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Abstract The aim of this work is to give a review of algorithms computation-
ally efficient to simulate the thermo-mechanical behaviour in casting processes;
in particular, the butt curl deformation and the contraction of the lateral sides
of the slab. The main aim is to give an overview of the most used methods
to deal with the nonlinearities due to the thermo-elastic-viscoplastic laws of
the involved materials and to the contact condition with the bottom block. To
evaluate the efficiency of the proposed methods, some academic tests adapted
to the difficulties arising in casting processes are presented. Applications of
the techniques proposed to aluminium casting processes are discussed and
numerical results are given.
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1 Introduction

The casting process is a manufacturing process that consists of pouring a liq-
uid into a mould, which contains a hollow cavity of the desired shape, where it
is allowed to solidify. The casting process of an alloy, composed of two or more
metals, is a very complex and common process in industry. The predominant
metal in the alloy is usually either aluminium, magnesium, zinc, copper, or,
in some cases, lead or tin. There are a wide variety of casting processes in the
industry depending on the concerned alloy, on the involved industrial applica-
tion or on the required final geometry. Some of the most common processes are
permanent mould casting, continuous casting, semicontinuous or direct chill
casting, pressurized casting, die casting, lost foam casting, centrifugal casting,
or sand casting.

Each casting process has its own features; however, there are phenomena
that are common to all of them. The most common occurrences in casting
processes having an adverse effect on process efficiency and hindering their
optimization are:

– The contraction of the geometry or shrinkage due to the volumetric reduc-
tion that occurs in alloys during solidification.

– Cracking or tearing caused by thermal contraction stress that occurs just
below the solidifying temperature.

– Fatigue processes that can be initiated by the large thermal gradients which
appear during each casting cycle.

– The production of air or gasses from decomposition of release agents that
can be encapsulated by the super heated liquid metal and being a source
of porosity in the final slab.

– The formation of blow holes, voids or pores, which may occur due to en-
trapped gas or volumetric shrinkage during solidification.

– The formation of air-gaps between the die or mould and the slab, which
has an adverse effect on process efficiency since it hinders the effective heat
transfer, leading to longer solidification times.

– The degree of roughness of the surface of the produced casting piece which
can require a strong final polishing.

– The formation of dendrites, that is, crystals with a branching tree like
pattern.

A detailed description of casting processes can be found in Stefanescu [80];
this book discusses not only different developments in the field but also the
applications of some fundamental sciences such as Physical Chemistry, Heat
Transfer, or Fluid mechanics in alloys casting; it also includes a very large
glossary of terms in this scope. In the literature there are many works dealing
to a better understanding of one or more of the problems detailed above, in
order to articulate new proposals in the casting design that avoid them, and
to analyze the influence of the casting parameters in the solidifying piece (see
Domitner et al. [36], Flemings [42], Kaufman and Rooy [54], So lek and Trȩbacz
[79] or Stoll [81]).
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In this paper, the topic of computational modeling of thermo-mechanical
behaviour in casting processes is reviewed; in particular, our aim is centered on
a review of efficient algorithms to solve nonlinearities arising when modeling
the mechanical stresses and deformations which occur during such processes.
Here, we focus on the semi-continuous casting of aluminium alloys; nevertheless
many of the proposed mathematical techniques are also applicable to other
casting processes.

During semi-continuous casting of aluminium alloys, aluminium slabs are
cast by pouring the metal through a water-cooled mould (DC casting) or
an electromagnetic field (EMC casting) onto a shallow pan or bottom block.
When the metal at the circumference of the slab cross-section has solidi-
fied, the bottom block starts moving downwards at the casting speed, leaving
room for more liquid metal (see Figure 1). The exposed slab between the
mould/electromagnetic field and the bottom block is cooled by jets of refrig-
erated water. A detailed description of the complete process can be found in
Drezet and Plata [38] or Schneider et al. [78].

Fig. 1 Scheme of a DC casting process and a photograph of a mould (courtesy of ALCOA-
INESPAL, A Coruña, Spain).

The whole semi-continuous casting process is very complex because there
are many interconnected phenomena:

– Thermal phenomena with change of phase due to aluminium solidification,
with strong thermal gradients within the slab and very abrupt changes
of temperature in small time intervals. Due to the large thermal stresses
inside the slab, the butt curls and then the heat transfer between the slab
and the bottom block changes (see Kim [56]).

– Mechanical phenomena promoted by the large thermal stresses developed
inside the slabs and by the solidification shrinkage due to the easy deforma-
bility of the recently solidified aluminium in the mould.

– Electromagnetic phenomena due to an alternating current traveling the
inductor which produces the electromagnetic forces to confine the metal in
EMC casting.
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– Hydrodynamic phenomena in the liquid phase due to the Lorentz forces (for
the EMC casting) and to natural convection coming from the temperature
gradients.

– Free boundary phenomena: the meniscus is shaped when the liquid metal is
confined (for the EMC casting), whereas the knowledge of the solid-liquid
interface plays a major role in the casting process.

– Physical chemistry phenomena: during solidification of metallic alloys, a
continuous transition from the liquid to the solid state takes place. Below
the liquidus temperature and due to local under cooling, nucleation of solid
germs happens; in this first stage, at small solid fractions, the solid germs
grow independently and the solid dendrites are completely free to move.
After a further temperature decrease, the dendrites contact each other and
begin to agglomerate.

A description of the mathematical involved models is given, for instance, in
Barral et al. [4], where several models are proposed describing some thermal,
mechanical, electromagnetic and hydrodinamical phenomena arising from the
EMC casting process; in El-Raghi et al. [40] or Otero [70] for thermal sub-
model; in Agelet de Saracibar et al. [1] for the coupled thermo-mechanical
model or in Bermúdez and Muñiz [20] or Bermúdez et al. [21] for hydrody-
namical and electromagnetic one.

Numerical simulation of casting processes has aroused great interest in
the last forty years. In recent years, the decreasing of computational costs
and the increasing power of commercial modelling packages have facilitated
the application of mathematical models and their numerical simulation as an
additional tool to understand complex industrial processes such as casting
processes.

Numerical simulation of the behaviour of the DC casting process is being
extensively used to improve the design of new casters and to analyze the
influence of the casting parameters in the solidifying slab, namely, casting
speed, slab size, mould shape, casting temperature, flow rate of cooling water
and so on. Numerical simulation of such problems has already been considered
by several authors but in almost all cases without clear explanation of the
algorithms that might be used to solve the proposed models (see Besson et
al. [25], Drezet et al. [37], El-Raghy et al. [40], Hongjun et al. [53], Le et al.
[59], Mariaux et al. [64], Subroto et al. [82] or Xu et al. [88] and the references
therein). Furthermore, the staggering complexity of this process makes almost
impossible to model all the phenomena mentioned above together at once, so
the various numerical submodels reported in the literature are not yet fully
coupled and the large-scale numerical simulation of these processes continues
to be nowadays a very complex task.

In this paper we restrict ourselves to the modelling and numerical simu-
lation of the thermo-mechanical phenomena which appear in the aluminium
DC casting. Thus, we assume that the temperature field is calculated prior to
thermo-mechanical deformation. The only relationship between the thermal
and the mechanical models we have considered is that the heat transfer coeffi-
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cient between the slab and the bottom block surface depends on time, surface
temperature and the intrusion of cooling water into the gap created by the
butt curl. The thermal model to predict temperature of the solidifying slab
corresponds to a transient heat conduction equation where latent heat evolu-
tion and heat capacity are incorporated into the constitutive equation; these
data must be also supplied to relate temperature with enthalpy. In Barral et
al. [4], Bermúdez et al. [23] and Otero [70], appropriate boundary conditions
are provided to define heat input to every portion of the slab boundary. For
a complete description of the thermal submodel see also Ciavaldini [34] or
El-Raghy et al. [40].

From a thermo-mechanical point of view, DC casting process can be divided
into two stages:

– The start stage, during which the temperature field, the solidification front,
and the slab shape change with time. During this phase, due to the large
thermal stresses, the butt of the slab curls and loses contact with the
bottom block (see Figure 2). This deformation, known as butt curl, takes
place when the direct water cooling hits the slab surface. The air gap left
by the butt curl may reach the height of approximately 100mm, depending
on the slab size and the casting conditions. The butt curl could induce
instability of the slab, the formation of cracks and therefore the break-
through of liquid metal, so, in the worst case, could lead to the interruption
of the casting.

– The stationary stage. When the length of the slab is 1m, approximately,
the temperature field has attained a steady state. In this stationary stage,
the hot exterior of each aluminium slab attempts to expand but it is con-
strained by its colder interior and the cold water stiff mould; this makes
each plate bend in toward the solidifying aluminium. This phenomenon is
known as solid shrinkage and it is critical for two important reasons: First,
the shrinkage must be predicted and then built into the moulds dimensions.
If this is not correctly done, then the tooling will need to be modified it-
eratively to achieve an acceptable production casting. This adds time and
cost to the design cycle and introduces quality risk in the final product.
To compensate the shrinkage effects, if the desired final shapes have rect-
angular section, the designed mould shapes are convex, usually with three
segments (see Figure 3). Second, as the casting cools, it may not be able to
shrink uniformly because some regions are stiffer than others. This can re-
sult in undesirable residual stresses and/or undesirable warpage (see Stoll
[81]). Creating geometries that make shrinkage predictable and that avoid
residual stresses and warping is therefore highly desirable.

To predict casting thermo-mechanical behaviour, the main difficulties are due
to the previously mentioned coupling effects –at each time instant, the me-
chanical parameters depend on temperature–, to the presence of nonlinear
terms –mechanical behaviour law of the alloys at high temperatures, the uni-
lateral contact between the slab and the bottom block–, to the existence of free
boundaries –the solid liquid interface, where the weight of the liquid should be
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Fig. 2 Scheme of the butt curl deformation and a photograph of the resulting slab (courtesy
of ALCOA-INESPAL, A Coruña, Spain)

Slab cross-section

Mould/inductor contour

Fig. 3 Scheme of the lateral faces contraction due to solid shrinkage and a photograph of
the mould (courtesy of ALCOA-INESPAL, A Coruña, Spain)

considered as a load on the solidified part– and to the growth of the computa-
tional domain with time at casting speed (see [4]). Specifically, in order to simu-
late the butt curl deformation of aluminium casting processes, we must solve a
problem of frictionless unilateral contact between a thermo-elastic-viscoplastic
body, with mechanical coefficients strongly dependent on the temperature, and
a rigid foundation. This problem is posed on a computational domain corre-
sponding to the portion of the solidified slab, which is a domain obtained from
the solution of the corresponding thermal submodel at each time instant. In
particular, following the works of Drezet et al. [37], Kristiansson and Zetter-
lund [58] and Mariaux et al. [64], we assume that the alloy is a Maxwell-Norton
elastic-viscoplastic material, which is a behaviour law frequently used in al-
loy solidification processes. This law was deeply studied from a mathematical
point of view in Blanchard and Le Tallec [26], Djaoua and Suquet [35], Friaâ
[44], Geymonat and Suquet [46], Le Tallec [60] or Teman [84].

This manuscript is not only a joint presentation of research conducted
by the authoresses in this area (see [3–15]) but also a review of the related
literature. In particular, several mathematical and numerical aspects of this
subject are presented:

– The detailed formulation as a variational inequality. It correspons to a
quasi-static evolution problem for a three-dimensional, elastic-viscoplastic
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solid obeying a Signorini contact condition with the bottom block (see [7,
8]).

– The establishment of sufficient conditions for the existence of a solution.
For this purpose, we have adapted the techniques developed by Djaoua and
Suquet [35] for viscoelastic problems with mixed boundary conditions to
also include Signorini conditions.

– The numerical implementation of the metallostatic pressure on the liquidus-
solidus interphase. One of the main difficulties in the numerical solution of
this problem is the right imposition of the metallostatic pressure exerted
by the liquid metal on the recently solidified one, that is, on the upper
boundary of the computational domain, which is the isotherm correspond-
ing to the liquidus temperature and so the free boundary of the associated
thermal problem. For that purpose, following Hannart et al. [50], we have
proposed a fictitious domain method: we have modelled the entire slab,
replacing the liquid metal by a very weak elastic material under the action
of gravity forces, which therefore does not offer resistance to solid defor-
mations. This methodology has the advantage that remeshing to adjust
the free boundary is not needed at each time step, and so the numerical
implementation is easier. Nevertheless, numerical simulations showed that
it was not sufficient to consider a very weak elastic law in the fictitious do-
main since the solution was strongly dependent on the Lamé coefficients.
In fact, using an asymptotic technique, it was proved that only a proper re-
lationship between the fictitious Lamé coefficients leads to a correct laying
of the metallostatic pressure on the thermal free boundary (see [10,11]).

– The numerical approximation of the variational inequality and the descrip-
tion of a standard numerical scheme to solve it. An approximate solution
of this problem was obtained by using an implicit Euler scheme in time
and a finite element method in space (see [3]). To deal with the nonlineari-
ties, the numerical solution was based on the Bermúdez-Moreno algorithm
with the participation of two multipliers: a viscoplastic multiplier –to take
into account the nonlinearity from the behaviour law– and a contact mul-
tiplier –to avoid the nonlinearity due to the contact condition– (see [7,8] or
Bermúdez and Moreno [19] ). Each of these multipliers is the fixed point of
a nonlinear equation; their numerical computation using a classical fixed
point method constitutes the Standard Bermúdez Moreno algorithm (SBM
algorithm).
In DC casting process, numerical computation of contact or viscoplastic
multipliers using SBM algorithm presents several difficulties related with
the strong nonlinearity of the behaviour law in the regions close to the
recently solidified material (see [8]). Indeed, during the stationary stage,
in which the contact condition does not have a significant influence, SBM
algorithm works well; however, during the start stage, when two nonlin-
earities appear together, the convergence is worse, increasing considerably
the cpu-time. Moreover, SBM algorithm presents a strong dependence on
its parameters, which can not be determined a priori. These facts made
difficult the massive usage of this algorithm to help in the understanding



8 Patricia Barral et al.

of the different effects in casting processes. That is why we have tried to
develop efficient numerical methods that incorporate adaptive procedures
to accelerate the treatment of the nonlinearities and hence, to be able to
simulate the butt curl deformation in a reasonable cpu-time.

– Improvements in the treatment of the contact condition. We propose to
approximate the contact multiplier with a generalized Newton method to-
gether with a penalization technique to conserve the matrix’s symmetry
(see [5,15], Glowinski and Le Tallec [47], Kikuchi and Oden [55] or Robin-
son [75] ). The resultant algorithm for the treatment of the contact condi-
tion is fast, accurate and its convergence is independent of the algorithm
parameters. Nevertheless, the stiffness matrix needs to be recalculated at
each iteration. Furthermore, the stiffness matrix has a high condition num-
ber due to the different scale of the material parameters –fictitious/solid–;
due to this, iterative solvers have convergence problems when they are ap-
plied to solve the discretized system. So, taking into account that usually
the nonlinear boundary condition only involves a small part of the bound-
ary that is time independent, we propose to use a direct method combined
with a partial factorization of the stiffness matrix adapted to the problem’s
geometry.

– Improvements in the treatment of viscoplastic law. Two options are con-
sidered:
– Approximating the viscoplastic multiplier with standard Newton tech-

niques without modification of the stiffness matrix at each iteration (see
[5,15]). When there are strong thermal gradients, it becomes necessary
to employ some numerical strategies to obtain a good convergence of
the viscoplastic multiplier: an adimensionalization technique, an Armijo
rule and an automatic optimization of the time step. We present aca-
demic tests in order to show the good behaviour of this methodology.
Nevertheless, in real casting processes, the convergence is not always
achieved with it.

– Approximating the viscoplastic multiplier with a generalization of the
SBM algorithm with variable parameters which are automatically com-
puted (see [14], Gallardo et al. [45] or Parés et al. [74]). This procedure
does not present the convergence problems in the regions close to the so-
lidification front that the two previous algorithms have, and it could be
also applied to other solidification problems with a strong dependence
on the temperature gradients.

Summing up, the outline of this paper is as follows. In Section 2, we will
show a detailed description of the mathematical model corresponding to the
thermo-mechanical behaviour of a DC casting of aluminium alloy; it is a qua-
sistatic model posed on the already solidified part of the slab and whose bound-
ary conditions include a contact condition of Signorini type. A carefully pre-
sentation of the behaviour law of the alloy will be given in Subsection 2.2.3.
In Section 3 we will summarize the main assumptions on the data and the
functional framework to obtain a standard weak formulation of the thermo-
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mechanical problem as a variational inequality formulated on the solidified
slab. The main results concerning the mathematical analysis of a simplified
submodel will also be given in Section 3.3. Section 3.4 will be devoted to justify
a fictitious domain technique to impose the metallostatic pressure exerted by
the liquid metal; with this methodology, the liquid is replaced by a fictitious
material and a new weak formulation on the entire slab is introduced in Subsec-
tion 3.4.2. This latter weak problem will be discretized in time by an implicit
Euler scheme and in space by means of a finite element method in Section 4.
Following the maximal monotone operator techniques, we will propose three
iterative algorithms to solve the discretized problem: the Standard Bermúdez
Moreno algorithm (SBM algorithm) in Section 4.2; its improvement with New-
ton methods to approach the contact and viscoplastic multipliers (NBM algo-
rithm) in Section 4.3; and in Section 4.4 we will present a combination of a
Newton method to approach the contact multiplier with the SBM algorithm
improved with an automatic computation of the parameters involved in the
approach of the viscoplastic multiplier (VNBM algorithm). Along this section
we will include several academic tests to analyze the efficiency of each of the
presented algorithms. In Section 5, we will present some numerical results
obtained for a real casting process with the three proposed algorithms.

2 Mathematical model

In this section we introduce a mathematical model to simulate the thermo-
mechanical deformations suffered by an aluminium slab during the solidifi-
cation process. Several authors analyzed the mechanical deformations in this
type of processes. In 1982, Kristiansson and Zetterlund [58] studied the defor-
mation in a steel continuous casting by means of a two-dimensional viscoelastic
model, formulated on a horizontal section. Later, in 1992, Mariaux et al. [64]
studied the butt curl simulation in aluminium castings and, in 1995, Drezet et
al. [37] simulated their cross-sectional deformation; both works considered a
behaviour law of Maxwell-Norton type. In 1999, Cervera et al. [30] presented a
fully coupled thermo-mechanical problem for numerical simulation of solidifica-
tion processes of industrial metal parts; in that paper, mechanical and thermal
properties were assumed to be temperature-dependent whereas the evolution
of the plastic strains was defined in the usual way for a J2-thermo-elastic-
viscoplastic model. More recently, Bellet et al. [16] presented a model of pipe
formation in metal castings in which a viscoplastic law with hardening for the
solid was proposed. In this work, we consider the thermo-elastic-viscoplastic
law of Maxwell-Norton type used in Drezet et al. [37] and Mariaux et al. [64],
and already studied by the authoresses in [8]. Special attention has been paid
to the modelling of the behaviour law in this section. In particular, in Sub-
section 2.2.3, a thermal law whose coefficient of thermal expansion includes
the volume changes due to possible phase shifts is presented; and also a com-
plete analysis of the viscoplastic law, modelling the secondary creep, which
incorporates the temperature dependence in the strain rate tensor.
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As we have announced in the introduction, in this work coupling between
thermal and mechanical models is not considered and, therefore, the temper-
ature field is computed a priori and introduced as a data in the mechanical
simulation. Nevertheless, to ease the reading of this paper, in Section 2.1 we
briefly describe the mathematical model used to compute the temperature
field; further information about this model can be found in Barral et al. [4]
and Bermúdez and Otero [23]. Next, in Section 2.2 we present a mathematical
model to compute the thermo-mechanical deformation, deeply studied in [4,
5,7,8,14].

Hereafter in this paper, Latin subscripts are understood to range over the
integers {1, 2, 3}, and Greek subscripts over the integers {1, 2}. Einstein nota-
tion of summation over repeated subscripts is implied.

2.1 Mathematical model of the thermal problem

In this section, we introduce the mathematical model with phase change to
calculate the temperatures studied by Bermúdez and Otero (see [4,23,70]),
and used as a data in the mechanical model.

Thermal models for alloys solidification can be included in the family of
the two-phase Stefan problems (see for instance Meirmanov [66] or Rubin-
stein [76]). During solidification processes, there exists an interphase which
separates the solid and liquid parts. The classical heat equation is verified at
both sides of the interphase, but in the interphase a loss of latent heat of
fusion is produced. In order to solve this Stefan problem there exist two differ-
ent options: front tracking and fixed domain methods (see details in Lewis and
Ravindran [62] and references therein). In front tracking methods the solid and
liquid phases are treated as two separated domains for which it is necessary
to follow the interphase and to remesh at each time step of the discretization
(see Sullivan and Lynch [83] and Yoo and Rubinsky [89,90]). Contrarily, fixed
domain methods treat both regions as one continuous domain, defining the in-
terphase in an implicit way by means of an auxiliary variable, so remeshing is
not necessary. The most employed fixed domain methods in casting modeling
are enthalpy and effective specific heat methods. The first type rewrites the
heat conduction equation in terms of the enthalpy, which implicitly includes
the latent heat (see Casella and Giangi [29], Durany [39] and Nedjar [69]),
whereas the second one introduces a fictitious specific heat to take it into ac-
count (see Drezet et al. [37] and El-Raghy et al. [40]). For instance, the thermal
problem for continuous casting was solved by using the entalphy method in
Chen and Jiang [31], Chen et al. [32] or Wu et al. [87]; and by Barral et al. [4]
and Bermúdez and Otero [23] for DC casting.

In this paper, following the latter two references, we use the temperature
field computed from an enthalpy formulation. For the sake of simplicity, con-
vective heat transfer in the liquid phase is neglected. The thermal problem
including this term was studied by Bermúdez and Otero [23,70] to take into
account the effect of the fluid movement.
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Let Ox1x2x3 be a fixed system of rectangular Cartesian axes associated to
the slab and [0, tf ] be the time interval to carry out the thermo-mechanical
simulation. Due to casting symmetry, Ω(t) ⊂ R3 represents a quarter of the
slab at the time instant t ∈ [0, tf ] and Ω(0) represents the aluminium inside
the bottom block when it begins to go down. Notice that the mould and
bottom block are not part of the thermo-mechanical domain. We model the
going down of the bottom block with an upward displacement of the mould.
Figure 4 shows the computational domain Ω(t) and a scheme of the behaviour
of the casting process in a vertical section.

Ω(t)

ΓT,s(t)

ΓT,r(t)

Mould

Water jets Liquidus interface

Aluminium slab

Butt curl

Bottom block

x1

x3

x2

ΓT,d(t)

Fig. 4 Computational domain of the thermal problem,Ω(t), and scheme of a vertical section
of a DC casting process.

The thermal problem consists of determining the temperature field T (x, t)
at each point x ∈ Ω(t) and at each t ∈ (0, tf ].

Let Ts, Tl be the solidus and liquidus temperature, respectively. Alloy so-
lidification occurs at the temperature range [Ts, Tl], Ts < Tl, since each alloy
component holds a different solidus temperature, appearing a mushy region
in this temperature interval. For these non isothermal processes, the enthalpy
function is defined by

H(T ) =



∫ T

0

ρ(s)c(s)ds if T < Ts,

∫ T

0

ρ(s)c(s)ds+
L

Tl − Ts

∫ T

Ts

ρ(s)ds if Ts ≤ T ≤ Tl,

∫ T

0

ρ(s)c(s)ds+
L

Tl − Ts

∫ Tl

Ts

ρ(s)ds if T > Tl,

(1)

where L is the latent heat per unit mass, ρ(T ) the mass density per unit
volume and c(T ) the specific heat of the material per unit mass; both ρ and c
are assumed to be dependent on temperature.
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Notice that when the phase change occurs at a fixed temperature, that is,
Ts = Tl, the enthalpy H(T ) is the following multivalued function:

H(T ) =



∫ T

0

ρ(s)c(s)ds if T < Ts,

[∫ Ts

0

ρ(s)c(s)ds,

∫ Ts

0

ρ(s)c(s)ds+ ρsL

]
if T = Ts,

∫ T

0

ρ(s)c(s)ds+ ρsL if T > Ts,

where ρs = ρ(Ts) is the density at solidus temperature (see Otero [70] for
details). These isothermal solidification processes occur, for example, in pure
metals.

Assuming that there is no internal heat source, the heat conduction equa-
tion remains:

∂H(T )

∂t
−Div(kT (T )∇T ) = 0 in Ω(t),∀t ∈ (0, tf ), (2)

where kT is the thermal conductivity of the material.
Next, let ΓT (t) be the boundary of Ω(t) and n the unit outward vector,

normal to Ω(t). Boundary ΓT (t) is decomposed into three disjoint and open
parts as follows (see Figure 4):

ΓT (t) = Γ̄T,r(t) ∪ Γ̄T,s(t) ∪ Γ̄T,d(t),

where:

– ΓT,r(t) denotes the lateral outer and lower faces of the slab which are in
contact with air, water or the bottom block. On this boundary, the heat
transfer is produced by convection, so

kT (T )
∂T

∂n
= αT (Te − T ) on ΓT,r(t),

where αT (x, t) is the convection heat transfer coefficient and Te(x, t) the
temperature of surroundings.

– ΓT,d(t) is the upper boundary of Ω(t); here, the temperature, which cor-
responds with the casting one, is known and it is denoted by Td. In this
boundary, we impose the Dirichlet condition

T (x, t) = Td(x, t) on ΓT,d(t).

– ΓT,s(t) are the symmetry boundaries, where we impose the usual symmetry
condition

kT (T )
∂T

∂n
= 0 on ΓT,s(t).
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Finally, we introduce the initial condition

T (x, 0) = T0(x) in Ω(0),

where T0 is the temperature distribution in Ω(0).

Summing up, the thermal problem to solve is the following:

Problem (TP ):
Find the temperature field T (x, t) at each point x ∈ Ω(t) and at each instant
t ∈ (0, tf ] such that:

∂H(T )

∂t
−Div(kT (T )∇T ) = 0 in Ω(t), (3)

kT (T )
∂T

∂n
= αT (Te − T ) on ΓT,r(t), (4)

kT (T )
∂T

∂n
= 0 on ΓT,s(t), (5)

T = Td on ΓT,d(t), (6)

T (0) = T0 in Ω(0), (7)

where H = H(T ) is defined by expression (1).

In Barral et al. [4], the following numerical procedure to solve Problem (TP )
is proposed:

– Firstly, in order to overcome the nonlinearity due to the diffusion term
in the heat equation, the Kirchhoff transformation is introduced (see also
Özisik [71]).

– The resulting equations are discretized using an implicit Euler method in
time and a finite element method in space.

– The free boundary given by the solidification front is handled by using a
fixed domain method.

Numerical results for the real casting thermal simulations showing the accu-
racy of this method and a good agreement with experimental measurements
of the physical problem can be also seen in Barral et al. [4]. This methodology
is used in this work to compute the temperatures necessary to determine the
thermo-mechanical deformation.

2.2 Mathematical model of the thermo-mechanical problem

The mechanical domain at each time instant t ∈ [t0, tf ] corresponds to the
solidified part of a quarter of the slab, Ωs(t), which is obtained from the
solution of the thermal problem (TP ) (see Figure 5):

Ωs(t) = {x ∈ Ω(t);T (x, t) < Tl}.

Notice that the initial time in the mechanical simulation is t0 > 0 in order to
ensure that the initial solidified part of the slab is nonempty, Ωs(t0) 6= ∅.
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Fig. 5 Mechanical domain Ωs(t) (shading part).

The mechanical problem consists of determining the displacement field
u(x, t) and the stress tensor field σ(x, t) at each point x ∈ Ωs(t) and at each
time instant t ∈ (t0, tf ].

2.2.1 Equilibrium equation

Under the small strains assumption and in the quasistatic case, the slab be-
haviour is governed by the equilibrium equation

−Div(σ) = f in Ωs(t),

where f represents the volume forces due to the gravity, that is,

f(x, t) = (0, 0,−ρ(T (x, t))g) .

2.2.2 Boundary conditions

In the mechanical simulation, the boundary Γu(t) of the solidified slab Ωs(t)
is split into five disjoint and open parts (see Figure 5):

Γu(t) = Γ̄u,sl(t) ∪ Γ̄u,c ∪ Γ̄u,s(t) ∪ Γ̄u,n1(t) ∪ Γ̄u,n2(t),

where:

– the upper boundary Γu,sl(t) is defined by the isotherm corresponding to
the liquidus temperature Tl;

– Γu,c is the part of the slab susceptible to be in contact with the bottom
block;

– Γu,n1(t) denotes the part of the lateral outer faces which has already so-
lidified and therefore it is free of forces;

– Γu,n2(t) corresponds to the outer boundary of the mushy region, which is
confined by the mould;

– and finally, Γu,s(t) denotes the symmetry boundary, where we assume usual
symmetry conditions.
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Metallostatic pressure. On boundary Γu,sl(t) we impose the metallostatic pres-
sure exerted by the overlying liquid metal

σn = prn, pr(x, t) = ρl g(x3 − h(t)) on Γu,sl(t), t0 < t ≤ tf ,

where ρl = ρ(Tl) is the density at liquidus temperature and h(t) is the length
of the slab at the instant t. Notice that, since Γu,sl(t) is the thermal free
boundary, it varies with time and it is a data for the mechanical problem.

Contact condition. The bottom block is assumed to be rigid, so aluminium
cannot penetrate it; that means that the normal component of displacements,
un = u · n, cannot be positive:

un ≤ 0 on Γu,c × (t0, tf ].

Moreover, due to the action-reaction principle, where an effective contact ex-
ists, the bottom block exerts an upwards pressure in the normal direction.
Consequently, if un = 0, the normal stress, σn = σn · n, verifies σn ≤ 0.
Contrarily, where a contact does not exist, the distance between the slab and
the bottom block is not null and, consequently, the motion is unconstrained;
so, if un < 0, then σn = 0. Finally, taking into account that water is flowing
down on the slab sides, we assume that friction is not significant in the con-
tact zone; so, we suppose that the tangential stresses, called shear stresses,
σt = σn− σnn, are null.

Summing up, to reproduce the butt curl deformation, we consider the fol-
lowing frictionless contact condition with the bottom block

σt = 0, σn ≤ 0, un ≤ 0, σnun = 0 on Γu,c × (t0, tf ].

This contact condition is known as Signorini unilateral frictionless contact
condition. A detailed description can be found in Kikuchi and Oden [55] or
Wriggers [86].

2.2.3 Behaviour law

We assume that the alloy is a nonlinear thermo-elastic-viscoplastic solid; so,
the strain rate tensor is the superposition of elastic, thermal and viscoplastic
components:

ε(u̇) = ε̇e + ε̇th + ε̇p, (8)

where the upper dot denotes the usual time derivative and the strain tensor
is related to the displacement field by the usual formula

εij(u) =
1

2
(∂jui + ∂iuj).
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Elastic behaviour law. The elastic deformations εe are related to the stress
tensor σ through a Hooke’s law with material parameters depending on tem-
perature

εe = Λ(T )σ =
1 + ν(T )

E(T )
σ − ν(T )

E(T )
tr(σ)I, (9)

where E, ν denote the Young’s modulus and Poisson’s ratio, respectively, and
I is the identity tensor. Reciprocally, for this law the stress tensor σ can be
written in terms of the strain tensor εe,

σ = (Λ(T ))
−1
εe = λ(T )tr(εe)I + 2µ(T )εe,

where λ and µ denote the Lamé coefficients, which are related with E and ν
by the usual expressions:

λ(T ) =
E(T )ν(T )

(1 + ν(T ))(1− 2ν(T ))
, µ(T ) =

E(T )

2(1 + ν(T ))
.

This law is also applied to solidification processes in Cervera et al. [30]. A
detailed description of Hooke’s law can be found in Ciarlet [33], Gurtin [48],
Gurtin et al. [49] or Marsden and Hughes [65].

Thermal law. The thermal expansion is related to the temperature by a gen-
eralized Arrhenius law

ε̇th = α(T )Ṫ I, (10)

where α is the coefficient of thermal expansion, including volume changes
due to possible phase transformations. We use the following expression for α
deduced in [3]:

α(T ) = −1

3

ρ
1/3
l

ρ(T )4/3
dρ(T )

dT
. (11)

This law generalizes other laws that can be found in the bibliography. For
example, in Mariaux et al. [64] the thermal strain is described via an effective
thermal dilatation coefficient, defined by

αls =
ρs − ρl

3ρl(Tl − Ts)
.

Notice that this is an approximation of α(Tl) if we consider

dρ(T )

dT
|T=Tl

≈ ρl − ρs
Tl − Ts

.
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Fig. 6 Experimental creep curve.

Viscoplastic behaviour law. When a metal alloy is subjected to an increase of
stresses, three stages can be observed:

– For small stresses the solid responds elastically; this means that the stress
is proportional to the strain and the deformation is reversible.

– If the stress exceeds a critical magnitude, the behaviour ceases to be linear
and the strain rate is nearly constant; this phenomenon is known as creep.

– In the third stage, the strain rate increases before fracture.

In particular, for a creep test at constant temperature, where the stresses
are assumed to be constant in time, the second stage is quickly attained (see
Figure 6). In order to model the two first stages, we approach the rate strain
by a straight line, tangent to the inflection point of the curve (see Figure 6).
In this work we do not consider the third stage and so fracture mechanisms
are not taken into account.

To describe the effects of the secondary creep in the three-dimensional case,
we use the classical Norton-Hoff law (see Friaâ [44] or Lemaitre and Chaboche
[61]). This law was introduced by Norton in 1929 to model the unidimensional
creep for steel at high temperature. Afterwards, in 1954, it was generalized to
the multidimensional case by Hoff and the resultant law is known as Norton-
Hoff law. This law depends on a material parameter q; in the limit case, when
q goes to infinity, Friaâ [43,44] proved that it coincides with the Von Mises
law of perfect plasticity. Furthermore, in Friaâ [44] new generalizations of the
Norton law to the multidimensional case, known as generalized Norton-Hoff
laws, were proposed.

Let us introduce the Von Mises convex

K = {τ ∈ S3; |τD| ≤
√

2k}, (12)

where S3 is the space of symmetric second order tensors, τD denotes the
deviatoric tensor, defined by

τD = τ − 1

3
tr(τ )I, τ ∈ S3,
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and k is a constant which represents the elastic limit in simple shearing (see
Hill [52]). Let IK denote the indicator function of convex K,

IK(τ ) =

{
0 if τ ∈ K,
+∞ in another case.

Following Le Tallec [60] and Teman [84], we introduce its polar function as

I∗K(τ ) = sup
ξ∈K
{τ : ξ} =

{√
2k|τ | if tr(τ ) = 0,

+∞ in another case.

Let θ(τ ) be the calibrator function of K

θ(τ ) = inf{s; τ ∈ sK, s > 0} =
|τD|√

2k
. (13)

We define the dissipation potential ϕp as

ϕp(τ ) =
λ1−pr

p
|I∗K(τ )|p, τ ∈ S3,

where λr and p are strictly positive material parameters; λr measures the
material resistance and the exponent p > 1 is a viscosity measure. It is easy
to prove that the polar function of ϕp is

ϕ∗p(τ ) =
p− 1

p
λr|θ(τ )|

p
p−1 . (14)

Let us denote by q = p/(p − 1) the conjugate exponent of p; then expression
(14) can be rewritten as

ϕ∗p(τ ) =
1

q
λr|θ(τ )|q.

Replacing θ(τ ) defined by (13) in the previous expression, we obtain

ϕ∗p(τ ) =
θ0
q
|τD|q, (15)

where

θ0 =
λr

(
√

2k)q
. (16)

The classical Norton-Hoff law is formulated as

ε̇p ∈ ∂ϕ∗p(σD), (17)

where ∂ϕ∗p(σ
D) denotes the subdifferential of ϕ∗p evaluated at σD. Since ϕ∗p is

differentiable, its subdifferential coincides with its derivative, and therefore it
results from (15)-(17) that

ε̇p = Dϕ∗p(σ
D) = θ0 | σD |q−2 σD. (18)
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If we superpose Hooke’s law (9) for elastic strains and Norton-Hoff law (18)
for viscoplastic ones, the resultant law, known as Maxwell-Norton law, is for-
mulated as

ε(u̇) =
˙︷ ︷

(Λ(T )σ) +Dϕ∗p(σ
D). (19)

The Maxwell-Norton materials are an example of thermo-viscoelastic materials
with long memory, as it was proved in Naya-Riveiro and Quintela [68].

– Creep under uniaxial loading. Let us consider the Maxwell-Norton law (19)
in one dimension with constant parameters:

ε̇ = Eσ̇ + θo|σ|q−2σ.

Let us justify that under a creep test, this law corresponds to the approx-
imation shown in Figure 6. Indeed, if the solid is subjected to a constant
stress σ = σ0 > 0, then

ε̇ = θoσ
q−1
0 ,

and therefore,
ε(t) = θoσ

q−1
0 t+ ε0,

where ε0 is the initial strain.
– Temperature dependence of strain rate. If we perform several creep tests at

different temperatures, we can observe that the strain rate decreases when
temperature increases (see Bower [27] or Lemaitre and Chaboche [61]).
This temperature dependence of strain rate can be fit by the following
coefficient of Arrhenius type:

e
−G

R(T+273) ,

where G is an activation energy and R is the Boltzmann constant. There-
fore, to take into account this effect, we define

κ(T ) = θoe
−G

R(T+273) , (20)

and we replace θ0 by κ(T ) in expression (15). So, let us define the new
viscoplastic function depending on temperature:

Φq(σ, T ) =
1

q
κ(T )|σ|q, σ ∈ S3, T ∈ R.

Then, if we consider thermal law (10) and viscoplastic law (19), replacing ϕ∗p
by Φq, the resultant thermo-elastic-viscoplastic law (8) is rewritten as

ε(u̇) =
˙︷ ︷

(Λ(T )σ) +DσΦq(σ
D, T ) + α(T )Ṫ I,

where DσΦq denotes the derivative of Φq with respect to σ given by

DσΦq(σ
D, T ) = κ(T )

∣∣σD∣∣q−2 σD. (21)
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2.2.4 Problem (MP )

Summing up, the mechanical problem we must solve is the following:

Problem (MP ):
Find the displacement field u(x, t) and the stress tensor field σ(x, t), at each
point x ∈ Ωs(t) and at each instant t ∈ (t0, tf ] such that:

−Div(σ) = f in Ωs(t), (22)

σn = prn on Γu,sl(t), (23)

σn = 0 on Γu,n1(t), (24)

σt = 0, un = 0 on Γu,n2(t) ∪ Γu,s(t), (25)

σt = 0, σn ≤ 0, un ≤ 0, σnun = 0 on Γu,c, (26)

ε(u̇) =
˙︷ ︷

(Λ(T )σ) +DσΦq(σ
D, T ) + α(T )Ṫ I in Ωs(t), (27)

u(t0) = u0, σ(t0) = σ0 in Ωs(t0). (28)

3 Mathematical analysis

This Section is devoted to the mathematical analysis of Problem (MP ). Firstly,
in Section 3.1 we present a summary of the relevant theoretical results for qua-
sistatic thermo-mechanical problems for Maxwell-Norton materials. Secondly,
in Section 3.2 we introduce a weak formulation and the necessary functional
framework to do it. Section 3.3 is devoted to give an existence result for a sim-
plified submodel of Problem (MP ); it corresponds to an elastic-viscoplastic
model for a Maxwell-Norton material with contact condition and posed over a
time independent domain. Finally, in Section 3.4 we propose a new variational
formulation adapted to the numerical simulation of the complete Problem
(MP ); the aim is to eliminate the metallostatic pressure on the interphase,
modelling it as a gravity force on the liquid region.

3.1 State of art

In the literature there exist several existence results for viscoelastic problems
of Maxwell-Norton type. Djaoua and Suquet [35] and Le Tallec [60] proved
the existence of solution for Maxwell-Norton problems with classical mixed
boundary conditions. Later, in Blanchard and Le Tallec [26], the proof given
in [60] was extended to a Maxwell-Norton law with viscoelastic coefficients
depending on time and space. Nevertheless, these results are not applicable
to Problem (MP ) since they use variational formulations in velocities, and
their methodology does not work for formulations in displacements, which are
necessary to include Signorini contact condition (26).

In [12] the authoresses proved a result of existence of solution for a sub-
model of Problem (MP ), defined over a domain independent of time and
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without considering the thermal effects. In that work, the proof was based in
the result given in Djaoua and Suquet [35] for mixed boundary conditions, gen-
eralizing the existence result to include a Signorini contact condition. Later,
in Barral et al. [6] this methodology was applied to prove the existence and
uniqueness of solution when considering the thermal strain and coefficients de-
pending on temperature in the behaviour law. In that result, it was assumed
that Ṫ > 0, so, it is not applicable for casting processes.

3.2 Variational inequality

In order to obtain a weak formulation of Problem (MP ), we introduce a suit-
able framework to treat the nonlinearities due to the behaviour law and the
contact condition. Following the functional framework for Norton-Hoff law
studied by Geymonat and Suquet [46], we present the functional subsets of
admissible displacements and stresses. Next, we introduce the hypotheses on
the temperature field, the applied forces and the initial conditions, needed to
define a variational formulation of Problem (MP ) which involves an inequality
due to the contact condition.

A detailed description of variational formulations for different contact prob-
lems can be found in Kikuchi and Oden [55] for elastic materials, Burguera
and Viaño [28] for perfect plastic materials or in Glowinsky and Le Tallec [47]
for some viscoplastic materials.

3.2.1 Functional framework

From now on, we assume that at each instant t ∈ (t0, tf ], Ωs(t) is a smooth
enough bounded domain in R3. Let us assume that the exponent of the vis-
coplastic law verifies 2 ≤ q < +∞ and so its conjugate exponent p verifies
1 < p ≤ 2.

We consider the space of displacement fields as the following subspace of
the standard Sobolev space [W 1,p(Ωs(t))]

3:

Vp(t) = {v ∈ [W 1,p(Ωs(t))]
3; Div(v) ∈ L2(Ωs(t))},

which is a Banach space endowed with the norm

‖v‖Vp(t) = ‖v‖[Lp(Ωs(t))]3 + ‖εD(v)‖[Lp(Ωs(t))]9 + ‖Div(v)‖L2(Ωs(t)).

Let Up(t) be the subspace of Vp(t) obtained when considering the confinement
by the mould of the mushy region and the symmetry condition (see equation
(25)):

Up(t) = {v ∈ Vp(t); vn = 0 on Γu,n2(t) ∪ Γu,s(t)}.

In order to take into account the contact condition (26), the subset of kine-
matically admissible displacements at each instant t is

Up
ad(t) = {v ∈ Up(t); vn ≤ 0 on Γu,c}.
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We define the space of stress fields

Xq(t) = {τ = (τij); τij = τji, τ
D ∈ [Lq(Ωs(t))]

9, tr(τ ) ∈ L2(Ωs(t))},

which is a Banach space endowed with the norm

‖τ‖Xq(t) = ‖τD‖[Lq(Ωs(t))]9 + ‖tr(τ )‖L2(Ωs(t)).

We introduce the subspace of Xq(t)

Hq(t) = {τ ∈ Xq(t); Div(τ ) ∈ [Lq(Ωs(t))]
3},

which is also a Banach space endowed with the norm

‖τ‖Hq(t) = ‖τ‖Xq(t) + ‖Div(τ )‖[Lq(Ωs(t))]3 .

In Geymonat and Suquet [46] it was proved that the space of distributions
[D(Ωs(t))]

9 is dense in Hq(t). Moreover, the following Lemma was also proved:

Lemma 1 The application

τ ∈ Hq(t)→ τn ∈ [W−
1
q ,q(Γu(t))]3,

is linear and continuous. Moreover, the following Green’s formula is verified:∫
Ωs(t)

τ : ε(v)dx+

∫
Ωs(t)

Div(τ ) · vdx = 〈τn,v〉Γu(t), (29)

for all τ ∈ Hq(t) and v ∈ Vp(t), where 〈·, ·〉Γu(t) denotes the duality product

between [W − 1
q ,q(Γu(t))]3 and [W 1− 1

p ,p(Γu(t))]3.

3.2.2 Variational inequality. Problem (VMP )

From now on, we assume that the following hypotheses are satisfied:

(H1) The viscoplastic exponent q verifies 2 ≤ q < +∞, and its conjugate expo-
nent p verifies 1 < p ≤ 2.

(H2) The metallostatic pressure pr ∈W 1,∞(t0, tf ;W−
1
q ,q(Γu(t))∩Lq(Γu,sl(t)));

the volume forces f ∈ W 1,∞(t0, tf ; [Lq(Ωs(t))]
3) and the density is such

that ρ(s) ≥ ρ0 > 0, ∀s ∈ R.
(H3) The elasticity tensor Λ ∈ [W 1,∞(R)]81 is symmetric and:

∃ β > 0; Λτ : τ ≥ β|τ |2, ∀τ ∈ S3, a.e. in R. (30)

(H4) σ0 ∈ Hq(t0), u0 ∈ Vp(t0) and verify the natural compatibility conditions.
(H5) The temperature field T ∈W 1,∞(t0, tf ;L∞(Ωs(t))).
(H6) The coefficient of thermal expansion α ∈ L∞(R) and the coefficient of the

viscoplastic law κ ∈ L∞(R).
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Following the usual procedure, multiplying equation (22) by test functions in
Up
ad(t), integrating over Ωs(t) and using Green’s formula (29), the proposed

variational formulation of Problem (MP ) is:

Problem (VMP ):

Find u ∈ W 1,∞(t0, tf ; Up
ad(t)) and σ ∈ W 1,∞(t0, tf ; Hq(t)) such that a.e.

t ∈ (t0, tf ] ∫
Ωs(t)

σ(t) : ε(v − u(t)) dx ≥
∫
Ωs(t)

f(t) · (v − u(t)) dx+∫
Γu,sl(t)

pr(t)n · (v − u(t)) dΓ, ∀v ∈ Up
ad(t), (31)

and verifying behaviour law (27) and initial conditions (28).

Remark 1 Notice that if the solution u(t), σ(t) is smooth enough, Problems
(MP ) and (VMP ) are equivalent.

3.3 Existence of a solution for an elastic-viscoplastic problem of
Maxwell-Norton type with contact condition

Due to the complexity of the mathematical analysis of the complete casting
problem, throughout this subsection we restrict ourselves to the case where
the mechanical domain is time independent and the behaviour law does not
depend on temperature. Nevertheless, the numerical methodology presented
in the remaining of the paper will deal with the complete casting problem.

In order to formulate the problem in a general frame, let us consider a
continuous body which occupies at rest a bounded domain Ωs ⊂ R3, Ωs ∈
C1,1, corresponding to the solidified part of the aluminium slab. Its boundary
Γu = ∂Ωs is partitioned into three non-empty, disjoint and open parts Γu,d,
Γu,n and Γu,c satisfying

Γu = Γ̄u,d ∪ Γ̄u,n ∪ Γ̄u,c,

with meas(Γu,d) > 0. We consider the following boundary conditions:

– Due to the effect of the metallostatic pressure and the equilibrium of forces,
it is reasonable to assume that the slab rests on the center of its base, Γu,d,
that is,

u = 0 on (t0, tf ]× Γu,d.

– Γu,c denotes the remainder of the boundary between the slab and the
bottom block, which is the region susceptible to be in contact; on this
boundary, condition (26) is considered.
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– Γu,n denotes the lateral and upper faces; on this boundary, we consider
traction surface forces of density h:

σn = h on (t0, tf ]× Γu,n.

Condition (23) due to the metallostatic pressure and Neumann condition
(24) of Problem (MP ) can be considered as a particular case of this Neu-
mann condition.

Then, the problem we want to solve is:

Problem (M̃P ):

Find the displacement field u and the stress tensor σ verifying

−Div(σ) = f in (t0, tf ]×Ωs, (32)

ε(u̇) = Λσ̇ +DσΦq(σ
D, T ) in (t0, tf ]×Ωs, (33)

u = 0 on (t0, tf ]× Γu,d, (34)

σn = h on (t0, tf ]× Γu,n, (35)

un ≤ 0, σn ≤ 0,σt = 0, σnun = 0 on (t0, tf ]× Γu,c, (36)

u(t0) = u0, σ(t0) = σ0 in Ωs. (37)

In this section, we assume that the following hypotheses are satisfied:

(H̃1) The exponent q verifies 2 ≤ q < 6, and therefore 6/5 < p ≤ 2.

(H̃2) The applied forces satisfy

f ∈W 2,∞(t0, tf ; [Lq(Ωs)]
3),

h ∈W 2,∞(t0, tf ; [W−
1
q ,q(Γu)]3 ∩ [Lq(Γu,n)]3).

(H̃3) The elasticity tensor Λ ∈ [L∞(Ωs)]
81 is independent of time, symmetric

and verifies (30).

(H̃4) σ0 ∈ Hq, u0 ∈ Vp and verify the natural compatibility conditions, where
Hq and Vp are defined in an analogous manner to Hq(t) and Vp(t) over
the time independent domain Ωs.

Hypothesis (H̃1) is satisfied by some aluminium alloys at high temperatures
as shown in Wong and Jonas [85].

Theorem 1 Under the above assumptions (H̃1)−(H̃4), there exists a solution

of Problem (M̃P ), (u,σ) ∈W 1,2(t0, tf ; Ũp
ad)×

(
W 1,2(t0, tf ; X2) ∩ L∞(0, tf ; Xq)

)
,

where

Ũp
ad = {v ∈ Vp; v = 0 on ΓD}.
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Sketch of the proof: The proof of this theorem was given in [12]. There, the
problem was discretized in time by using an implicit Euler scheme and a weak
formulation in stresses was proposed. The existence of a unique stress solution
of that weak problem was proved by means of the classic variational inequal-
ity theory (see Kinderlehrer and Stampacchia [57]); next, the corresponding
discretized displacement field was reconstructed showing that the associated
movement is free where there is a gap between the slab and the bottom block.
Some estimates allowed to pass to the limit and finally, that limit was proved
to be the solution of the continuous problem. This last step was the main
difficulty in the proof since the contact condition did not allow to obtain the
necessary orthogonality relations between strains and stresses which were es-
sential in other papers such as Djaoua and Suquet [35] or Bensoussan and
Frehse [17]. To overcome this difficulty, compensated compactness techniques
were used thanks to the hemicontinuity and monotonicity of DσΦq (see Murat
[67]). ut

3.4 A variational formulation over the entire slab. A fictitious domain
technique

Let us go back to the complete casting problem (MP ). One of the main dif-
ficulties in its numerical solution is the right imposition of the metallostatic
pressure exerted by the liquid metal on the recently solidified one. Remember
that the upper boundary of the mechanical domain, Γu,sl(t), is the isotherm
corresponding to the liquidus temperature, which is the free boundary of the
associated thermal problem. In order to impose numerically the metallostatic
pressure on Γu,sl(t), there exist at least three possibilities:

– modelling the behaviour of the entire slab, including the liquid metal;
– considering only the solid part and remeshing it at each time instant; or,
– extending this domain to the entire slab, but replacing the liquid metal by

a very weak elastic material with the same density.

The first possibility requires the hydro-dynamical simulation of the liquid,
which would complicate its numerical resolution. When applying the second
possibility, called front tracking methods, the mechanical computational do-
main changes at each iteration, so remeshing is needed; furthermore, the dis-
cretization of its upper boundary, obtained from the thermal submodel, should
be updated and consequently, the imposition of the metallostatic pressure
would depend on how good the discretization of the outward normal is. In the
third possibility, an extended problem is solved on a fixed domain, the entire
slab; in particular, the liquid aluminium is replaced by a very weak elastic
material under the action of the same gravity volume forces, so that it does
not offer resistance to solid deformations and the weight of the liquid metal
is correctly imposed (see [10,11] or Hannart et al. [50]). Another option, used
in Agelet de Saracibar et al. [1] is to use a thermo-elastic-viscoplastic model,
suitable for the solid-like phase, that degenerates into a pure thermo-viscous
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model, suitable for the liquid-like phase, according to the evolution of a solid
fraction function.

We have chosen the third possibility because it has the advantage that we
only need to solve an elasticity problem in the liquid part and the metallostatic
pressure would be correctly imposed on the boundary. Nevertheless, numerical
simulations showed that it was not sufficient to consider a very weak elastic law
in the fictitious domain, corresponding to the liquid region, since the solution
was strongly dependent on the fictitious Lamé coefficients. In fact, for some
choices of these coefficients the weight of the liquid metal was not locally
recovered and shear stresses arose on the interface.

x1

x3

x2

Ωl(t)

Γu,s2(t)

Γu,n3(t)

Γu,sl(t)

Γu,up(t)

Ωs(t)

Fig. 7 Computational domain of the mechanical problem Ωs(t) and fictitious domain Ωl(t)
(shading part).

In order to analyze the behaviour of the fictitious material in terms of its
Lamé coefficients, in [10,11] an asymptotic analysis was carried out to obtain
their optimal values.

Let Ωl(t) denote the liquid zone of the slab at the instant t, that is,

Ωl(t) = {x ∈ Ω(t);T (x, t) > Tl}.

At this region, we consider a very weak elastic material, whose Hooke’s law
depends on a small parameter ε,

σε(uε) = Λ−1l ε(u
ε) = λεlDiv(uε)I + 2µεlε(u

ε),

where its Lamé coefficients, λεl , µ
ε
l , change with different length scale:

λεl = εβλ, µεl = εδµ, (38)

with λ, µ, δ and β real positive numbers independent of ε. So, the fictitious
material is assumed to be softer than the solid one.
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We consider gravity volume forces with constant density ρl = ρ(Tl) to
impose rightly the weight of the liquid aluminium on the interface and so the
metallostatic pressure there.

The boundary of Ωl(t) is split into four disjoint open parts (see Figure 7):

∂Ωl(t) = Γ̄u,up(t) ∪ Γ̄u,s2(t) ∪ Γ̄u,n3(t) ∪ Γ̄u,sl(t),

where:

– Γu,up(t) denotes the upper boundary which is free of forces;
– Γu,s2(t) is the symmetry boundary; and
– Γu,n3(t) corresponds to the outer lateral faces where the material is confined

by the mould.

3.4.1 Asymptotic justification of the pressure treatment

In [10,11], an asymptotic expansion method was applied to compute the op-
timal Lamé coefficients, verifying relations (38), needed to impose correctly
the metallostatic pressure. For every value of λεl , µ

ε
l the solution of Problem

(VMP ) was well approached far from the thermal free boundary Γu,sl; nev-
ertheless, its behaviour near this boundary depended strongly on δ and β
parameters:

– When δ > β, this has the effect of applying locally the metallostatic pres-
sure to the solidification front. Indeed, under suitable regularity assump-
tions on the data, in [11] the authoresses proved that, for linear elastic
materials, the term of order zero of the asymptotic expansion with respect
to ε, u0, when is restricted to Ωs(t) verifies :

σ(u0)n = prn on Γu,sl.

– If δ ≤ β, shear stresses in the fictitious domain appear and, in general, the
metallostatic pressure was not correctly imposed on Γu,sl. Nevertheless, if
δ = β and λ >> µ, shear stresses decrease and the approximation of the
metallostatic pressure near Γu,sl is better (see [10]).

These results are visualized in the following two-dimensional linear static test
where we focus on the behaviour near the interface, eliminating the remaining
difficulties of Problem (MP ). Let Ω be a rectangle in the x2x3 plane, centered
in x2 = 0 and with width w = 0.5 m and height h = 0.8 m. Let us assume that
the temperature field is such that Γu,sl is given by the expression:

Γu,sl = {x = (x2, x3);−4|x2|+ 5x3 = 2}.

The computational domain for this numerical example is shown in Figure 8.
Following the boundary notation of Problem (MP ), the boundary of Ωs is
split in four disjoint and open parts, ∂Ωs = Γ̄u,sl ∪ Γ̄u,d ∪ Γ̄u,n1 ∪ Γ̄u,n2, where:

– On the upper boundary Γu,sl we consider the metallostatic pressure.
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Ωs

Ωl Ωl

Γu,n2Γu,n2

Γu,n1

Γu,n3

Γu,up

Γu,d

Γu,sl

x3

x2

Γu,sl

B(Γu,sl, 0.1) ∩Ωs

Fig. 8 Computational domain of Test (T1).

– On the base Γu,d, the following displacement is prescribed:

u = ud(x2) = c̃ (−2hx2, h
2 − x22 − 0.852), (39)

with

c̃ =
ρg

4(λ+ µ)
, ρ = 2500 kg/m3, λ = 1.5e6 N/m2, µ = 3.5e5 N/m2.

– On Γu,n1 = {x ∈ ∂Ωs; 0 < x3 < 0.5} we impose a Neumann condition with
surface force h = ρg(x3 − h)n.

– On Γu,n2 = {x ∈ ∂Ωs; 0.5 < x3 < 0.6} we assume that

σt = 0, un = usl · n, (40)

where

usl(x2, x3) = c̃
(
2(x3 − h)x2, (x3 − h)2 − x22 − 0.852

)
. (41)

This boundary condition substitutes confinement condition (25) in order
to guarantee the continuity of the proposed solution.

So, the problem to solve is the following:

Test (T1):
Find u and σ such that

−Div(σ) = f in Ωs,

σn = prn on Γu,sl,

σn = h on Γu,n1,

σ(u) = λDiv(u)I + 2µ ε(u) in Ωs,

and verifying boundary conditions (39) and (40) on Γu,d and Γu,n2, respec-
tively; with f = (0, 0,−ρg) and pr = g(x3 − h).
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It is easy to prove that the solution of Test (T1) is usl, defined by ex-
pression (41), and σ(x2, x3) = ρg(x3 − h)I. This test is solved by using the
MATLAB Partial Differential Equation Toolbox and the relative errors ob-
tained are 2.8359e−4 in displacements and 5.1e−3 in stresses.

Next, we extend Test (T1) to the entire domain Ω, applying the fictitious
domain method explained in this section. Tables (1)-(3) show the relative
errors in displacements and stresses for this numerical example, considering
the following parameters:

λ̄ = 1e4 N/m2, µ̄ = 10 N/m2.

When δ < β, the approximation is not good, even far from boundary Γsl, due to
the occurrence of shear stresses in the fictitious domain (see Table 1 and Figure
9). When δ = β and λ >> µ, the approximation of the solution restricted to
Ωs is quite good even near Γsl, since shear stresses are considerably reduced
(see Table 2 and Figure 10). Finally, when δ > β, the errors in displacements
and stresses are of the same order than those obtained when solving directly
Test (T1) (see Table 3 and Figure 11); furthermore, in this case, the behaviour
is similar regardless of the relationship between λ and µ.

Table 1 Relative errors when δ < β (δ = 1, β = 2) for λ� µ.

ε Relative errors in Ωs Relative errors in Ωs \B(Γu,sl, 0.1)
displacements stresses displacements stresses

1.0e− 1 0.0165 0.1184 0.0074 0.0181
1.0e− 3 0.3499 1.9030 0.1556 0.4098
1.0e− 5 0.4544 2.2573 0.1968 0.5252

Table 2 Relative errors when δ = β = 1 for λ� µ.

ε Relative errors in Ωs Relative errors in Ωs \B(Γu,sl, 0.1)
displacements stresses displacements stresses

1.0e− 1 2.2e−3 2.56e−2 8.6770e−4 2.0e−3
1.0e− 3 2.2e−3 2.56e−2 8.6824e−4 2.0e−3
1.0e− 5 2.2e−3 2.56e−2 8.6824e−4 2.0e−3

Table 3 Relative errors when δ > β (δ = 2, β = 1) for λ� µ.

ε Relative errors in Ωs Relative errors in Ωs \B(Γu,sl, 0.1)
displacements stresses displacements stresses

1.0e− 1 4.6268e−4 4.9e−3 1.7727e−4 1.7e−3
1.0e− 3 2.2322e−4 4.0e−3 1.7403e−4 1.6e−3
1.0e− 5 2.2137e−4 4.0e−3 1.7404e−4 1.6e−3
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Fig. 9 Shear stresses for δ < β and λ >> µ
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Fig. 10 Shear stresses for δ = β and λ >> µ
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Fig. 11 Shear stresses for δ > β and λ >> µ

3.4.2 Application of fictitious domain technique to Problem (VMP )

With the fictitious domain technique presented above, variational inequality
(31) can be extended to the complete slab and the integral over the thermal
free boundary Γu,sl(t) disappears. Therefore, from now on, we will consider
this new extended weak formulation over the entire slab Ω(t) = int(Ω̄s(t) ∪
Ω̄l(t) ∪ Γ̄u,sl(t)). Furhermore, in order to simplify the notation, from now on,
we omit the index ε in the behaviour law of the fictitious material.

Problem (EVMP ):

Find u ∈ W 1,∞(t0, tf ; Up
ad(t)) and σ ∈ W 1,∞(t0, tf ; Hq(t)) verifying a.e. in

(t0, tf ]:

∫
Ω(t)

σ(t) : ε(v − u(t)) dx ≥
∫
Ω(t)

f(t) · (v − u(t)) dx,∀v ∈ Up
ad(t), (42)

ε(u̇)(t) =


˙︷ ︷

(Λ(T )σ)(t) +
(
DσΦq(σ

D, T )
)

(t) +
(
α(T )Ṫ

)
(t)I in Ωs(t),

˙︷ ︷
(Λlσ)(t) in Ωl(t),

(43)

u(t0) = u0, σ(t0) = σ0, in Ω(t0). (44)



Mechanical behaviour in DC alloys casting processes 31

Remark 2 Notice that the functional spaces are extended to the entire slab in
the natural way. The initial data, u0 and σ0, are also extended to all Ω(t0),
ensuring that the natural compatibility conditions are satisfied.

4 Numerical solution

This section is focused on the numerical solution of Problem (EVMP ). The
three main difficulties to overcome are the following:

– The numerical solution of variational inequality (42) due to the contact
condition. For that purpose, in [7] we proposed a Bermúdez-Moreno algo-
rithm combined with a fixed point method. Afterwards, in [5] we improved
this methodology by means of a generalized Newton method.

– The nonlinearity of behaviour law (43) in Ωs(t). In order to avoid this
nonlinearity, in [7] we also proposed the Bermúdez-Moreno algorithm and
a fixed point method. Later, in [5] we considered a Newton method and
finally, in [14] we presented a generalized Bermúdez-Moreno algorithm with
variable parameters as the better option for the numerical approach of this
law when it is combined with a contact condition like in casting processes
simulation.

– The time dependence of the computational domain, which grows with time,
and of its region with steep temperature gradients. To overcome this diffi-
culty, meshes are adapted to the physics of the casting process.

In Section 4.1, a finite element discretization in space is introduced. Section
4.2 is devoted to the application of the standard Bermúdez-Moreno algorithm
to solve, firstly, variational inequality (42) and, after, nonlinear behaviour law
(43). There, an implicit Euler discretization in time is used. In Section 4.3
these algorithms are improved by using generalized Newton methods. Finally,
in Section 4.4, a Bermúdez-Moreno algorithm with variable parameters for the
numerical solution of the viscoplastic law is presented. Along all the section,
several academic tests to analyze the efficiency of each of the presented algo-
rithms are included. We show that choosing the Newton algorithm for contact
and the Bermúdez-Moreno algorithm with variable parameters for viscoplas-
ticity is the better option for the butt curl simulation of casting processes.

4.1 Discretization in space

A usual finite element approximation to discretize Problem (EVMP ) is consid-
ered. Displacements are discretized in space using the Lagrange finite element
method of degree one and stresses are assumed constant within each element.

Let Th(t) be a tetrahedral mesh of the computational domain, Ω̄(t), com-
patible with the boundary partition. Throughout this section, h denotes the
maximum diameter of Th(t) and

Σh(t) = {bi}1≤i≤Nh(t),
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the nodes set of the tetrahedral mesh at time t. Moreover, Sh and Zh(t) denote
the triangulations induced on the contact boundary Γu,c and on the boundaries
Γu,n2(t) ∪ Γu,n3(t), respectively.

Let us define a family of finite dimensional subspaces of Vp(t) approximat-
ing the test functions v by piecewise polynomials of degree one over the mesh
Th(t):

Vh(t) = {vh ∈ [C0(Ω(t))]3; vh|K ∈ [P1(K)]3,∀K ∈ Th(t)},
Uh(t) = {vh ∈ Vh(t); (vh)α = 0 on [xα = 0], vh|C · n|C = 0,∀C ∈ Zh(t)},

where Pi(K) denotes the space of polynomials of degree i defined on K and
vh|C (resp. n|C) denotes the value of vh (resp. n) at the barycenter of C.
Therefore, the discrete space of admissible displacements is

Uadh(t) = {vh ∈ Uh(t); vh|C · n|C ≤ 0,∀C ∈ Sh}.

We denote by Xh(t) the discretized space of stresses

Xh(t) = {ξh; (ξh)ij = (ξh)ji, ξh|K ∈ [P0(K)]9,∀K ∈ Th(t)}.

In Xh(t), we consider the norm induced by
[
L2(Ω(t))

]9
.

Functions vh ∈ Vh(t) are characterized for their values in the vertices of
the elements,

vh(x) =

Nh(t)∑
i=1

vh(bi)φi(x),

where {φi}i=1,...,Nh(t)
are the usual shape functions verifying

φi(bj) = δij , 1 ≤ j ≤ Nh(t).

Elements ξh ∈ Xh(t) are characterized for their value at the barycenter of
each element,

ξh(x) =
∑

K∈Th(t)

ξh|KXK(x),

XK being the characteristic function of the element K. Moreover, at each time
instant we consider the operator

εh : Vh(t) −→ Xh(t)

vh −→ εh(vh) =
∑

K∈Th(t)

ε(vh|K)XK .

Finally, Th denotes the discretized temperature field obtained from the nu-
merical simulation of the thermal problem; although for that problem the
temperature field is computed using an analogous space discretization to that
of Vh(t), in the mechanical simulation it is considered constant by element
(see Bermúdez and Otero [23]).

With this notation, the discretized variational formulation corresponding
to Problem (EVMP ) is the following:



Mechanical behaviour in DC alloys casting processes 33

Problem (DEMP ):
Find uh ∈ W 1,∞(t0, tf ; Uadh(t)) and σh ∈ W 1,∞(t0, tf ; Xh(t)) verifying in
(t0, tf ]:∫
Ω(t)

σh(t) : εh(vh − uh(t)) dx ≥
∫
Ω(t)

fh(t) · (vh − uh(t)) dx,∀vh ∈ Uadh(t),

(45)

εh(u̇h)(t) =



˙︷ ︷
(Λ(Th)σh)(t) +

(
DσΦq(σ

D
h , Th)

)
(t)

+
(
α(Th)Ṫh

)
(t)I in Ωsh(t),

˙︷ ︷
(Λlσh)(t) in Ωlh(t),

(46)

uh(t0) = u0h, σh(t0) = σ0h in Ω(t0), (47)

where Ωsh(t) = Ωs(t) ∩ Th(t) and Ωlh(t) = Ωl(t) ∩ Th(t).

4.2 Standard Bermúdez-Moreno algorithm

An overview of different numerical methods to solve contact problems can be
found in Kikuchi and Oden [55], Wriggers [86] or in LeTallec [60] and references
therein for viscoplastic laws. A simple way to deal with these nonlinearities is
to use the well-known Bermúdez-Moreno lemma (see Bermúdez and Moreno
[19]). This lemma has been widely applied not only in the numerical solution
of this type of nonlinearities in solid mechanics (see Burguera and Viaño [28])
but also in such diverse scientific areas as finances (see Bermúdez et al. [22]),
sediment transport (see Morales de Luna et al. [63]) or electromagnestism (see
Bermúdez et al [18]). The application of Bermúdez-Moreno lemma to Problem
(DEMP ) is the main idea of the algorithm developed by the authoresses in
[7] which is summarized in the following.

4.2.1 Dealing with contact nonlinearity

In order to deal with variational inequality (45), we introduce the following
notations:

Eh = {ph ∈ L∞(Γu,c); ph|C ∈ P0(C), ∀C ∈ Sh},
Qh = {ph ∈ Eh; ph|C ≤ 0, ∀C ∈ Sh}.

Let G = ∂IQh
be the subdifferential of the indicator function of the closed

convex Qh defined in the Hilbert space Eh, which is a maximal monotone
operator. We denote by Gγc = G− γcI its perturbed operator, with γc a real
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positive parameter. To take into account the nonlinearity due to the contact
condition, we define a Lagrange multiplier, called contact multiplier, as

ph = Gγc ((uh)n) . (48)

Applying Bermúdez-Moreno lemma, expression (48) is equivalent to

ph = Gγcλc
((uh)n + λc ph) , (49)

where Gγcλc
is the Yosida approximation of Gγc , with λc, γc verifying that

λc > 0, 0 ≤ λcγc < 1.
In [7], the following expression for Gγcλc

was obtained:

Gγcλc
(ϕh) =

1

λc

(
ϕh −ΠQh

(
1

1− λcγc
ϕh

))
, ϕh ∈ Eh, (50)

where ΠQh
is the orthogonal projection over Qh given by

ΠQh
(ph) =

{
ph if ph ≤ 0,
0 if ph > 0,

ph belonging to Eh. Furthermore, it was also proved that every solution of
Problem (DEMP ) is a solution of the following problem which is formulated
as a weak equality:

Problem (DEMPC):
Find uh ∈W 1,∞(t0, tf ; Uadh(t)), σh ∈W 1,∞(t0, tf ; Xh(t)) and ph ∈W 1,∞(t0, tf ;Eh)
verifying in (t0, tf ]∫

Ω(t)

σh(t) : εh(vh)dx+

∫
Γu,c

γc(uh)n(vh)ndΓ =∫
Ω(t)

fh(t) · vhdx−
∫
Γu,c

ph(t) (vh)ndΓ, ∀vh ∈ Uh(t), (51)

ph(t) = Gγcλc
((uh)n + λc ph(t)) on Sh, (52)

together with behaviour law (46) and initial conditions (47).

To simplify the notation, from now on we will omit the index h to denote the
elements of the discretized spaces.

4.2.2 Dealing with the nonlinear behaviour law

In order to introduce an iterative algorithm to deal with the nonlinear be-
haviour law, firstly we discretize it in time and then we apply again the
Bermúdez-Moreno algorithm. For time discretization, we consider the follow-
ing regular partition of the time interval:

t0 = t0, t
j+1 = tj +∆t, j = 0, ..., N − 1, ∆t =

tf − t0
N

.
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From now on we denote by gj an approximation of a given function g(t) at
time tj .

By using an implicit Euler scheme, the time discretization of behaviour law
(46) is

ε(uj+1)− ε(uj) =



(
Λ(T j+1)σj+1 − Λ(T j)σj

)
+ α(T j+1)(T j+1 − T j)I

+∆t DσΦq

((
σj+1

)D
, T j+1

)
in Ωj+1

s ,

Λlσ
j+1 − Λlσj in Ωj+1

l .

Next, in the following lemma, our objective is to obtain an explicit expression
for σj+1 in order to be replaced in mixed variational formulation (51). To do
that, we define the viscoplastic multiplier qj+1 at the time step tj+1 as the

perturbed operator of DσΦq at
(
σj+1

)D
with parameter γp ≥ 0:

qj+1 = (DσΦq)
γp
((
σj+1

)D
, T j+1

)
. (53)

Lemma 2 At each time step tj+1, j = 0, . . . , N − 1, known T j+1, the stress
tensor in Ωj+1

s is given by the relation

σj+1 = V(T j+1)

(
ε(uj+1)−∆tqj+1 +

∆tγps
j+1

3
tr(ε(uj+1))I + Fj

)
, (54)

where qj+1 is defined by expression (53) and

Fj = −ε(uj) + Λ(T j)σj − α(T j+1)(T j+1 − T j)
(
1 +∆tγps

j+1
)
I+

∆tγps
j+1

3

(
1

sj
tr(σj)− tr(ε(uj))

)
I, (55)

with

sj =
E(T j)

1− 2ν(T j)
.

In (54), the automorphism V(T ) is defined by

V(T )τ = λ̃(T )tr(τ )I + 2µ̃(T )τ ,

being

λ̃(T ) =
E(T )ν(T )

(L(T )− 2ν(T ))(L(T ) + ν(T ))
, µ̃(T ) =

E(T )

2(L(T ) + ν(T ))
,

and L(T ) = 1 + γpE(T )∆t.

The proof of this lemma can be found in [3]. Notice that Fj represents the
history of the solidified alloy up to time tj and it also includes the expansional
effects of the temperature changes at the time interval [tj , tj+1].

In the following lemma the Bermúdez-Moreno method is applied to com-
pute the viscoplastic multiplier.
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Lemma 3 At each time step tj+1 and given T j+1, j = 0, . . . , N − 1, the
viscoplastic multiplier qj+1 is a fixed point of the equation

qj+1 = (DσΦq)
γp
λp

((
σj+1

)D
+ λpq

j+1, T j+1
)
, (56)

for λp a real positive number such that 0 ≤ λpγp < 1. In this equation,
(DσΦq)

γp
λp

denotes the Yosida approximation of (DσΦq)
γp , which is given by

(DσΦq)
γp
λp

(ζ, T ) =
ζ

λp

(
1− 1

η(1− λpγp)

)
, ζ ∈ S3, T ∈ R,

where η = η (ζ, T ) is the unique root of the equation

ηq−1 − ηq−2 − λpκ(T )

(1− λpγp)q−1
|ζ|q−2 = 0,

in the interval [1,+∞).

4.2.3 SBM algorithm

Here we summarize the standard Bermúdez-Moreno algorithm combined with
a fixed method for the numerical simulation of Problem (DEMP ).

SBM1 Let (u0,σ0) be given. We consider p0 as the weight of the metal column

over each face on the contact boundary and q0 = κ(T 0)
∣∣(σ0)D

∣∣q−2 (σ0)D.

SBM2 Then, for j ≥ 0, (uj , σj , qj , p j) known at time tj , we determine
(uj+1,σj+1, qj+1, p j+1) at time tj+1 by using the following iterative
algorithm:

(a) Initialize uj+1
0 = uj , p j+1

0 = p j and

qj+1
0 =

{
qj in Ωjs ,
0 in Ωj+1\Ωjs .

(b) With qj+1
k−1, p

j+1
k−1 known, compute uj+1

k with k ≥ 1 by solving the
variational equality∫

Ωj+1
s

V(T j+1)

[
ε(uj+1

k ) +
∆tγps

j+1

3
tr(ε(uj+1

k ))I

]
: ε(v)dx+∫

Ωj+1
l

Λ−1l ε(u
j+1
k ) : ε(v)dx+

∫
Γu,c

γc

(
uj+1
k

)
n
vndΓ =∫

Ωj+1
s

[
V(T j+1)

(
∆tqj+1

k−1 − Fj
)]

: ε(v)dx−
∫
Γu,c

p j+1
k−1 vndΓ+∫

Ωj+1

f j+1 · vdx, ∀v ∈ Uh(tj+1), (57)

where Fj is given by expression (55).
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(c) The updated stress tensor is defined by

σj+1
k =



V(T j+1)
(
ε(uj+1

k )−∆tqj+1
k−1

)
+V(T j+1)

(
∆tγps

j+1

3
tr(ε(uj+1

k ))I + Fj
)

in Ωj+1
s ,

Λ−1l ε(u
j+1
k ) in Ωj+1

l .

(d) The updated contact multiplier is computed as

p j+1
k =

1

λc

(uj+1
k

)
n

+ λcp
j+1
k−1 −ΠQh


(
uj+1
k

)
n

+ λcp
j+1
k−1

1− λcγc

 .
(e) The updated viscoplastic multiplier is given by

qj+1
k =

(
σj+1
k

)D
+ λpq

j+1
k−1

λp

(
1− 1

ηj+1
k (1− λpγp)

)
,

in Ωj+1
s , where

ηj+1
k = η

((
σj+1
k

)D
+ λpq

j+1
k−1, T

j+1

)
,

is the solution in the interval [1,+∞) of equation

ηq−1 − ηq−2 − λpκ(T j+1)

(1− λpγp)q−1

∣∣∣∣(σj+1
k

)D
+ λpq

j+1
k−1

∣∣∣∣q−2 = 0.

Remark 3 The only difficulty remaining in variational formulation (57) is how
to impose the confinement condition on the liquid and mushy zones in three-
dimensional simulations, since the transversal section of the slab is not rectan-
gular, which implies a coupling between the components of the displacement
field. This difficulty is overcome by using a penalization technique on these
boundaries.

Remark 4 In practice, updating the contact and viscoplastic multipliers is per-
formed with a relaxation parameter ϑ. For example, the updated viscoplastic
multiplier is obtained after SBM2(e) by formula

qj+1
k = ϑqj+1

k + (1− ϑ)qj+1
k−1, 0 < ϑ ≤ 1.
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4.3 Newton algorithm

The SBM algorithm presented in Section 4.2 is robust and converges well in
academic tests. Nevertheless, the greater the problem’s magnitude, the slower
its convergence. In casting processes, in which we must join two nonlinearities
-contact and viscoplasticity-, this difficulty becomes more apparent. Further-
more, when it was applied to the simulation of the butt-curl deformation, its
convergence got worse due to its strong dependence on the parameters and
the large thermal stresses. In order to improve its convergence and to reduce
the cpu-time, it was necessary to find efficient strategies. Concretely, in this
section Newton methods to compute both contact and viscoplastic multipliers
are introduced.

4.3.1 Dealing with contact nonlinearity

In this subsection we propose to use a generalized Newton method, based on
the Lipschitzian properties of maximal monotone operators to improve the
computation of the contact multiplier (see Facchinei and Pang [41], Pang [72]
and Robinson [75]). The results in this section have been proved in [5].

Let us consider again Problem (DEMPC) with γc = 0 and λc > 0. In this
case, the contact multiplier is obtained from the Yosida approximation of G
(see equation (50)):

Gλc(ϕ) =
1

λc
(I −ΠQh

) (ϕ), ϕ ∈ Eh. (58)

Notice that at each ϕ ∈ Eh,

Gλc
(ϕ)|C = Ĝλc

(ϕ|C), ∀C ∈ Sh,

where

Ĝλc
(s) =

{
0, if s ≤ 0,

s/λc, if s > 0,
(59)

at each point s ∈ R. Moreover, Ĝλc
is differentiable at each point s 6= 0.

Lemma 4 At each point s0 ∈ R, the following approximation for Ĝλc(s0)
holds true:

Ĝλc
(s0) ∼= Ĝλc

(s1) +


0, if s0 < 0,

−V s1, if s0 = 0,

(s0 − s1) /λc, if s0 > 0,

(60)

for s1 ∈ R close enough to s0, and V belonging to the subdifferential ∂Ĝλc(s0).
Furthermore, the error of this approximation is of order O

(
|s0 − s1|2

)
.
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It is easy to prove that

∂Ĝλc
(0) =

[
0,

1

λc

]
.

To solve numerically the contact problem we choose the null value for this
subdifferential and so V = 0 in (60).

Then, the algorithm proposed to approach equations (51) and (52) at time
tj+1 and iteration k is∫

Ωj+1

σj+1
k : ε(v)dx+

∫
Γu,c

pj+1
k vndγ =

∫
Ωj+1

f j+1 · vdx, ∀v ∈ Uh(tj+1),

(61)

p j+1
k = p j+1

k− 1
2

+


0, if sj+1

k−1 ≤ 0,

(
sj+1
k − sj+1

k−1

)
/λc, if sj+1

k−1 > 0,

(62)

where

p j+1

k− 1
2

= Ĝλc
(sj+1
k−1), (63)

sj+1
k =

(
uj+1
k

)
n

+ λc p
j+1
k ,

choosing s1 = sj+1
k−1, s0 = sj+1

k and V = 0 for s0 = 0 in (60).

Remark 5 Note that at each iteration the variational equality corresponding
to (61) is equivalent to the linear problem

−Div
(
σj+1
k

)
= f j+1 in Ωj+1,

σj+1
k n = 0 on Γ j+1

u,n1 ∪ Γ j+1
u,up,

(σj+1
k )n = −p j+1

k , (σj+1
k )t= 0 on Γu,c, (64)

(uj+1
k )n = 0, (σj+1

k )t = 0 on the remaining.

So, the contact multiplier p j+1
k represents the obstacle reaction on Γu,c.

When analyzing formulae (61)-(63), we notice that there exists a coupling
between the displacements and the contact multiplier on the boundary Γu,c.
In order to overcome this difficulty, in [5] the following lemma was proved.

Lemma 5 Let us consider the following sets:

(Γ−u,c,k)j+1 = {C ∈ Sh; sj+1
k ≤ 0}, (65)

(Γ+
u,c,k)j+1 = {C ∈ Sh; sj+1

k > 0}. (66)

Then,

p j+1
k = 0 on (Γ−u,c,k−1)j+1,(

uj+1
k

)
n

= 0 on (Γ+
u,c,k−1)j+1. (67)
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Thus, at each iteration, the boundary Γu,c is split into two parts:

– (Γ+
u,c,k−1)j+1, where the normal displacements and the tangential compo-

nent of stresses are null and the normal stress depends only on the contact
multiplier; and

– (Γ−u,c,k−1)j+1, where the normal and tangential stresses are null.

Notice that this division of Γu,c is the only variable modified at each iteration.

There are several ways to achieve the solution using formulae (61)-(63), but
since our objective is to couple the contact effects with the viscoplastic ones,
we propose an algorithm based on two steps thanks to equations (64) and (67)
(see [5] for details). In particular, condition (67) at each iteration is imposed
by a penalty term with small parameter, εc, on the faces with effective contact
(Γ+
u,c,k−1)j+1, with λc ≥ 1:

∫
Ωj+1

σj+1
k : ε(v) dx+

1

εc

∫
(Γ+

u,c,k−1)
j+1

(uj+1
k )nvn =

∫
Ωj+1

f j+1 · v dx, (68)

for all v ∈ Uh(tj+1), and the contact multiplier is updated by

pj+1
k =


1

εc
(uj+1
k )n on

(
Γ+
u,c,k−1

)j+1

,

0 on
(
Γ−u,c,k−1

)j+1

.

(69)

Thus, we replace formulae (61)-(63) by equations (68) and (69). At the end of
this section the complete algorithm is described.

Matrix factorization Due to the multiscale nature of the fictitious domain
problem, the large thermal stresses and the implementation of the penalty term
of the contact condition, the linear system of equations could not be solved by
using iterative methods, so a direct one is applied. Since the computational
domain grows with time far from the contact region and the stiffness matrix
K changes at each contact iteration, in order to reduce the computational
demands, we apply a partial factorization which let us recalculate only the
submatrix corresponding to the contact nodes. Then, we propose to use:

– a mesh numbering such that the contact nodes correspond with the first
ones;

– a factorization of the type K = UDUT, where D is a diagonal matrix and
U is an upper triangular matrix with unitary diagonal;

– a storage by means of an upper skyline by rows; so, we storage the upper
submatrix of K row by row from downwards to upwards and from the right
to the left.
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We apply a factorization row by row following the expressions

Dnn = Knn,

i = n− 1, n− 2, . . . , 1

Uin =
Kin

Dnn
,

Uij =

Kij −
n∑

l=j+1

UilDllUjl

Djj
, j = n− 1, n− 2, . . . , i+ 1,

Dii = Kii −
n∑

l=i+1

U2
ilDll,

where n = 3Nh(t) is the number of degrees of freedom at each time instant t.
With this methodology, at each iteration we only recompute and factorize the
first nc rows of the matrix, nc being the number of degrees of freedom on the
contact boundary (see [13] and [77]).

Testing the algorithm. Test (T2) Here we check the Newton algorithm com-
bined with the partial factorization strategy when they are applied to solve
contact problems. For that purpose, in [13] we have solved an academic two-
dimensional thermo-elastic test whose solution presents a gap between the
slab and the rigid foundation, similar to the butt curl deformation in a real
aluminium casting process. We have compared the efficiency of this algorithm
with the SBM algorithm.

Γu,d

Γu,n

Γu,c

x3

x2

Ω

Fig. 12 Computational domain of Test (T2).

Let (0, 200s] be the time interval of interest. We consider the cylindrical
body whose axis is parallel to x1-direction and whose section is the square
of dimensions 0.5m×0.5m in the plane x2x3. We consider the plane strain
assumption over the plane x2x3 and then its numerical simulation on the
two-dimensional domain Ω shown in Figure 12. For the sake of simplicity, we
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consider Ω independent of time. On ∂Ω we distinguish three disjoint and open
parts:

∂Ω = Γ̄u,d ∪ Γ̄u,n ∪ Γ̄u,c,
where

Γ̄u,d = ∂Ω ∩ ([x2 = 0] ∪ [x3 = 0.5]), Γ̄u,n = ∂Ω ∩ [x2 = 0.5],

Γ̄u,c = ∂Ω ∩ [x3 = 0].

Let

T (t) = Tl + (100− Tl)
t

200
, t ∈ [0, 200] (70)

be the temperature function and Tl = 649◦C. Notice that the slab temperature
is constant at each time instant and lower than Tl at t > 0.

In this test we assume that the material is thermo-elastic and we consider
the elastic parameters E = 1.e9N/m2, ν = 0.35, which are independent of
time and of temperature. We denote by λ and µ the corresponding Lamé
coefficients. The coefficient of thermal expansion is given by expression (11),
where the mass density function is (see El-Raghy et al. [40])

ρ(T ) =

{
2700− 0.23T if T ≤ Ts,
2360 if T = Tl,

(71)

Ts = 607◦C being the solidus temperature. The values of ρ(T ) for T ∈ (Ts, Tl)
are approximated by linear interpolation. These data correspond to an alu-
minium alloy used in the numerical simulation of Section 5.

The problem to solve is

Test (T2):

−Div(σ) = f in Ω,
u = û on Γu,d,

σn = (0, 0, 3µh2) on Γu,n,
στ = m, σn ≤ 0, un ≤ 0, σnun = 0 on Γu,c,

ε(u) = Λσ +

∫ T

Tl

α(r) dr I in Ω,

u(0) = û(0), σ(0) = σ̂(0) in Ω,


with

f(x, t) =

{
−3(λ+ µ)h2e2 − 6µhx3e3, if x2 ≤ x̂2(t),
−6µhe3, if x2 > x̂2(t),

m(x, t) =

{
−3h2µx3e2, if x2 ≤ x̂2(t),
−3h2µe2, if x2 > x̂2(t),

û (x, t) =
E

2µ

(∫ T

Tl

α(r) dr

)
(x2e2 + x3e3) +

{
h3x3e3, if x2 ≤ x̂2(t),
h3e3, if x2 > x̂2(t),

σ̂(x, t) = −E

(∫ T

Tl

α(r) dr

)
E1 +

λh3I + 2µh3E2 + 3µh2x3E3, if x2 ≤ x̂2(t),

3µh2E3, if x2 > x̂2(t),
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where

E1 =

 1 0 0
0 0 0
0 0 0

, E2 =

0 0 0
0 0 0
0 0 1

, E3 =

0 0 0
0 0 1
0 1 0

,
and

h(x2, t) = x2 − x̂2(t), x̂2(t) = 0.4− 1.e−3t.

The solution of Test (T2) is u = û, σ = σ̂.

We use a uniform spatial mesh with 12800 triangles and 6561 vertices and
for time discretization ∆t = 0.1s. We initialize the contact multiplier by

p0 =

{
1, on (Γ+

u,c)
0,

0, on (Γ−u,c)
0.

Finally, we consider the following parameters:

– for the SBM algorithm:

γc = 0.5e9, λc = 1.e−9, ϑ = 0.9;

– for the Newton algorithm:

λc =
1

∆t
, εc = 1.e−15, ϑ = 0.9.

At time tj , the stopping test on the contact multiplier pjk is

|pjk − p
j
k−1| < δ̃max{δ̃, | pjk|}, ∀C ∈ Sh, and

|pjk −Gλc
(sjk)| < δ̃max{δ̃, |Gλc

(sjk)|}, ∀C ∈ Sh,

where δ̃ is a small parameter and sjk = (ujk)n + λcp
j
k. Notice that, with this

stopping test, if the multiplier is close to zero we perform an absolute test
with δ̃2 and, in the other case, a relative test with δ̃. In this case, we consider
δ̃ = 1.e−3.

Figure 13 shows the displacements on the deformed configuration and the
Von Mises norm of stresses at the last time step. In this test we compare
the results obtained with the Newton algorithm with those obtained with the
SBM one. The L2 relative error at the last time step obtained with both
algorithms is 3.957e−4 in displacements and 7.452e−3 in stresses. Table 4
gathers the obtained results, showing that with Newton algorithm the cpu-
time decreases approximately 74% with respect to the SBM method and the
number of iterations decreases 99%. These results show the good applicability
of the Newton method for contact problems.
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Fig. 13 Displacements on the deformed configuration and Von Mises norm at the last time
step.

Table 4 Cpu-time and average number of iterations with ∆t = 0.1s for contact Test (T2).

Method SBM Newton method
cpu-time (s) 17480.61 4615.30

iterations 258 3

4.3.2 Dealing with the nonlinear behaviour law

In this subsection, we improve the convergence of the viscoplastic multiplier in
SBM algorithm. For this purpose, as in Subsection 4.2.2, the thermo-elastic-
viscoplastic law is discretized in time by using an implicit Euler scheme and
Lemmas 2 and 3 are applied with γp = 0. Therefore, the viscoplastic multiplier
qj+1, defined in Ωj+1

s , verifies (see (53)):

qj+1 = (DσΦq)λp

((
σj+1

)D
+ λpq

j+1, T j+1
)
, (72)

being

(DσΦq)λp
(ζ, T ) =

1

λp

(
1−1

η

)
ζ,

and η = η (ζ, T ) the unique root in the interval [1,+∞) of the equation

ηq−1 − ηq−2 − λpκ(T )|ζ|q−2 = 0. (73)

Assuming that the stress tensor is known, in [5] we linearize equation (72)
to obtain an approximation of the viscoplastic multiplier, and we prove the
following lemmas.

Lemma 6 Given any σ ∈ S3, T ∈ R and λp > 1, the fixed point q ∈ S3 of
the equation

q = (DσΦq)λp

(
σD + λpq, T

)
can be approximated by

q ∼= (DσΦq)λp

(
σD + λpq̂, T

)
+

(
1− 1

η

)
(q− q̂)

+ η̄
((
σD + λpq̂

)
: (q− q̂)

) (
σD + λpq̂

)
,
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for q̂ ∈ S3 close enough to q and provided that σD + λpq̂ 6= 0. Here η =
η
(
σD + λpq̂, T

)
is given by equation (73), and η̄ is defined by the expression

η̄ =
(q − 2) (η − 1)

η ((q − 1)η − (q − 2)) |σD + λpq̂|2
.

The order of this approximation is O
(
|q− q̂|2

)
.

The fixed point of (72) can be explicitly computed thanks to the following
lemma.

Lemma 7 At each time step tj+1, j = 0, . . . , N−1, and at each iteration k >
0, the fixed point qj+1

k of equation (72) can be computed using the recurrence
formula

qj+1
k =



0, if κj+1
k = 0,

(ηj+1
k −1)
λp

((
σj+1
k

)D
+
(
ηj+1
k − 1

)
q−2
ηj+1
k

κj+1
k

)
−
(
ηj+1
k − 1

)
q−2
|κj+1

k |2

(
qj+1
k−1 : κj+1

k

)
κj+1
k , if κj+1

k 6= 0,

(74)

in Ωj+1
s , where κj+1

k is given by

κj+1
k =

(
σj+1
k

)D
+ λp qj+1

k−1,

and ηj+1
k = η

(
κj+1
k , T j+1

)
.

Adimensionalization technique Due to the large thermal stresses that appear
in the slab during aluminium casting, sometimes convergence is not achieved
when using the Newton algorithm described above to approximate the vis-
coplastic multiplier. To solve this, in [5] we proposed to employ an adimen-
sionalization technique on the stresses. This technique consists of choosing a
reference stress and introducing new nondimensional unknowns in order to
transfer the magnitude of the stresses to the coefficients of the behaviour law
(46) to solve a similar problem for these new unknowns.

Testing the algorithm. Test (T3) Here we check the Newton algorithm com-
bined with the adimensionalization technique when they are applied to solve
elastic-viscoplastic problems. In this test, large gradients of the stress tensor
appear – from null value to 108–, a similar situation like in casting processes,
when a part of the material is recently solidified.

Let (0, 0.5s] be the time interval of interest. We consider the cylindrical
body detailed in Test (T2), also under the plane strain assumption. On the
boundary of its cross section Ω, we distinguish two disjoint and open parts,
∂Ω = Γ̄u,d ∪ Γ̄u,n, where

Γ̄u,d = ∂Ω ∩ ([x2 = 0] ∪ [x3 = 0]) , Γ̄u,n = ∂Ω ∩ ([x2 = 0.5] ∪ [x3 = 0.5]) .
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We consider that Ω is an already solidified block with constant temperature.
Then, there are not thermal stresses and the material parameters correspond-
ing to the constitutive law, independent of the temperature, are taken as:

E = 1.e9N/m2, ν = 0.35, θ0 = 1.953125e−39m2/(sN), q = 6.

Then, the problem to solve is

Test (T3):
Find u and σ such that

Div(σ) = 0 in Ω,
u = h (t) (0, x2,−x3) on Γu,d,

σn = g on Γu,n,
ε(u̇) = Λσ̇ + θ0 | σD |q−2 σD in Ω,

u(x, 0) = 0, σ(x, 0) = 0 in Ω,

 (75)

with h (t) = 1.e8
1 + ν

E
t+

2

3
1.e40 θ0t

6 and

g(x, t) =

{
1.e8 tn, on Γu,n ∩ [x2 = 0.5],
−1.e8 tn, on Γu,n ∩ [x3 = 0.5].

The solution of Test (T3) is readily verifiable

u(x, t) = h (t) (0, x2,−x3) , σ(x, t) = 1.e8

 0 0 0
0 t 0
0 0 −t

 .

To solve this test we use a uniform spatial mesh with 800 elements and 441
nodes, corresponding to a discretization parameter ∆x = 0.025m and for time
discretization we use a small time step ∆t = 1.e−5s since the solution is
nonlinear in time. We compute the initial viscoplastic multiplier as

q0 = κ(T 0)
∣∣(σ0)D

∣∣q−2 (σ0)D = 0,

and we consider the following parameters:

– for the SBM algorithm:

γp = 1.e−6, λp = 0.5e6, ϑ = 0.9;

– for the Newton algorithm:

λp = 1, ϑ = 0.9.

At each time step tj , a stopping test at each component of the viscoplastic
multiplier is performed, analogously to that of contact multiplier in Test (T2).

The results obtained with the Newton method together with the adimen-
sionalization technique improved those obtained with SBM algorithm, with a
85% decrease in the cpu-time and a 95% in the average number of iterations
(see Table 5).
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Table 5 Comparison of cpu-time and average number of iterations with ∆t = 1.e−5 for
elastic-viscoplastic Test (T3).

Method SBM Newton method
cpu-time (s) 18790.2 2744.0
iterations 57 3
u error 2.622e−5 2.621e−5
σ error 1.245e−5 1.244e−5

4.3.3 NBM algorithm

Here, we summarize the Bermúdez-Moreno algorithm combined with Newton
methods proposed in Subsections 4.3.1 and 4.3.2 to approximate both vis-
coplastic and contact multipliers when solving the casting problem. In the
following, this algorithm is denoted by NBM algorithm.

NBM1 Equal to SBM1.
NBM2 Then, for j ≥ 0, (uj , σj , qj , p j) known at time tj , we determine

(uj+1,σj+1, qj+1, p j+1) at time tj+1 by using the following iterative al-
gorithm:

(a) Equal to SBM2(a).

(b) With qj+1
k−1, p

j+1
k−1 known, compute (uj+1

k , p j+1
k ) with k ≥ 1 in two steps:

(i) Solve the variational equality∫
Ωj+1

s

(
Λ(T j+1)

)−1
ε(uj+1

k ) : ε(v)dx+

∫
Ωj+1

l

Λ−1l ε(u
j+1
k ) : ε(v)dx+

1

εc

∫
(Γ+

u,c,k−1)
j+1

(
uj+1
k

)
n
vndγ =

∫
Ωj+1

f j+1 · vdx+∫
Ωj+1

s

(
Λ(T j+1)

)−1 (
∆tqj+1

k−1 − Fj
)

: ε(v)dx, ∀v ∈ Uh(tj+1),

where

Fj = Λ(T j)σj − ε(uj)− α(T j+1)(T j+1 − T j)I in Ωj+1
s .

(ii) Update the contact multiplier pj+1
k with expression (69) and the

effective contact boundary with (66).

(c) The stress tensor is updated analogously to SBM2(c) with γp = 0.

(d) The updated viscoplastic multiplier is given by equation (74).

Remark 6 Notice that, in NBM algorithm, the automorphism V(T j+1) is re-
placed by Λ−1(T j+1).

Figure 14 shows a flowchart of NBM algorithm. After initializing variables
(Step 1 in Figure 14), a time step loop is carried out. In this loop, at the j+ 1
time step, the displacement vector uj+1 is computed by constructing the fixed
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stiffness matrix (Step 2) and solving iteratively NBM2(b)-NBM2(d) (Steps 5-
10), where the variable stiffness matrix is constructed at each iteration (Step
6).

Computation of uj+1
k ,

pj+1
k ,qj+1

k , k ≥ 1.
Computation of uj+1, pj+1,
qj+1, j = 1, . . . , N .

Fig. 14 Flowchart for NBM algorithm.
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4.3.4 Improvements of NBM algorithm

Newton method is known to be an efficient method, but, unfortunately, in time-
dependent problems, it is necessary to use a very small time step discretization
in order to have a good initial approach. Since the time interval of interest
to reproduce the butt curl deformation is about 150 s, if we want to apply
NBM algorithm we should be able to increase the time step. To overcome this
difficulty, in [5] we proposed to use an optimization technique on the time step
in such a way that, given an initial fixed ∆t, if convergence is not achieved,
the time step is automatically reduced until the algorithm converges. When
the convergence is stabilized, the time step is again automatically increased.
Furthermore, to stabilize the Newton method we also employed an Armijo rule
on the computation of the viscoplastic multiplier (see Bertsekas [24]).

Testing the algorithm. Test (T4) In order to check the NBM algorithm com-
bined with the above improvements, we consider a modification of Test (T3)
to also include a Signorini contact condition with a rigid obstacle. To do that,
in Test (T4), Γu,d is reduced to Γ̄u,d = ∂Ω ∩ [x2 = 0], considering a new part
of the boundary, Γu,c, defined by (see Figure 15):

Γ̄u,c = ∂Ω ∩ [x3 = 0].

Test (T4) keeps all the equations and data of Test (T3) and it also includes
the Signorini contact condition on Γu,c; the solutions of both tests are equal.

Γu,n

Γu,d Ω

x2

Γu,c

x3

Fig. 15 Computational domain of Test (T3).

We initialize the viscoplastic and contact multipliers by q0 = 0, p0 =
1.e−15, and we consider the following parameters:

– for the SBM algorithm:

γc = 0.5e12, λc = 1.e−12,

γp = 1.−6, λp = 0.5e6,

ϑ = 0.9;
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– for the NBM algorithm:

λc = λp = 1, εc = 1.e−50, ϑ = 0.9.

Table 6 Comparison of cpu-time and average number of iterations with ∆t = 1.e−5 for
Test (T4).

Method SBM NBM
cpu-time (s) 25256.8 5365.2
iterations 69 3
u error 2.918× 10−5 2.917× 10−5

σ error 1.345× 10−5 1.345× 10−5

Table 6 shows the obtained results with the SBM and NBM algorithms
when considering a small time step. Notice that with the NBM algorithm the
average number of iterations decreases approximately 95% and the cpu-time
85% with respect to the SBM algorithm.

Aiming to simulate the butt curl simulation, an increase in the time step
is necessary. If we consider ∆t = 0.0625, NBM algorithm does not converge
except that we use the automatic optimization of the time step described
above. In this case, the time step is reduced from 0.0625 s to 0.015625 s.
Table 7 shows the obtained results with SBM and NBM algorithms; the NBM
algorithm obtains smaller displacement and stress errors than the SBM one
and the reduction in cpu-time is 48% and in the average number of iterations
93%.

Table 7 Comparison of cpu-time and average number of iterations with ∆t = 0.0625 for
Test (T4).

Method SBM NBM
cpu-time (s) 6.58 3.39
iterations 254 18
u error 2.66e−1 7.30e−2
σ error 1.63e−1 2.70e−2

4.4 Bermúdez-Moreno algorithm with variable parameters

In this Section we propose to take advantage of the robustness of the SBM al-
gorithm and to improve it with the methodology presented in Parés et al. [74]
and Gallardo et al. [45], who introduced a procedure to automatically com-
pute the optimal parameters of the algorithm. In the latter paper, the authors
introduced a generalized Yosida regularization and they presented a general-
ization of the Bermúdez-Moreno algorithm that allows the use of very general
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operators as parameters. Moreover, as a particular case, they analyzed the use
of scalar and matrix-valued parameters, proving that the optimal choice of the
parameter γp is a matrix-valued function. An application of this generalized
algorithm with scalar parameters in one-dimensional problems can be seen in
Arregui et al. [2].

Since our viscoplastic law varies greatly depending on whether the element
is recently solidified or not, the SBM algorithm strongly depends on the choice
of the two constant parameters λp, γp involved to approach the viscoplastic
multiplier (see equation (56)). Thus, taking into account the complexity of
the real problem, we propose to replace the constant parameters by scalar
functions depending on time and space (see [14]). We will see in Section 5
that, although in Gallardo et al. [45] this choice did not give good results
in some academic cases, in casting processes the convergence improvement is
considerable. This fact is due to the great variation of viscoplastic behaviour
from one element to another and from one time step to another, which explains
the poor convergence results when considering γp constant.

In this section we restrict ourselves to the associated two-dimensional prob-
lem under the plane strain assumption on the symmetry plane [x1 = 0]. As we
have announced, we consider again SBM algorithm and we assume there that
γp, λp are functions from Ω × (0, tf ) to R. From Lemma 3, at each time step
tj , given γjp, λ

j
p, the viscoplastic multiplier verifies

qj = (DσΦq)
γj
p

λj
p

((
σj
)D

+ λjpq
j , T j

)
, (76)

where σj is obtained from equation (54) at the time step tj . The main question
is to determine a suitable technique to compute the value of parameters γjp,

λjp from the solution obtained at the time step tj . Taking into account that

the optimal parameters to convergence verify λjpγ
j
p = 1/2 (see Bermúdez and

Moreno [19] or Parés et al. [73]), the problem is reduced to compute one of
them, for example, γjp.

Taking into account that Norton-Hoff’s law (27) only involves the devi-
atoric part of the stress tensor, in this study we consider for each element
K ∈ Th(tj) the space of matrices with null trace under the plane strain as-
sumption:

SD = {τ = (τij) ∈M3×3(R); τij = τji, τ12 = τ13 = 0, τ11 = −(τ22 + τ33)}.

We introduce the following notation:

– H denotes the derivative application of the viscoplastic function Φq defined
in expression (21):

H : SD −→ SD

τ −→ H(τ ) = κ|τ |q−2τ .

Notice that the dependence of Φq on the temperature is omitted since, in
practice, we consider that the temperature is constant at each element of
the mesh.
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– Given ζ ∈ SD and q = Hγp(ζ) ∈ SD, we denote H̃
γp
1/(2γp)

as

H̃
γp
1/(2γp)

(q) = H
γp
1/(2γp)

(
ζ +

1

2γp
q

)
,

where H
γp
1/(2γp)

is the regularized Yosida of the perturbed operator

Hγp = H − γpI.

With this notation, if λjpγ
j
p = 1/2, the viscoplastic multiplier qj |K , given by

expression (76), can be rewritten at each time step tj and over each element
K as:

qj |K = H
γj
p|K

1/(2γj
p|K)

((
σj |K

)D
+

1

2γjp|K
qj |K

)
= H̃

γj
p|K

1/(2γj
p|K)

(
qj |K

)
.

Hence, qj |K can be obtained as the fixed point of H̃
γj
p|K

1/(2γj
p|K)

at each time step

and over each element of the mesh. The strategy proposed in Gallardo et al.
[45] consists of finding at each element K and at each time step tj the critical

points of H̃
γj
p|K

1/(2γj
p|K)

or, equivalently, finding a parameter γjp|K verifying

DH̃
γj
p|K

1/(2γj
p|K)

(qj |K) = 0.

For that purpose, in the following lemma its spectral radius is minimized (see
[14]).

Lemma 8 Let assume that DH
((
σj
)D)

is positive definite and consider that

0 < ωj1 ≤ ω
j
2 ≤ ω

j
3 are its eigenvalues. Then,

ωji − γp
ωji + γp

are the eigenvalues of DH̃
γp
1/(2γp)

(qj) for qj = Hγp
((
σj
)D)

and its spectral

radius is

ρjγp = max
i=1,2,3

∣∣∣∣∣ωji − γpωji + γp

∣∣∣∣∣ .
In [14] we have also proved the following theorem, which gives the optimal
values for parameters γjp, λ

j
p:

Theorem 2 The optimal choice of parameters for the viscoplastic multiplier
qj |K at each time step tj and over each element K of the mesh is

γjp|K =

√
ωj1|K ω

j
3|K , λjp|K =

1

2γjp|K
, (77)
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where ωj1|K and ωj3|K , eigenvalues of DH
((
σj |K

)D)
, are given by

ωj1|K = Bj |K , ωj3|K = Bj |K +
2

3
Aj |K

((
σj |K

)D)2
eq
,

with

Aj |K = κ(T j |K)(q − 2)
∣∣(σj |K)D

∣∣q−4 ,
Bj |K = κ(T j |K)

∣∣(σj |K)D
∣∣q−2 ,

and τeq being the Von Mises equivalent stress defined by

τeq =

√
3

2
τ : τ , τ ∈ SD.

4.4.1 VNBM algorithm

In order to overcome the poor convergence of the SBM algorithm in the butt
curl simulation of aluminium casting processes, we propose to combine the
Newton algorithm for the contact nonlinearity introduced in Subsection 4.3.1,
with the standard Bermúdez-Moreno algorithm with variable parameters for
the viscoplastic nonlinearity presented in Section 4.4. In the following, this
algorithm is denoted by VNBM algorithm. In practice, to avoid the factor-
ization of the whole stiffness matrix, parameters γp and λp are updated only
once when starting a new time step, after the stress tensor is computed on the
previous time step.

VNBM1 Equal to SBM1.

VNBM2 Then, for j ≥ 0, (uj , σj , qj , γjp, p
j) known at time tj , we determine

(uj+1,σj+1, qj+1, γj+1
p , p j+1) at time tj+1 by using the following iterative

algorithm:

(a) Equal to SBM2(a).

(b) With qj+1
k−1, p

j+1
k−1 known, compute (uj+1

k , p j+1
k ) with k ≥ 1 in two steps:

(i) Solve the variational equality∫
Ωj+1

s

V(T j+1)

[
ε(uj+1

k ) +
∆tγjps

j+1

3
tr(ε(uj+1

k ))I

]
: ε(v)dx+∫

Ωj+1
l

Λ−1l ε(u
j+1
k ) : ε(v)dx+

1

εc

∫
(Γ+

u,c,k−1)
j+1

(
uj+1
k

)
n
vndγ =∫

Ωj+1
s

[
V(T j+1)∆tqj+1

k−1

]
: ε(v)dx−

∫
Ωj+1

s

[
V(T j+1)Fj

]
: ε(v)dx+∫

Ωj+1

f j+1 · vdx ∀v ∈ Uh(tj+1),

where Fj is given by formula (55) for γp = γjp.
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(ii) The contact multiplier is updated equal to NBM2(ii).

(c) The updated stress tensor is defined analogously to SBM2(c) with γp =
γjp.

(d) The updated viscoplastic multiplier is defined analogously to SBM2(d)

with γp = γjp and λp =
1

2γjp
.

(e) Once the convergence is achieved, the updated parameter γj+1
p and

λj+1
p are given by expressions in (77) with a lag to the previous time

step:.

The flowchart of VNBM algorithm is analogous to that in Figure 14, taking
into account that, once the convergence is achieved at each time step, it is
necessary to compute the value of parameter γp for the next time step.

Testing the VNBM algorithm In order to check the VNBM algorithm, as in
Subsection 4.3.4, we consider again Test (T4). The parameters for VNBM
algorithm are:

λc = 1, εc = 1.e−50, γ0p = 0.1, ϑ = 0.9.

Table 8 shows a comparison between the three main algorithms presented in
this paper. The reduction in cpu-time of the NBM algorithm with respect to
the SBM is 48% and the reduction in iterations is 92%. From these results we
can state that NBM method introduced in Subsection 4.3.3 is a good method
to solve mechanical problems with elastic-viscoplastic laws of Maxwell-Norton
type and with a Signorini contact condition. Nevertheless, when using this
method to simulate real casting processes, convergence of NBM method slows
down dramatically.

Otherwise, although the NBM algorithm obtain better results for this test,
the reduction in cpu-time (40%) and iterations (83%) of the VNBM algorithm
with respect to the SBM is considerable. In addition, if we take into account
that the Newton method has convergence problems in the recently solidified
elements, due to the discontinuity of the viscoplastic stresses on the phase
change, we can conclude that the VNBM algorithm is a very good alternative
for the butt curl simulation of castings as we will see in the next section.

Table 8 Comparison of cpu-time and average number of iterations for elastic-viscoplastic
test with contact.

Method SBM NBM NVBM
cpu-time (s) 6.58 3.39 3.92
iterations 254 18 43
u error 2.66e−1 7.30e−2 2.03e−1
σ error 1.63e−1 2.70e−2 8.40e−2
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5 Numerical results of an aluminium alloy casting process

In this section we present the results obtained in the numerical simulation of
a real casting process. Real data have been provided by ALCOA-INESPAL,
A Coruña, Spain. Firstly, we present the numerical results obtained with the
SBM algorithm in the three-dimensional simulation of the process using the
weak formulation (EVMP ). We compare these results with the experimental
ones obtained in plant. Secondly, due to that the start phase simulation is the
most cpu-time consumption, with a considerable amount, we restrict ourselves
to the two-dimensional case and we compare the results obtained with the
three algorithms –SBM, NBM and VNBM– presented in this paper for this
start phase. The objective is to provide real-time response to the engineer
in plant and to show a good agreement between two and three-dimensional
simulations.

The parameters to characterize the thermo-elastic-viscoplastic law of alu-
minium alloy (see equation (27)) have been introduced in our previous works
[7–9] after carrying out a complete bibliographic search in the engineering lit-
erature (see El-Raghy et al. [40], Hatch [51], Lemaitre and Chaboche [61] or
Wong and Jonas [85]). The data and parameters considered to carry out the
casting problem simulations are the following:

– Volume forces: Equal to those considered in Test (T2) with Ts = 620◦C.
– Elastic law: Values for Young’s modulus, E, and Poisson’s coefficient, ν, de-

pending on temperature are obtained from Table 9 by linear interpolation.

Table 9 Elastic law parameters.

T (◦C) E(109N/m2) ν
126.9 67 0.3134
326.9 58 0.3448
526.9 40 0.45

– Viscoplastic law: The viscoplastic parameter κ(T ) is computed from rela-
tions (16) and (20), and from the data of Table 10.

Table 10 Viscoplastic law parameters.

λr(N/sm2) k(106N/m2) G(Kcal/mol) q
4.0e12 15.72 37.3 6

– Thermal law: The coefficient of thermal expansion α(T ), which includes
volume changes due to phase transformations, is computed from the density
function following equation (11).
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– In practice, to impose the metallostatic pressure we consider in equation
(38) that δ = 2, β = 1, ε = 1.e−3, λ = λ(Tl) and µ = µ(Tl), that is:

λ̄ = 1.2414e11, µ̄ = 1.3793e10.

5.1 Numerical results for the three-dimensional simulation of the start and
stationary stages

In [8] some results for the start and stationary stages of the above DC casting
process were presented by using the SBM algorithm and a validation with
experimental results were carried out.

Figure 16 shows the mesh of the computational domain at the start stage
of the casting process with 7182 elements and 1600 nodes. Experimental mea-
surements were made at a point near the bottom of the corner.

Fig. 16 Initial mesh of the slab used for the start stage.

Figure 17 (left) shows the numerical butt curl at time t = 140 s. The
numerical vertical displacement of the test point marked in the figure at t =
250 s was 0.035 m and the experimental value 0.038 m. The numerical time
dependence of the displacement modulus for this point is also shown in this
graphic on the right.

In order to simulate the stationary stage, several factors must be taken
into account: the growth of the domain with time and the variation of the
region with the sharpest temperature gradients, which is always near the top
and outer faces of the slab. So, the entire undeformed reference mesh is recon-
structed at each time step; the new mesh being bigger than the previous one
by an amount corresponding to the metal poured during the time step, and
finest-grained where the temperature gradients are steepest. Figure 18 (left)
shows the reference mesh obtained with this methodology at t = 1000 s with
∆t = 10 s, which has 38016 elements and 7548 nodes. Saint-Venant principle,
corroborated by two-dimensional simulations (see [8]), shows that the butt
curl has no influence on the cross-sectional deformation caused by contraction
of the lateral faces. Due to this, we decided that for the stationary stage the
Signorini contact condition could be replaced by a simple constraint maintain-
ing the butt surface in contact with the bottom block. Figure 18 (right) shows
the contraction suffered by the lateral faces of the slab after 1000s of casting.
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Fig. 17 Butt curl deformation after 140 s of casting. The arrow shows the point where
experimental results were taken; at this point the time evolution of butt curl is shown in
the graphic on the right.

O
X Y

Z

O X Y 

Z 

Fig. 18 Three-dimensional mesh of the slab –on the left– and contraction of the lateral
faces –on the right– after 1000 s of casting.

Figure 19 shows the deformation obtained for a cross-section about half-
way up the slab after 1000 s and compares the numerical slab profile in three
different cross-sections with the collar geometry and the desired flat geometry,
illustrating how contraction increases with time. In a cross-section near the
butt, which changes negligibly after 1000 s, the calculated half-width in the y
direction at the point where experimental measurements were made was 0.280
m, which compares well with the measured final value of 0.277 m.



58 Patricia Barral et al.

Fig. 19 Contraction in a cross-section about half-way up the slab; l1, l2 label two of the
three-segments of the inner face of the moulding collar. Numerical cross-sectional profile
of the wide side at three different heights (+− lower region, ×− halfway region, ∗− head
region, − mould geometry, · · · desired geometry) are shown in the graphic on the right.

5.2 Numerical results for the two-dimensional simulation of the start stage

When using the SBM algorithm, the computational cost of the start stage
simulation made difficult the real-time usage of this method to help in the
understanding of the different effects in the casting process. Due to this, we
have restricted ourselves to the two-dimensional case in the symmetry plane
x1 = 0, and we have developed two new algorithms, NBM and VNBM, which
were presented in Section 4, to improve and to accelerate the real-time response
for the butt curl simulation; in this section we compare the efficiency between
the three algorithms when they are applied to simulate it.

The parameters considered to carry out the aluminium alloy casting sim-
ulations are the following:

– for the SBM algorithm:

γc = 0.5e6, λc = 1.e−6, γp = 1.25e−12, λp = 0.4e12, ϑ = 0.9;

– for the NBM algorithm:

λc = 1, εc = 1.e−3, λp = 1, ϑ = 0.9;

– for the VNBM algorithm:

λc = 1, εc = 1.e−3, γ0p = 1.25e−13, ϑ = 0.9.

Figure 20 shows the mesh of the computational domain at the start of the
casting process with 1320 elements and 732 nodes. In this mesh, we took
into account the peculiarities of casting processes, and in its numbering, the
first nodes correspond with the contact ones to use the partial factorization
technique shown in Subsection 4.3.1.
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Fig. 20 Initial mesh of the slab used for the start stage.

The considered time interval is (0, 145s] and an initial time step ∆t = 1s is
used. Since butt curl is so rapid (see Figure 17, on right), its accurate modelling
requires time steps to be small, so, to obtain a good initial approach which is
necessary in the Newton algorithm, the NBM algorithm incorporates the time
step optimization explained in Subsection 4.3.4.

Figure 21 shows the isotherms obtained with the code developed in Otero
[70] after carry out a physical parameters adjustment with experimental data,
and the butt curl obtained at the last time step.

Fig. 21 Isotherms and butt curl deformation after 145s of casting.

The numerical simulation was carried out by using the three algorithms. Al-
though the NBM algorithm had a very good convergence in academic problems
(see [5]), in this real casting simulation, convergence is not always achieved,
mainly when a zone of the slab is recently solidified. Besides, the SBM al-
gorithm has a good but slow convergence which dependes strongly on the
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chosen parameters. Fortunately, the VNBM algorithm incorporates the good
convergence properties of the Newton algorithm in contact and it improves the
convergence of the fixed point algorithm in viscoplasticity with the automatic
computation of the algorithm parameters.

The cpu-time and the average number of iterations obtained with the SBM
and VNBM algorithms are summarized in Table 11. Data for the NBM algo-
rithm are not shown since, as we have said, convergence is not always achieved.

Table 11 Cpu-time and number of iterations after 145s of casting.

Method SBM VNBM
cpu-time (s) 2660.49 465.562
iterations 6593 89

Notice that with the VNBM algorithm the cpu-time decreases approxi-
mately 83% with respect to the SBM algorithm and the number of iterations
decreases 99%.

6 Conclusions

In this work we have collected three algorithms to solve numerically a Signorini
contact problem in Maxwell-Norton materials arising from aluminium alloys
casting processes. Along all the paper we have analyzed the efficiency of these
algorithms not only on academic tests but also to simulate casting processes.

In [3], Barral presented a numerical method based on the Bermúdez-Moreno
algorithm involving two multipliers which can be obtained as fixed points of
two nonlinear equations. Due to the slow convergence of this algorithm and
its strong dependence on the parameters, we have reviewed two techniques to
improve its efficiency: firstly, taking advantage of the good convergence proper-
ties of Newton methods and secondly, by means of considering the parameters
of the Bermúdez-Moreno algorithm as variable scalar functions. Numerical
results show that:

– The standard Bermúdez-Moreno algorithm (SBM) is slower but in turn
very robust.

– The Newton algorithm combined with some numerical strategies (NBM
algorithm) is faster and more accurate. It needs fewer iterations and less
cpu-time than the SBM one. The numerical strategies presented in this
paper –the matrix factorization adapted to the problem geometry, an adi-
mensionalization technique and a time step optimization– work very well
in academic examples. Nevertheless, convergence is not always achieved
when they are applied to the casting simulation. Our guess is that this
unexpected difficulty is due to the very different behaviours found in casting
processes (between recently solidified zones and others already cold).
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– The main disadvantage of the SBM algorithm is its strong dependence
on the parameters (see [7]). The Bermúdez-Moreno algorithm with vari-
able parameters for viscoplasticity combined with the Newton method for
contact (VNBM algorithm) overcomes this difficulty since the viscoplastic
parameters are considered variable scalar functions, depending on time and
space and they are automatically calculated. Moreover, it takes advantage
of the good convergence properties of Newton method when solving the
nonlinear contact condition. Numerical results in casting simulations show
that the VNBM algorithm is the best option to simulate the butt curl
deformation.
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23. Bermúdez, A., Otero, M.V.: Numerical solution of a three-dimensional solidification
problem in aluminium casting. Finite Elem. Anal. Des. 40(13-14), 1885–1906 (2004)

24. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)
25. Besson, O., Bourgeois, J., Chevalier, P.A., Rappaz, J., Touzani, R.: Numerical modelling

of electromagnetic casting processes. J. Comput. Phys. 92, 482–507 (1991)
26. Blanchard, D., Le Tallec, P.: Numerical analysis of the equations of small strains qua-

sistatic elastoviscoplasticity. Numer. Math. 50(2), 147–169 (1986)
27. Bower, A.F.: Applied Mechanics of Solids. CRC Press (2010)
28. Burguera, M., Viaño, J.M.: Numerical solving of frictionless contact problems in per-

fectly plastic bodies. Comput. Methods Appl. Mech. Engrg. 121(1-4), 303–322 (1995)
29. Casella, E., Giangi, M.: An analitical and numerical study of the stefan problem with

convection by means of an entalphy method. Math. Methods Appl. Sci. 24(9), 623–639
(2001)

30. Cervera, M., Agelet de Saracibar, C., Chiumenti, M.: Thermo-mechanical analysis of
industrial solidification processes. Int. J. Num. Meths. Engng. 46, 1575–1591 (1999)

31. Chen, Z., Jiang, L.: Approximation of a two-phase continuous casting Stefan problem.
J. Partial Differential Equations 11, 59–72 (1998)

32. Chen, Z., Shih, T., Yue, X.: Numerical methods for Stefan problems with prescribed
convection and nonlinear flux. IMA J. Numer. Anal. 20(1), 81–98 (2000)

33. Ciarlet, P.G.: Élasticité tridimensionnelle, Recherches en Mathématiques Appliquées
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79. So lek, K., Trȩbacz, L.: Thermo-Mechanical Model of Steel Continuous Casting Process.
Arch. Metall. Mater. 57(1), 355–361 (2012)

80. Stefanescu, D.M.V.C.: ASM Handbook. Casting, vol. 15. ASM International. The Ma-
terials Information Society, Ohio (1992)

81. Stoll, H.W.: Casting Design Issues and Practices. Casting Design and Performance.
ASM International. The Materials Information Society, Ohio (2009)

82. Subroto, T., Miroux, A., Mortensen, D., M’Hamdi, M., Eskin, D.G., Katgerman, L.:
Semi-quantitative predictions of hot tearing and cold cracking in aluminum dc cast-
ing using numerical process simulator. IOP Conference Series: Materials Science and
Engineering 33(1), 012,068 (2012)

83. Sullivan, J.M., Lynch, D.R.: Numerical simulation of dendritic solidification of an under-
cooled melt. Int. J. Numer. Meth. Engng. 25, 415–444 (1988)
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