(i+α−2) [α]q
[2i+α−2]q

[2i+α−3
i−1

]2
q

, if i = j,

qi−1 [j+α−2]2q
[i+j+α−2]q [i+j+α−3]q , if i < j.

(28)

Using the previous result, the total positivity of quantum Hilbert matrices can be 
analyzed and their determinant derived. It can be also deduced that computations with 
these matrices can be performed to high relative accuracy.

Proposition 5. For any α ∈ N and q ∈ (0, 1], the quantum Hilbert matrix H(α,q)
n in (17)

is strictly totally positive and

detH(α,q)
n = q

1
6n(n+1)(2n+3α−2)[α]nq

n∏
i=1

(
[2i + α]q

[
2i + α− 1

k

]2

q

)−1

. (29)

Moreover, H(α,q)
n and its inverse (H(α,q)

n )−1 can be computed to high relative accuracy.

Proof. Let us observe that for any α ∈ N and q ∈ (0, 1], the multipliers in (18) as 
well as the diagonal pivots in (19) are positive. So, taking into account Theorem 1, the 
strict total positivity of H(α,q)

n can be deduced. Moreover, H(α,q)
n and its inverse can 

be obtained to high relative accuracy since the computation of the mentioned pivots 
and multipliers do not require subtractions. Finally, taking into account Lemma 2 and 
formula (19) for the diagonal pivots, we have

detH(α,q)
n =

n∏
i=1

qi(i+α−1)
n∏

i=1

[α]q
[2i + α]q

[2i+α−1
i

]2
q

. (30)

Furthermore, using induction, it can be easily checked that

n∑
i=1

i(i + α− 1) = 1
6n(n + 1)(2n + 3α− 2),

and so, from (30), identity (29) for det H
(α,q)
n readily follows. �

Let us observe that, for the particular choice α = 1 and q = 1 formula (29) coincides 
with formula (1) for the determinant of the Hilbert matrix Hn = (1/(i +j−1))1≤i,j≤n+1.
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4. Error analysis and perturbation theory

Now, we shall analyze the numerical errors that occur during the computation of the 
bidiagonal factorization (5) of quantum Hilbert matrices (17) due to imprecise computer 
arithmetic or perturbed input data. For this purpose, let us first introduce some standard 
notations in error analysis.

For a given floating-point arithmetic and a real value x ∈ R, the computed element is 
usually denoted by either fl(x) or by x̂. In order to study the effect of rounding errors, 
we shall use the well-known models

fl(x op y) = (x op y)(1 + δ)±1, |δ| ≤ u, (31)

where u denotes the unit roundoff and op any of the elementary operations +, −, ×, /
(see [11], p. 40 for more details).

Following [11], when performing an error analysis, one usually deals with quantities 
θk such that

|θk| ≤ γk, γk := ku

1 − ku
, (32)

for a given k ∈ N with ku < 1. Taking into account, Lemmas 3.3 and 3.4 of [11], the 
following properties of the values (32) hold:

a) (1 + θk)(1 + θj) = 1 + θk+j ,
b) γk + γj + γkγj ≤ γk+j ,
c) γk + u ≤ γk+1,
d) if ρi = ±1, |δi| ≤ u, i = 1, . . . , k, then

k∏
i=1

(1 + δi)ρi = 1 + θk.

For example, statement a) above means that for any given two values θk and θj , bounded 
by γk and γj , respectively, there exists a number θk+j, bounded by γk+j, such that the 
above identity holds. Further use of the previous symbols must be intended in this 
respect.

Let us observe that, according the previous properties, relative errors and perturba-
tions can be accumulated by means of the following counter

< k >:=
k∏

i=1
(1 + δi)ρi , ρi = ±1, |δi| ≤ u, (33)

with the following rules
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< k >< j >=< k + j >, < k >/< j > =< k + j >, (34)

(see Chapter 3 of [11]).
Let us note that the q-integers can be seen as polynomials in the variable q that take 

positive values for q ∈ (0, 1]. In fact, for q �= 1, the evaluation of

[n]q = 1 + q + · · · + qn−1, (35)

can be performed using Horner’s rule and nested multiplications (see Section 5.1 of [11]) 
with the following simple recurrence:

N [0] = 1

for i = 1 : n− 1

N [i] = 1 + qN [i− 1]

end (36)

obtaining N [n − 1] = [n]q.
Taking into account the rounding error analysis of Horner’s method in Section 5.1 of 

[11], the evaluation of a polynomial p(x) = a0 + a1x + · · ·+ anx
n using Horner’s method 

has a small backward error in the sense that the computed value is the exact value at 
x of a polynomial obtained by making relative perturbations of size at most γ2n to the 
coefficients of the polynomial p.

The following result adapts the mentioned error analysis to the computation of quan-
tum integers, taking into account that the coefficients of [n]q in (35) are ai = 1, 
i = 0, . . . , n − 1.

Lemma 6. Given q ∈ (0, 1), let [n]q be the q-integer (12) and fl([n]q) the value computed 
by recurrence (36). Then, ∣∣∣∣ [n]q − fl([n]q)

[n]q

∣∣∣∣ ≤ γn−2, (37)

for the quantity γn−2 defined in (32).

Proof. Using the properties (34) of the relative error counter and taking into account 
that fl(1 + x) = 1 + x for all x ∈ R, we can write

N [1] = 1 + q, N [2] = 1 + q(1 + q) < 1 >= 1 + q < 1 > +q2 < 1 >,

and, by induction, it is very easy to see that

N [n− 1] =
n−2∑

qi < i > +qn−1 < n− 2 >=
n−2∑

qi(1 + θi) + qn−1(1 + θn−2),

k=0 k=0
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for values θk satisfying |θk| ≤ γk, k = 1, . . . , n − 2. Consequently,

|[n]q −N [n− 1]| ≤ γn−2

n−1∑
k=0

|q|k = γn−2[n]q,

and (37) holds. �
Let us note that bound (37) improves the relative error bound γ2n−2 for a general poly-

nomial of degree not greater than n − 1 evaluated with Horner’s method and illustrates 
that, using recursion (36), the computation in floating-point arithmetic of q-integers can 
be performed accurately.

Using Lemma 6, the following result analyzes the numerical error in the computation 
of the bidiagonal factorization (5) of a quantum Hilbert matrix H(α,q)

n .

Theorem 7. For α ∈ N and q ∈ (0, 1), let H(α,q)
n be the quantum Hilbert matrix (17). 

Let BD(H(α,q)
n ) = (bi,j)1≤i,j≤n+1 be the matrix form of the bidiagonal decomposition 

(5) of H(α,q)
n and fl(BD(H(α,q)

n ) = (fl(bi,j))1≤i,j≤n+1 be the matrix computed using the 
expression (18) and (20) for the multipliers and pivots, respectively and the recursion 
(36) for the computation of q-integers. Then∣∣∣∣bi,j − fl(bi,j)

bi,j

∣∣∣∣ ≤ γ7n2+O(n), 1 ≤ i, j ≤ n + 1. (38)

Proof. For i > j, the entry bi,j coincides with the multiplier mi,j that can be computed 
using (18). Taking into account the relative error bound for the computation of q-integers 
(see (37)), and accumulating relative errors in the style of Higham (see Chapter 3 of [11]), 
we can write∣∣∣∣bi,j − fl(bi,j)

bi,j

∣∣∣∣ ≤ γ4i+3j+4α−15 ≤ γ7n+4α−11, 1 ≤ j < i ≤ n + 1. (39)

For i < j, bi,j = mj,i and then∣∣∣∣bi,j − fl(bi,j)
bi,j

∣∣∣∣ ≤ γ4j+3i+4α−15 ≤ γ7n+4α−11, 1 ≤ i < j ≤ n + 1. (40)

For i = j, by (20), b1,1 = 1, b2,2 = qα
[α]q

[α+2]q[α+1]2q
and bi+1,i+1 = Cipi,i with

Ci := q2i+α−2 [i]2q[i + α− 1]2q
[2i + α]q [2i + α− 1]2q [2i + α− 2]q

, i = 1, . . . , n. (41)

From (37), the relative error in the computation of the factor Ci can be bounded as 
follows,
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∣∣∣∣Ci − fl(Ci)
Ci

∣∣∣∣ ≤ γ14i+7α−17, i = 1, . . . , n, (42)

and then, ∣∣∣∣pi,i − fl(pi,i)
pi,i

∣∣∣∣ ≤ γni
, i = 1, . . . , n + 1, (43)

with

n1 = 0, n2 = 5α− 1, ni+1 = ni + 14i + 7α− 16, i = 1, . . . , n.

It can be easily checked that

ni = (i− 2)(7i + 7α− 9) + 5α− 1 ≤ (n + 1)(7n + 7α− 2) + 5α− 1,

for i = 2 . . . , n + 1. �
Now, we are going to analyze the sensitivity of the matrix representation of the bidi-

agonal factorization (10) of quantum Hilbert matrices with respect to perturbations in 
the value q ∈ (0, 1). For this purpose, let us first study the sensitivity of q-integers.

Lemma 8. Given q ∈ (0, 1) and q′ = q(1 + δ) such that |δ| < u, let [n]q and [n]q′ be the 
q-integers computed by recurrence (36). Then,∣∣∣∣ [n]q − [n]q′

[n]q

∣∣∣∣ ≤ γn−1, (44)

for the quantity γn−1 defined in (32).

Proof. Let us observe that the perturbed q can be denoted by q < 1 > and, using 
properties (34) of the relative error counter, we can write

N [1] = 1 + q < 1 >,

N [2] = 1 + q < 1 > (1 + q < 1 >) = 1 + q < 1 > +q2 < 2 > .

Furthermore, by induction, it is very easy to see that

[n]q′ = N [n− 1] = 1 +
n−1∑
k=1

qk < k >= 1 +
n−1∑
k=1

qk(1 + θk),

for values θk satisfying |θk| ≤ γk, k = 1, . . . , n − 1. Then we can write

|[n]q − [n]q′ | ≤ γn−1

n−1∑
|q|k = γn−1[n]q,
k=0
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and (44) holds. �
Using Lemma (8), we can study the sensitivity of the matrix representation of the 

bidiagonal factorization of quantum Hilbert matrices.

Theorem 9. For α ∈ N and q ∈ (0, 1), q′ = q(1 + δ) such that |δ| < u, let H(α,q)
n and 

H
(α,q′)
n be the quantum Hilbert matrices (17). The matrices BD(H(α,q)

n ) = (bi,j)1≤i,j≤n+1

and (BD(H(α,q′)
n ) = (b′i,j)1≤i,j≤n+1 computed using the expression (18) and (20) for 

the multipliers and pivots, respectively and the recursion (36) for the computation of 
q-integers satisfy ∣∣∣∣bi,j − b′i,j

bi,j

∣∣∣∣ ≤ γ7n2+O(n), 1 ≤ i, j ≤ n + 1.. (45)

Proof. For i > j, the entries bi,j and b′i,j coincide with the multipliers in (18). Taking 
into account Lemma 8 and accumulating relative errors, we derive∣∣∣∣bi,j − b′i,j

bi,j

∣∣∣∣ ≤ γ4i+3j+4α−14 ≤ γ7n+4α−10, 1 ≤ j < i ≤ n + 1. (46)

From the symmetry and (46), for i < j, we derive∣∣∣∣bi,j − b′i,j
bi,j

∣∣∣∣ ≤ γ4j+3i+4α−14 ≤ γ7n+4α−10, 1 ≤ i < j ≤ n + 1. (47)

Now, we study the sensitivity with respect to perturbations on the value q of the factor 
Ci such that pi+1,i+1 = Cipi,i (see (20)). Using Lemma 8, the relative error can be 
bounded as follows, ∣∣∣∣Ci − fl(Ci)

Ci

∣∣∣∣ ≤ γ14i+7α−16, (48)

and then ∣∣∣∣bi,i − b′i,i
bi,i

∣∣∣∣ ≤ γni
, i = 1, . . . , n + 1, (49)

with

n1 = 0, n2 = 4α + 1, ni+1 = ni + 14i + 7α− 16, i = 1, . . . , n.

It can be easily checked that

ni = (i− 2)(7i + 7α− 9) + 4α + 1 (50)

≤ (n + 1)(7(n + 1) + 7α− 9) + 4α + 1 = (n + 1)(7n + 7α− 2) + 4α + 1,
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for i = 2 . . . , n + 1. From (46), (47) and (50), the result holds. �
Finally, let us note that quantity 7n2 can be seen as an appropriate condition number 

adapted to this problem with the quantum Hilbert matrix H(α,q)
n .

5. Numerical experiments

Some numerical tests are presented in this section supporting the obtained theoretical 
results. We have implemented different Matlab functions in O(n2) time for computing 
in the matrix form (10) the bidiagonal factorizations (5) for quantum Hilbert matrices 
H

(α,q)
n (see (28)).
We have considered different strictly totally positive quantum Hilbert matrices H(α,q)

n , 
for (α, q) = (1, 4/5) and (α, q) = (4, 4/5), with dimension n +1 = 10, . . . , 30. In the rest of 
the section, for the sake of brevity, all the considered quantum Hilbert matrices and their 
corresponding bidiagonal decomposition will be denoted as H and BD(H), respectively.

We have performed several matrix computations using the routines available in [15]
with the matrix form (10) of the bidiagonal factorization (5) as an input argument. 
The obtained approximations have been compared with the respective approximations 
obtained by traditional methods provided in Matlab R2022b. In this context, the values 
provided by Wolfram Mathematica 13.1 with 100-digit arithmetic have been taken as 
the exact solution of the considered algebraic problem.

The relative error of each approximation has also been computed in Mathematica 
with 100-digit arithmetic as e := |y − ỹ|/|y|, where y denotes the exact solution and ỹ
the computed approximation.

As we shall see, the proposed procedure exploits the structure of totally positive 
matrices, achieving computations to high relative accuracy for quantum Hilbert matrices. 
Then, it is possible to carry out virtually calculations with these matrices almost as if 
no rounding errors occur in the computation process, meaning that the uncertainty in 
the output results is about the same as in the input data.
Computation of the inverse matrix. For all considered matrices, we have compared 
the inverse obtained using the proposed bidiagonal decompositions with the function 
TNInverseExpand and the inverse computed with the Matlab command inv. As shown 
in Fig. 1, our procedure provides very accurate results. On the contrary, the results 
obtained with Matlab reflect poor accuracy.
Resolution of linear systems. Further to this, for all considered matrices, we have com-
pared the solution of the linear systems Hc = d where d = ((−1)i+1di)1≤i≤n+1 and di, 
i = 1, . . . , n + 1, are random nonnegative integer values, obtained using the obtained 
bidiagonal decompositions with the function TNSolve and the solutions computed with 
the Matlab command \. As opposed to the results obtained with the command \, the 
proposed procedure preserves the accuracy for all the dimensions which have been taken 
into account. Fig. 2 illustrates the relative errors.
Computation of singular values. We have also compared the tenth singular value of 
the considered quantum Hilbert matrices computed with svd and TNSingularValues 
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Fig. 1. Relative error of the approximations to the inverse of quantum Hilbert matrices.

Fig. 2. Relative error of the approximations to the solution of Hc = d, with d = ((−1)i+1di)1≤i≤n+1 and 
di, i = 1, . . . , n + 1, random nonnegative integer values.

Fig. 3. Relative error of the approximations to the tenth singular value of quantum Hilbert matrices H.

with the proposed bidiagonal decomposition as input argument. The relative errors are 
shown in Fig. 3. Note that our approach computes accurately the tenth singular value. 
In contrast, the Matlab command svd return results that are not accurate at all.
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