000130877 001__ 130877
000130877 005__ 20240201151019.0
000130877 0247_ $$2doi$$a10.1016/j.precisioneng.2019.07.015
000130877 0248_ $$2sideral$$a113522
000130877 037__ $$aART-2019-113522
000130877 041__ $$aeng
000130877 100__ $$0(orcid)0000-0002-4931-8752$$aPueo, M.
000130877 245__ $$aMeasurement uncertainty evaluation model in radial composite gear inspection
000130877 260__ $$c2019
000130877 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130877 5203_ $$aA general expression to estimate the measurement uncertainty of double-flank gear rolling tests, according to the uncertainty budget method outlined in the GUM, is presented in this paper. This method is more precise than the comparator method and it allows us to know the individual contributions of each error source. Therefore, it is often applied in secondary calibration laboratories or industrial facilities that require a better understanding of their measurement process capability. Furthermore, the proposed expression can be adapted to estimate the measurement uncertainty of any gear tester configuration that works under rolling principles. The paper describes a case study where the uncertainty budget developed is applied to a double-flank worm gear rolling tester. Using experimental values of calibration and characterization of the gear tester, the expanded uncertainties of the rolling parameters Fi ”, Fr ” and fi ” were calculated. Finally, an optimized uncertainty budget is proposed where the main detected error sources are minimized improving therefore the measurement capacities of the tester.
000130877 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130877 590__ $$a3.108$$b2019
000130877 591__ $$aENGINEERING, MANUFACTURING$$b19 / 50 = 0.38$$c2019$$dQ2$$eT2
000130877 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b16 / 64 = 0.25$$c2019$$dQ1$$eT1
000130877 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b24 / 91 = 0.264$$c2019$$dQ2$$eT1
000130877 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b54 / 103 = 0.524$$c2019$$dQ3$$eT2
000130877 592__ $$a1.226$$b2019
000130877 593__ $$aEngineering (miscellaneous)$$c2019$$dQ1
000130877 593__ $$aNanoscience and Nanotechnology$$c2019$$dQ2
000130877 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130877 700__ $$0(orcid)0000-0002-4917-8550$$aAcero, R.$$uUniversidad de Zaragoza
000130877 700__ $$0(orcid)0000-0002-0944-2804$$aLope, M.A.$$uUniversidad de Zaragoza
000130877 700__ $$0(orcid)0000-0001-7316-0003$$aSantolaria, J.$$uUniversidad de Zaragoza
000130877 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000130877 773__ $$g60 (2019), 222-234$$pPrecis. eng.$$tPrecision Engineering$$x0141-6359
000130877 8564_ $$s2076129$$uhttps://zaguan.unizar.es/record/130877/files/texto_completo.pdf$$yPostprint
000130877 8564_ $$s2254227$$uhttps://zaguan.unizar.es/record/130877/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130877 909CO $$ooai:zaguan.unizar.es:130877$$particulos$$pdriver
000130877 951__ $$a2024-02-01-14:37:16
000130877 980__ $$aARTICLE