STRONG KÄHLER WITH TORSION STRUCTURES FROM ALMOST CONTACT MANIFOLDS

MARISA FERNANDEZ, ANNA FINO, LUIS UGARTE, AND RAQUEL VILLACAMPA ´

ABSTRACT. For an almost contact metric manifold N , we find conditions for which either the total space of an S^1 -bundle over N or the Riemannian cone over N admits a strong Kähler with torsion (SKT) structure. In this way we construct new 6-dimensional SKT manifolds. Moreover, we study the geometric structure induced on a hypersurface of an SKT manifold, and use such structures to construct new SKT manifolds via appropriate evolution equations. Hyper-Kähler with torsion (HKT) structures on the total space of an $S¹$ -bundle over manifolds with three almost contact structures are also studied.

1. INTRODUCTION

On any Hermitian manifold (M^{2n}, J, h) there exists a unique Hermitian connection ∇^B with totally skew-symmetric torsion, called in the literature as Bismut connection [4]. The torsion 3-form $h(X, T^B(Y, Z))$ of ∇^B can be identified with the 3-form

$$
-JdF(\cdot,\cdot,\cdot) = -dF(J\cdot, J\cdot, J\cdot),
$$

where $F(\cdot, \cdot) = h(\cdot, J\cdot)$ is the fundamental 2-form associated to the Hermitian structure (J, h) .

Hermitian structures with closed JdF are called strong Kähler with torsion (shortly SKT) or also pluriclosed [9]. Since $\partial\bar{\partial}$ acts as $\frac{1}{2}dJd$ on forms of bidegree (1,1), the latter condition is equivalent to $\partial \bar{\partial} F = 0$. SKT structures have been recently studied by many authors and they have also applications in type II string theory and in 2-dimensional supersymmetric σ -models [18, 26, 22].

The class of SKT metrics includes of course the Kähler metrics, but as in [12] we are interested on non-Kähler geometry, so for SKT metrics we will mean Hermitian metrics h such that its fundamental 2-form F is $\partial \overline{\partial}$ -closed but not d-closed.

Gauduchon in [19] showed that on a compact complex surface an SKT metric can be found in the conformal class of any given Hermitian metric, but in higher dimensions the situation is more complicated.

SKT structures on 6-dimensional nilmanifolds, i.e. on compact quotients of nilpotent Lie groups by discrete subgroups, were classified in [12, 28]. Simplyconnected examples of 6-dimensional SKT manifolds have been found in [17] by using torus bundles and recently Swann in [27] has reproduced them via the twist construction, by extending them to higher dimensions, and finding new other compact simply-connected SKT manifolds. Moreover, in [14] it has been showed that the SKT condition is preserved by the blow-up construction.

²⁰⁰⁰ Mathematics Subject Classification. 53C55, 53C15, 22E25, 53C26.

The odd dimensional analog of Hermitian structures are given by normal almost contact metric structures. Indeed, on the product $N^{2n+1} \times \mathbb{R}$ of a $(2n+1)$ dimensional almost contact metric manifold N^{2n+1} by the real line R it is possible to define a natural almost complex structure, which is integrable if and only if the almost contact metric structure on N^{2n+1} is normal [25]. More in general, it is possible to construct Hermitian manifolds starting from an almost contact metric manifold N^{2n+1} by considering a principal fibre bundle P with base space N^{2n+1} and structural group S^1 , i.e. an S^1 -bundle over N^{2n+1} (see [24]). Indeed, in [24] by using the almost contact metric structure on N^{2n+1} and the connection 1-form θ , Ogawa constructed an almost Hermitian structure (J, h) on P and found conditions for which J is integrable and (J, h) is Kähler.

In Section 2 we determine conditions for which in general an S^1 -bundle over an almost contact metric $(2n+1)$ -dimensional manifold N^{2n+1} is SKT (Theorem 2.3). We study the particular case when N^{2n+1} is quasi-Sasakian, i.e. it has an almost contact metric structure for which the fundamental form is closed (Corollary 2.4). In this way we are able to construct some new 6-dimensional SKT examples, starting from 5-dimensional quasi-Sasakian Lie algebras and also from Sasakian ones.

A Sasakian structure can be also seen as the analog in odd dimensions of a Kähler structure. Indeed, by [7] a Riemannian manifold (N^{2n+1}, g) of odd dimension $2n + 1$ admits a compatible Sasakian structure if and only if the Riemannian cone $N^{2n+1} \times \mathbb{R}^+$ is Kähler. In Section 3 we study which conditions has to satisfy the compatible almost contact metric structure on a Riemannian manifold (N^{2n+1}, g) in order to the Riemannian cone $N^{2n+1} \times \mathbb{R}^+$ to be SKT (Theorem 3.1). An example of an SKT manifold constructed as Riemannian cone is provided and the particular case that the Riemannian cone is 6-dimensional is considered in Section 4. This case is interesting since one can impose that the SKT structure is in addition an SKT SU(3)-structure and one can find relations with the SU(2)-structures studied by Conti and Salamon in [8].

In Section 5 we study the geometric structure induced naturally on any oriented hypersurface N^{2n+1} of a $(2n + 2)$ -dimensional manifold M^{2n+2} carrying an SKT structure and in Section 6 we use such structures to construct new SKT manifolds via appropriate evolution equations [20, 8], starting from a 5-dimensional manifold endowed with an SU(2)-structure (Theorem 6.4).

A good quaternionic analog of Kähler geometry is given by hyper-Kähler with torsion (shortly HKT) geometry. An HKT manifold is a hyper-Hermitian manifold $(M^{4n}, J_1, J_2, J_3, h)$ admitting a hyper-Hermitian connection with totally skewsymmetric torsion, i.e. for which the three Bismut connections associated to the three Hermitian structures (J_r, h) , $r = 1, 2, 3$, coincide. This geometry was introduced by Howe and Papadopoulos [21] and later studied for instance in [16, 11, 2, 3, 27].

A particular interesting case is when the torsion 3-form of such hyper-Hermitian connection is closed. In this case the HKT manifold is called strong.

In the last section we find conditions for which an S^1 -bundle over a $(4n + 3)$ dimensional manifold endowed with three almost contact metric structures is HKT and in particular when it is strong HKT (Theorem 7.1).

2. SKT STRUCTURES ARISING FROM S^1 -BUNDLES

Consider a $(2n + 1)$ -manifold N^{2n+1} with an almost contact metric structure (I, ξ, η, g) , that is, I is a tensor field of type $(1, 1)$, ξ is a vector field, η is a 1-form and g is a Riemannian metric on N^{2n+1} satisfying the following conditions:

$$
I^{2} = -Id + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(IU, IV) = g(U, V) - \eta(U)\eta(V),
$$

for any vector fields U, V on N^{2n+1} . Denote by ω the fundamental 2-form of (I, ξ, η, q) , i.e. ω is the 2-form on N^{2n+1} given by

$$
\omega(.,.) = g(.,I.).
$$

Given the tensor field I consider its Nijenhuis torsion $[I, I]$ defined by

(1)
$$
[I, I](X, Y) = I^2[X, Y] + [IX, IY] - I[IX, Y] - I[X, IY].
$$

On the product $N^{2n+1}\times\mathbb{R}$ it is possible to define a natural almost complex structure

$$
J\left(X, f\frac{d}{dt}\right) = \left(IX + f\xi, -\eta(X)\frac{d}{dt}\right),\,
$$

where f is a \mathcal{C}^{∞} -function on $N^{2n+1} \times \mathbb{R}$ and t is the coordinate on \mathbb{R} .

We recall the following

Definition 2.1. [25] An almost contact metric structure (I, ξ, η, g) on N^{2n+1} is called normal if the almost complex structure J on $N^{2n+1} \times \mathbb{R}$ is integrable, or equivalently if

$$
[I, I](X, Y) + 2d\eta(X, Y)\xi = 0,
$$

for any vector fields X, Y on N^{2n+1} .

By [5, Lemma 2.1] for a normal almost contact metric structure (I, ξ, η, g) , one has that $i_{\xi}d\eta = 0$.

Remark 2.2. The normality of the almost contact structure implies also that $Id\eta = d\eta$. Indeed, we have that $d(\eta - idt) = d\eta$ has no (0,2)-part and therefore it has also no $(2, 0)$ -part since $d\eta$ is real. Thus $Jd\eta = d\eta$, but we have also that $Jd\eta = Id\eta$ since $i_{\xi}d\eta = 0$.

We recall that a Hermitian manifold (M, J, h) is SKT if and only if the 3-form JdF is closed, where F is the fundamental 2-form of (J, h) . In the paper we will use the convention that J acts on r-forms β as

$$
(J\beta)(X_1,\ldots,X_r)=\beta(JX_1,\ldots,JX_r),
$$

for any vector fields X_1, \ldots, X_r .

We now show conditions for which in general an S^1 -bundle over an almost contact metric $(2n + 1)$ -dimensional manifold is SKT.

Let (N^{2n+1}, I, ξ, η) be a $(2n + 1)$ -dimensional almost contact manifold, and let Ω be a closed 2-form on N^{2n+1} which represents an integral cohomology class on N^{2n+1} . From the well-known result of Kobayashi [23], we can consider the circle bundle $S^1 \hookrightarrow P \to N^{2n+1}$, with connection 1-form θ on P whose curvature form is $d\theta = \pi^*(\Omega)$, where $\pi : P \to N^{2n+1}$ is the projection.

By using the almost contact structure (I, ξ, η) and the connection 1-form θ , one can define an almost complex structure J on P as follows (see [24]). For any right-invariant vector field X on P , JX is given by

(2)
$$
\theta(JX) = -\pi^*(\eta(\pi_*X)),
$$

$$
\pi_*(JX) = I(\pi_*X) + \tilde{\theta}(X)\xi,
$$

where $\tilde{\theta}(X)$ is the unique function on N^{2n+1} such that

(3)
$$
\pi^* \tilde{\theta}(X) = \theta(X).
$$

The above definition can be extended to arbitrary vector fields X on P , since X can be written in the form

$$
X = \sum_j f_j X_j,
$$

 $\sum_j f_j J X_j.$ with f_j smooth functions on P and X_j right-invariant vector fields. Then $JX =$

In [24] it has been showed that if (N^{2n+1}, I, ξ, η) is normal, then the almost complex structure J on P defined by (2) is integrable if and only if $d\theta$ is J-invariant, that is,

$$
J(d\theta) = d\theta,
$$

or equivalently

$$
d\theta(JX,Y) + d\theta(X,JY) = 0,
$$

for any vector fields X, Y on P, i.e. $d\theta$ is a complex 2-form on P having bidegree $(1, 1)$ with respect to J.

In terms of the 2-form Ω whose lifting to P is the curvature of the circle bundle $S^1 \hookrightarrow P \to N^{2n+1}$, the previous condition means that Ω is *I*-invariant, i.e. $I(\Omega)$ Ω , and therefore $i_{\xi}\Omega = 0$.

If $\{e^1, \ldots, e^{2n}, \eta\}$ is an adapted coframe on a neighborhood U on N^{2n+1} , i.e. such that

$$
Ie^{2j-1} = -e^{2j}
$$
, $Ie^{2j} = e^{2j-1}$, $1 \le j \le n$,

then we can take $\{\pi^*e^1,\ldots,\pi^*e^{2n},\pi^*\eta,\theta\}$ as a coframe in $\pi^{-1}(U)$. By using the coframe $\{\pi^*e^1, \ldots, \pi^*e^{2n}\}\,$, we may write

$$
d\theta = \pi^* \alpha + \pi^* \beta \wedge \pi^* \eta,
$$

where α is a 2-form in $\Lambda^2 < e^1, \ldots, e^{2n} >$ and $\beta \in \Lambda^1 < e^1, \ldots, e^{2n} >$.

Next, suppose that N^{2n+1} has a normal almost contact metric structure (I, ξ, η, g) . We consider a principal S^1 -bundle P with base space N^{2n+1} and connection 1-form θ , and endow P with the almost complex structure J (associated to θ) defined by (2). Since N^{2n+1} has a Riemannian metric g, a Riemannian metric h on P compatible with J (see [24]) is given by

(4)
$$
h(X,Y) = \pi^* g(\pi_* X, \pi_* Y) + \theta(X)\theta(Y),
$$

for any right-invariant vector fields X, Y . The above definition can be extended to any vector field on P.

Theorem 2.3. Let $(N^{2n+1}, I, \xi, \eta, q)$ be a $(2n + 1)$ -dimensional almost contact metric manifold and let Ω be a closed 2-form on N^{2n+1} which represents an integral cohomology class. Consider the circle bundle $S^1 \hookrightarrow P \to N^{2n+1}$ with connection 1form θ whose curvature form is $d\theta = \pi^*(\Omega)$, where $\pi : P \to N^{2n+1}$ is the projection.

Then, the almost Hermitian structure (J, h) on P, defined by (2) and (4), is SKT if and only if (I, ξ, η, g) is normal, $d\theta$ is J-invariant and such that

(5)
$$
d(\pi^*(I(i_{\xi}d\omega))) = 0,
$$

\n
$$
d(\pi^*(I(d\omega) - d\eta \wedge \eta)) = (-\pi^*(I(i_{\xi}d\omega)) + \pi^*\Omega) \wedge \pi^*\Omega,
$$

where ω denotes the fundamental form of the almost contact metric structure (I, ξ, η, g) .

Proof. As we mentioned previously, a result of Ogawa [24] asserts that the almost complex structure J is integrable if and only if (g, I, ξ, η) is normal and $J(d\theta) = d\theta$. Thus (J, h) is SKT if and only if the 3-form JdF is closed. By using the first equality of (2) , we have that the fundamental 2-form F on P is

$$
F(X,Y) = h(X,JY) = \pi^* g(\pi_* X, \pi_* JY) + \theta(X)\theta(JY)
$$

=
$$
\pi^* g(\pi_* X, \pi_* JY) - \theta(X)\pi^* \eta(\pi_* Y).
$$

Therefore, taking into account that we are working with a circle bundle, and so its fibre is 1-dimensional, we have

$$
F = \pi^* \omega + \pi^* \eta \wedge \theta.
$$

Thus,

$$
dF = \pi^*(d\omega) + \pi^*(d\eta) \wedge \theta - \pi^*\eta \wedge d\theta,
$$

and

(6)
$$
JdF = J(\pi^*(d\omega)) - J(\pi^*(d\eta)) \wedge \pi^*\eta - \theta \wedge d\theta,
$$

since $J(\pi^*\eta) = \theta$ and J is integrable, so $J(d\theta) = d\theta$.

Moreover, we have

(7)
$$
J(\pi^*(d\omega)) = \pi^*(I(d\omega)) + \pi^*(I(i_{\xi}d\omega)) \wedge \theta.
$$

Indeed, locally and in terms of the adapted basis $\{e^1, \ldots, e^{2n+1}\}\$ such that

$$
Ie^{2j-1} = -e^{2j}
$$
, $1 \le j \le n$, $Ie^{2n+1} = 0$, $\eta = e^{2n+1}$,

we can write

$$
d\omega = \alpha + \beta \wedge \eta,
$$

where the local forms $\alpha \in \Lambda^3 < e^1, \ldots, e^{2n} >$ and $\beta \in \Lambda^2 < e^1, \ldots, e^{2n} >$ are generated only by e^1, \ldots, e^{2n} . Furthermore, we have

$$
I\alpha = I(d\omega), \quad \beta = i_{\xi}d\omega.
$$

Thus,

$$
J(\pi^*(d\omega)) = J(\pi^*(\alpha)) + J(\pi^*(i_{\xi}d\omega)) \wedge \theta.
$$

Now, by using (2) and (3), we see that $J(\pi^*(\alpha)) = \pi^*(I\alpha)$ and $J(\pi^*(i_{\xi}d\omega)) =$ $\pi^*(I(i_{\xi}d\omega))$, which proves (7). As a consequence of Remark 2.2 we have

(8)
$$
J(\pi^*(d\eta)) = \pi^*(I(d\eta)) - \pi^*(I(i_{\xi}d\eta)) \wedge \theta = \pi^*(d\eta),
$$

since $i_{\xi}d\eta = 0$ and $Id\eta = d\eta$.

By using (7) and (8) we get

(9)
$$
JdF = \pi^*(I(d\omega)) + \pi^*(I(i_{\xi}d\omega)) \wedge \theta - \pi^*(d\eta) \wedge \pi^*\eta - \theta \wedge d\theta.
$$

Therefore

$$
d(JdF) = d(\pi^*(I(d\omega))) + d(\pi^*\{I(i_\xi d\omega)\}) \wedge \theta + \pi^*(I(i_\xi d\omega)) \wedge d\theta
$$

$$
-d(\pi^*(d\eta)) \wedge \pi^*\eta - \pi^*(d\eta) \wedge d\pi^*\eta - d\theta \wedge d\theta.
$$

Consequently, $d(JdF) = 0$ if and only if

$$
d(\pi^*(I(i_{\xi}d\omega)))=0,
$$

and

$$
d(\pi^*(I(d\omega) - d\eta \wedge \eta)) = (\pi^*(-I(i_{\xi}d\omega)) + d\theta) \wedge d\theta,
$$

which completes the proof. \Box

We recall that an almost contact metric manifold $(N^{2n+1}, I, \xi, \eta, g)$ is quasi-Sasakian if it is normal and its fundamental form ω is closed. If, in particular, $d\eta = \alpha \omega$, then the almost contact metric structure is called α -Sasakian. When $\alpha = -2$, the structure is said to be Sasakian.

By [15, Theorem 8.2] an almost contact metric manifold $(N^{2n+1}, I, \xi, \eta, g)$ admits a connection ∇^c preserving the almost contact metric structure and with totally skew-symmetric torsion tensor if and only if the Nijenhuis tensor of I , given by (1), is skew-symmetric and ξ is a Killing vector field. Moreover, this connection is unique.

Then, in particular on any quasi-Sasakian manifold $(N^{2n+1}, I, \xi, \eta, g)$ there exists a unique connection ∇^c with totally skew-symmetric torsion such that

$$
\nabla^c I = 0, \quad \nabla^c g = 0, \quad \nabla^c \eta = 0.
$$

Such connection ∇^c is uniquely determined by

(10)
$$
g(\nabla^c_X Y, Z) = g(\nabla^g_X Y, Z) + \frac{1}{2} (d\eta \wedge \eta)(X, Y, Z),
$$

where ∇^g denotes the Levi-Civita connection and $\frac{1}{2}(d\eta \wedge \eta)$ is the torsion 3-form of ∇^c .

Corollary 2.4. Let $(N^{2n+1}, I, \xi, \eta, g)$ be a quasi-Sasakian $(2n + 1)$ -manifold and let Ω be a closed 2-form on N^{2n+1} which represents an integral cohomology class. Consider the circle bundle $S^1 \hookrightarrow P \rightarrow N^{2n+1}$ with connection 1-form θ whose curvature form is $d\theta = \pi^*(\Omega)$, where $\pi : P \to N^{2n+1}$ is the projection. Then, the almost Hermitian structure (J, h) on P, defined by (2) and (4), is SKT if and only if Ω is *I*-invariant, i_ξ $\Omega = 0$ and

(11)
$$
d\eta \wedge d\eta = -\Omega \wedge \Omega.
$$

Moreover, the Bismut connection ∇^B of (J,h) on P and the connection ∇^c on N given by (10) are related by

(12)
$$
h(\nabla_X^B Y, Z) = \pi^* g(\nabla_{\pi_* X}^c \pi_* Y, \pi_* Z),
$$

for any vector fields $X, Y, Z \in \text{Ker}\theta$.

Proof. Since $d\omega = 0$, if we impose the SKT condition, by using the previous theorem, we get the equation (11).

The Bismut connection ∇^B associated to the Hermitian structure (J, h) on P is given by:

(13)
$$
h(\nabla^B_X Y, Z) = h(\nabla^h_X Y, Z) - \frac{1}{2} dF(JX, JY, JZ),
$$

for any vector fields X, Y, Z on P, where ∇^h is the Levi-Civita connection associated to h. Then, for any X, Y, Z in the kernel of θ we have

$$
h(\nabla_X^B Y, Z) = \pi^* g(\nabla_X^h Y, Z) + \frac{1}{2} (\pi^*(d\eta) \wedge \pi^*\eta)(X, Y, Z).
$$

By [24, Lemma 3] and the definition of ∇^c we get

$$
h(\nabla_X^B Y, Z) = \pi^* g(\nabla_{\pi_* X}^g \pi_* Y, \pi_* Z) + \frac{1}{2} (\pi^*(d\eta) \wedge \pi^* \eta)(X, Y, Z) = \pi^* g(\nabla_{\pi_* X}^c \pi_* Y, \pi_* Z),
$$

for any X, Y, Z in the kernel of θ .

Remark 2.5. If the structure (I, ξ, η, g) is α -Sasakian, equation (11) reads as

$$
\Omega \wedge \Omega = -\alpha^2 \,\omega \wedge \omega.
$$

In the case of a trivial S^1 -bundle, i.e. by considering the natural almost Hermitian structure on the product $N^{2n+1} \times \mathbb{R}$, we get the following

Corollary 2.6. Let $(N^{2n+1}, I, \xi, \eta, q)$ be a $(2n + 1)$ -dimensional almost contact metric manifold. Consider on the product $N^{2n+1}\times\mathbb{R}$ the almost complex structure J given by

$$
JX = IX, \quad X \in Ker \eta, \quad J\xi = -\frac{d}{dt},
$$

and the product metric $h = g + (dt)^2$. The Hermitian structure (J, h) is SKT if and only if (I, ξ, η, g) is normal and such that

$$
d(I(d\omega)) = d(d\eta \wedge \eta), \quad d(I(i_{\xi}d\omega)) = 0,
$$

where ω denotes the fundamental 2-form of the almost contact metric structure $(g, I, \xi, \eta).$

As a consequence of previous results we get

Corollary 2.7. Let $(N^{2n+1}, I, \xi, \eta, g)$ be a $(2n + 1)$ -dimensional quasi-Sasakian manifold such that $d\eta \wedge d\eta = 0$. Then, the Hermitian structure (J, h) on $N^{2n+1} \times \mathbb{R}$ is SKT. Moreover, its Bismut connection ∇^B coincides with the unique connection ∇^c on N^{2n+1} given by (10).

Proof. In this case, since $d\omega = 0$ we get

$$
d(JdF) = -d(d\eta \wedge \eta).
$$

Moreover, by using (12)

$$
h(\nabla^B_X Y, Z) = g(\nabla^c_X Y, Z),
$$

for any vector fields X, Y, Z on N^{2n+1} .

2.1. Examples. We will start presenting three examples of quasi-Sasakian Lie algebras satisfying the condition $d\eta \wedge d\eta = 0$. By applying Corollary 2.7 one gets an SKT structure on the product of the corresponding simply-connected Lie group by R.

Example 2.8. Let s be the 5-dimensional Lie algebra with structure equations

$$
\left\{\begin{array}{l} de^1=e^{13}+e^{23}+e^{25}-e^{34}+e^{35}, \\ de^2=2e^{12}-2e^{13}+e^{14}-e^{15}-e^{24}+e^{34}+e^{45}, \\ de^3=-e^{12}+e^{13}+e^{14}-e^{15}+2e^{24}-2e^{34}+e^{45}, \\ de^4=-e^{12}-e^{23}+e^{24}-e^{25}-e^{35}, \\ de^5=e^{12}-e^{13}-e^{24}+e^{34}, \end{array}\right.
$$

where by e^{ij} we denote $e^i \wedge e^j$.

.

Consider on $\mathfrak s$ the quasi-Sasakian structure (I, ξ, η, g) given by

(14)
$$
\eta = e^5
$$
, $Ie^1 = -e^2$, $Ie^3 = -e^4$, $\omega = -e^{12} - e^{34}$, $g = \sum_{j=1}^5 (e^j)^2$.

We have that the above quasi-Sasakian structure satisfies the condition $d(d\eta \wedge d\eta)$ η) = 0.

The Lie algebra s is 2-step solvable since the commutator

 ${\mathfrak s}^1=[{\mathfrak s},{\mathfrak s}]=\mathbb R< e_1-e_4, \, e_2+e_3, \, e_1-e_2+2e_3-e_5>$

is abelian, where $\{e_1, \ldots, e_5\}$ denotes the dual basis of $\{e^1, \ldots, e^5\}$. Moreover $\mathfrak s$ has trivial center, it is irreducible and non unimodular, since we have that the trace of ad_{e_1} is equal to -3 .

Example 2.9. Consider the family of 2-step solvable Lie algebras $\mathfrak{s}_a, a \in \mathbb{R} - \{0\},\$ given by

,

$$
\begin{cases}\n de^1 = a e^{23} + 3 e^{25}, \\
 de^2 = -a e^{13} - 3 e^{15} \\
 de^3 = a e^{34}, \\
 de^4 = 0, \\
 de^5 = -\frac{a^2}{3} e^{34}.\n\end{cases}
$$

The almost contact metric structure (I, ξ, η, g) given by (14) is quasi-Sasakian and satisfies the condition $d\eta \wedge d\eta = 0$. Moreover, the second cohomology group of \mathfrak{s}_a is generated by e^{12} and e^{45} .

Example 2.10. Another example of family of quasi-Sasakian Lie algebras satisfying the condition $d\eta \wedge d\eta = 0$ is $\mathfrak{g}_b, b \in \mathbb{R} - \{0\}$, with structure equations

$$
\begin{cases}\n de^1 = b(e^{13} + e^{14} - e^{23} + e^{24}) + e^{25}, \\
 de^2 = b(-e^{13} + e^{14} - e^{23} - e^{24}) - e^{15}, \\
 de^3 = 2e^{45}, \\
 de^4 = -2e^{35}, \\
 de^5 = -4b^2e^{34},\n\end{cases}
$$

and endowed with the quasi-Sasakian structure given by (14). The second cohomology group of \mathfrak{g}_b is generated by e^{12} . The Lie algebras \mathfrak{g}_b are not solvable since for the commutator we have $[\mathfrak{g}_b, \mathfrak{g}_b] = \mathfrak{g}_b$.

The Lie groups underlying examples 2.9 and 2.10 satisfy also the conditions of Corollary 2.4 with $\Omega \wedge \Omega = 0$ just by considering as connection 1-form the 1-form e^6 such that $de^6 = \lambda e^{12}$ and then $\Omega = \lambda e^{12}$. With this expression of de^6 we have that: $d^2e^6 = 0$, $J(de^6) = de^6$ and $de^6 \wedge de^6 = 0$, and therefore equation (11) is satisfied. Observe that $\lambda = 0$ provides examples of trivial S^1 -bundles.

We can recover also one of the 6-dimensional nilmanifolds found in [12].

Example 2.11. Consider the 5-dimensional nilpotent Lie algebra with structure equations

$$
\begin{cases} de^j = 0, \quad j = 1, ..., 4, \\ de^5 = e^{12} + e^{34}, \end{cases}
$$

and endowed with the quasi-Sasakian structure given by (14). If we consider the closed 2-form $\Omega = e^{13} + e^{24}$ and we apply Corollary 2.4 we have that there exists a non trivial S^1 -bundle over the corresponding 5-dimensional nilmanifold. Moreover, since $de^5 \wedge de^5 = -\Omega \wedge \Omega \neq 0$, the total space of this S^1 -bundle is an SKT nilmanifold. More precisely, according to the classification given in [12] (see also [28]), the nilmanifold is the one with underlying Lie algebra isomorphic to $\mathfrak{h}_3 \oplus \mathfrak{h}_3$, where by h_3 we denote the real 3-dimensional Heisenberg Lie algebra.

Since the starting Lie algebra in Example 2.11 is Sasakian, it is natural to start with other 5-dimensional Sasakian Lie algebras to construct new SKT structures in dimension 6. A classification of 5-dimensional Sasakian Lie algebras was obtained in [1].

Example 2.12. Consider the 5-dimensional Lie algebra \mathfrak{k}_3 with structure equations

$$
\begin{cases}\n de^j = 0, \quad j = 1, 4, \\
 de^2 = -e^{13}, \\
 de^3 = e^{12}, \\
 de^5 = \lambda e^{14} + \mu e^{23},\n\end{cases}
$$

where $\lambda, \mu < 0$. By [1] \mathfrak{k}_3 admits the Sasakian structure given by

$$
Ie^1 = e^4
$$
, $Ie^2 = e^3$, $\eta = e^5$,
\n $g = -\frac{\lambda}{2} e_1 \otimes e_1 - \frac{\lambda}{2} e_2 \otimes e_2 - \frac{\mu}{2} e_3 \otimes e_3 - \frac{\mu}{2} e_4 \otimes e_4 + e_5 \otimes e_5$,

and it is isomorphic to $\mathbb{R} \times (\mathfrak{h}_3 \times \mathbb{R})$. Moreover, by [1] the corresponding solvable simply-connected Lie group admits a compact quotient by a discrete subgroup.

Consider on \mathfrak{k}_3 the closed 2-form $\Omega = \lambda e^{14} - \mu e^{23}$. Ω is *I*-invariant and satisfies $\Omega \wedge \Omega = -2\lambda \mu e^{1234}$. Since e^5 is the contact form and $de^5 \wedge de^5 = 2\lambda \mu e^{1234}$, again we get by Corollary 2.4 an SKT structure on a non trivial S^1 -bundle over the 5-dimensional solvmanifold. We will denote by e^6 the connection 1-form.

The orthonormal basis $\{\alpha^1 = e^1, \alpha^2 = e^4, \alpha^3 = e^2, \alpha^4 = e^3, \alpha^5 = e^5, \alpha^6 = \theta\}$ for the SKT metric satisfies the equations

$$
d\alpha^{1} = d\alpha^{2} = 0, \quad d\alpha^{3} = -\alpha^{14}, \quad d\alpha^{4} = \alpha^{13},
$$

$$
d\alpha^{5} = \lambda \alpha^{12} + \mu \alpha^{34}, \quad d\alpha^{6} = \lambda \alpha^{12} - \mu \alpha^{34},
$$

and the complex structure is given by $J(X_1) = X_2, J(X_3) = X_4, J(X_5) = X_6$, where ${X_i}_{i=1}^6$ denotes the basis dual to ${\{\alpha^i\}}_{i=1}^6$. Since the fundamental 2-form is $F = \alpha^{12} + \alpha^{34} + \alpha^{56}$, one has that the 3-form torsion T of the SKT structure is

$$
T = \lambda \alpha^{12} (\alpha^5 + \alpha^6) + \mu \alpha^{34} (\alpha^5 - \alpha^6).
$$

Moreover, $*T = \lambda \alpha^{12} (\alpha^5 + \alpha^6) - \mu \alpha^{34} (\alpha^5 - \alpha^6)$, where $*$ denotes the Hodge operator of the metric, which implies that the torsion form is also coclosed.

The only nonzero curvature forms $(\Omega^B)^i_j$ of the Bismut connection ∇^B are

$$
(\Omega^B)^1_2 = -2\,\lambda^2\alpha^{12},\qquad (\Omega^B)^3_4 = -2\,\mu^2\alpha^{34}.
$$

A direct calculation shows that the 1-forms α^5, α^6 and the 2-forms α^{12}, α^{34} are parallel with respect to the Bismut connection, which implies that $\nabla^B T = 0$.

Finally, since $\nabla^B \alpha^i \neq 0$ for $i = 1, 2, 3, 4$, we conclude that $Hol(\nabla^B) = U(1) \times$ $U(1) \subset U(3)$.

3. SKT structures arising from Riemannian cones

Let N^{2n+1} be a $(2n+1)$ -dimensional manifold endowed with an almost contact metric structure (I, ξ, η, g) and denote by ω its fundamental 2-form.

The Riemannian cone of N^{2n+1} is defined as the manifold $N^{2n+1} \times \mathbb{R}^+$ equipped with the cone metric:

(15)
$$
h = t^2 g + (dt)^2.
$$

The cone $N^{2n+1} \times \mathbb{R}^+$ has a natural almost Hermitian structure defined by

(16)
$$
F = t^2 \omega + t \eta \wedge dt.
$$

The almost complex structure J on $N^{2n+1} \times \mathbb{R}^+$ defined by (F, h) is given by

$$
JX = IX, \ X \in \text{Ker } \eta, \quad J\xi = -t\frac{d}{dt}.
$$

,

In terms of a local orthonormal adapted coframe $\{e^1, \ldots, e^{2n}\}\$ for g such that

(17)
$$
\omega = -\sum_{j=1}^{n} e^{2j-1} \wedge e^{2j}
$$

we have

(18)
$$
Je^{2j-1} = -e^{2j}, \quad Je^{2j} = e^{2j-1}, j = 1, ..., n,
$$

$$
J(te^{2n+1}) = dt, \quad J(dt) = -te^{2n+1}.
$$

The almost Hermitian structure (J, h) on $N^{2n+1} \times \mathbb{R}^+$ is Kähler if and only if the almost contact metric structure (I, ξ, η, q) on N^{2n+1} is Sasakian, i.e. a normal contact metric structure.

If we impose that the almost Hermitian structure (J, h) on $N^{2n+1} \times \mathbb{R}^+$ is SKT, we can prove the following

Theorem 3.1. Let $(N^{2n+1}, I, \xi, \eta, q)$ be a $(2n + 1)$ -dimensional almost contact metric manifold. The almost Hermitian structure (J, h) on the Riemannian cone $(N^{2n+1}\times\mathbb{R}^+, h)$, given by (15) and (16), is SKT if and only if (I, ξ, η, g) is normal and

(19)
$$
-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega)),
$$

where ω denotes the fundamental 2-form of the almost contact metric structure (I, ξ, η, g) .

Proof. J is integrable if and only if the almost contact metric structure is normal. Now we compute JdF . We have that

$$
dF = 2tdt \wedge \omega + t^2 d\omega + td\eta \wedge dt,
$$

and

$$
JdF = -2t^2\eta \wedge \omega + t^2J(d\omega) - t^2d\eta \wedge \eta,
$$

since

 $J\omega = \omega$, $J(dt) = -t\eta$, $Jd\eta = d\eta$.

Moreover, with respect to an adapted basis $\{e^1, \ldots, e^{2n+1}\}\$ we may prove, in a similar way as in the proof of Theorem 2.3, that

(20)
$$
Jd\omega = I(d\omega) + I(i_{\xi}d\omega) \wedge J\eta.
$$

As a consequence we get

$$
JdF = -2t^2\eta \wedge \omega + t^2I(d\omega) + tdt \wedge I(i_{\xi}d\omega) - t^2d\eta \wedge \eta.
$$

Therefore, by imposing $d(JdF) = 0$ we obtain the two equations

$$
\begin{cases}\n-4\eta \wedge \omega + 2I(d\omega) - 2d\eta \wedge \eta - d(I(i_{\xi}d\omega)) = 0, \\
-2d(\eta \wedge \omega) + d(I(d\omega)) - d(d\eta \wedge \eta) = 0.\n\end{cases}
$$

Since the second equation is consequence of the first one, we have that the Hermitian structure (F, h) on the Riemannian cone $N^{2n+1} \times \mathbb{R}^+$ is SKT if and only if the almost contact metric structure $(I, \eta, \xi, g, \omega)$ on N^{2n+1} satisfies the equation (19).

Remark 3.2. As a consequence of previous theorem we have that, if $n = 1$, equation (19) is satisfied if and only if the 3-dimensional manifold N is Sasakian. On the other hand, if $n > 1$ and the almost contact metric structure on N^{2n+1} is quasi-Sasakian (i.e. $d\omega = 0$), then the structure has to be Sasakian, i.e. $d\eta = -2\omega$.

Example 3.3. Consider the 5-dimensional Lie algebras $\mathfrak{g}_{a,b,c}$ with structure equations

$$
\begin{cases}\n de^1 = a e^{23} + 2 e^{25} + \left(-\frac{1}{2}ab + \frac{b^3}{2a} + 2\frac{b}{a} \right) e^{34} + b e^{45}, \\
 de^2 = -a e^{13} - 2 e^{15} - \frac{1}{2}bc e^{34} - b e^{35}, \\
 de^3 = \left(-\frac{4}{a} - \frac{b^2}{a} \right) e^{34}, \\
 de^4 = c e^{34}, \\
 de^5 = 2 e^{12} + b e^{14} - b e^{23} + (2 + b^2) e^{34},\n\end{cases}
$$

where $a, b, c \in \mathbb{R}$ and $a \neq 0$, endowed with the normal almost contact metric structure $(I, \xi, \eta, g, \omega)$ with

$$
Ie^1 = -e^2
$$
, $Ie^3 = -e^4$, $\eta = e^5$, $\omega = -e^{12} - e^{34}$.

This structure satisfies (19) and therefore, the Riemannian cones over the corresponding simply-connected Lie groups are SKT.

4. SKT SU(3)-structures

Let (M^6, J, h) be a 6-dimensional almost Hermitian manifold. An $SU(3)$ structure on M^6 is determined by the choice of a $(3,0)$ -form $\Psi = \Psi_+ + i\Psi_-$ of unit norm. If Ψ is closed, then the underlying almost complex structure J is integrable and the manifold is Hermitian. We will denote the $SU(3)$ -structure (J, h, Ψ) simply by (F, Ψ) , where F is the fundamental 2-form, since from F and Ψ we can reconstruct the almost Hermitian structure.

We can give the following

Definition 4.1. We say that an SU(3)-structure (F, Ψ) on M^6 is SKT if

$$
(21) \t d\Psi = 0, \t d(JdF) = 0,
$$

where J is the associated complex structure.

We will see the relation between SKT $SU(3)$ -structures in dimension 6 and $SU(2)$ -structures in dimension 5.

First we recall some facts about SU(2)-structures on a 5-dimensional manifold. An SU(2)-structure on a 5-dimensional manifold N^5 is an SU(2)-reduction of the principal bundle of linear frames on N^5 . By [8, Proposition 1], these structures are in 1 : 1 correspondence with quadruplets $(\eta, \omega_1, \omega_2, \omega_3)$, where η is a 1-form and ω_i are 2-forms on N^5 satisfying

$$
\omega_i \wedge \omega_j = \delta_{ij} v, \quad v \wedge \eta \neq 0,
$$

for some 4-form v , and

$$
i_X \omega_3 = i_Y \omega_1 \Rightarrow \omega_2(X, Y) \ge 0,
$$

where i_X denotes the contraction by X. Equivalently, an SU(2)-structure on N^5 can be viewed as the datum of (η, ω_1, Φ) , where η is a 1-form, ω_1 is a 2-form and $\Phi = \omega_2 + i \omega_3$ is a complex 2-form such that

$$
\eta \wedge \omega_1 \wedge \omega_1 \neq 0, \qquad \Phi \wedge \Phi = 0, \qquad \omega_1 \wedge \Phi = 0, \qquad \Phi \wedge \Phi = 2 \omega_1 \wedge \omega_1,
$$

and Φ is of type $(2,0)$ with respect to ω_1 .

SU(2)-structures are locally characterized as follows (see [8]): If $(\eta, \omega_1, \omega_2, \omega_3)$ is an SU(2)-structure on a 5-manifold N^5 , then locally, there exists an orthonormal basis of 1-forms $\{e^1, \ldots, e^5\}$ such that

$$
\omega_1 = e^{12} + e^{34}, \qquad \omega_2 = e^{13} - e^{24}, \qquad \omega_3 = e^{14} + e^{23}, \qquad \eta = e^5.
$$

We can also consider the local tensor field I given by

$$
Ie1 = -e2
$$
, $Ie2 = e1$, $Ie3 = -e4$, $Ie4 = e3$, $Ie5 = 0$.

This tensor gives rise to a global tensor field of type $(1, 1)$ on the manifold N^5 defined by $\omega_1(X,Y) = g(X, IY)$, for any vector fields X, Y on N^5 , where g is the Riemannian metric on N^5 underlying the $SU(2)$ -structure. The tensor field I satisfies

$$
I^2 = -Id + \eta \otimes \xi,
$$

where ξ is the vector field on N^5 dual to the 1-form η .

Therefore, given an $SU(2)$ -structure $(\eta, \omega_1, \omega_2, \omega_3)$ we also have an almost contact metric structure (I, ξ, η, q) on the manifold, where ω_1 is the fundamental form.

Remark 4.2. Notice that we have two more almost contact metric structures when one considers ω_2 and ω_3 as fundamental forms.

If N^5 has an $SU(2)$ -structure $(\eta, \omega_1, \omega_2, \omega_3)$, the product $N^5 \times \mathbb{R}$ has a natural $SU(3)$ -structure given by

(22)
$$
F = \omega_1 + \eta \wedge dt,
$$

$$
\Psi = (\omega_2 + i\omega_3) \wedge (\eta - idt).
$$

Moreover, by Corollary 2.6 the previous $SU(3)$ -structure is SKT if and only if

(23)
$$
d(I(d\omega_1)) = d(d\eta \wedge \eta), \quad d(I(i_{\xi}d\omega_1)) = 0,
$$

$$
d\omega_2 = -3 \omega_3 \wedge \eta, \quad d\omega_3 = 3 \omega_2 \wedge \eta.
$$

Then we have proved the following

Theorem 4.3. Let N^5 be a 5-dimensional manifold endowed with an $SU(2)$ structure $(\eta, \omega_1, \omega_2, \omega_3)$. The SU(3)-structure (F, Ψ) , given by (22), on the product $N^5 \times \mathbb{R}$ is SKT if and only if the equations (23) are satisfied.

Example 4.4. Consider on the 5-dimensional Lie algebras, introduced in Examples 2.8, 2.9 and 2.10, the $SU(2)$ -structure given by

$$
\omega = \omega_1 = e^{12} + e^{34}, \quad \omega_2 = e^{13} - e^{24}, \quad \omega_3 = e^{14} + e^{23}.
$$

For the example 2.8 we have:

$$
d\omega_2 = -2 \omega_3 \wedge \eta - 4(e^{124} - e^{134}),
$$

$$
d\omega_3 = 2 \omega_2 \wedge \eta + 4(e^{123} + e^{234}).
$$

For the examples 2.9 and 2.10 we get $d\omega_2 = -3\omega_3 \wedge \eta$ and $d\omega_3 = 3\omega_2 \wedge \eta$, therefore on the product of the corresponding simply-connected Lie groups by R one gets an SKT SU(3)-structure.

We will study the existence of SKT $SU(3)$ -structures on a Riemannian cone over a 5-dimensional manifold N^5 endowed with an $SU(2)$ -structure $(\eta, \omega_1, \omega_2, \omega_3)$. Then N^5 has an induced almost contact metric structure (I, ξ, η, g) and ω_1 is its fundamental form.

The Riemannian cone $(N^5 \times \mathbb{R}^+, h)$ of (N^5, g) has a natural $SU(3)$ -structure defined by

$$
F = t2 \omega_1 + t\eta \wedge dt,
$$

\n
$$
\Psi = t2 (\omega_2 + i\omega_3) \wedge (t\eta - idt).
$$

In terms of a local orthonormal coframe $\{e^1, \ldots, e^5\}$ for g such that

$$
\omega_1 = -e^{12} - e^{34}, \quad \omega_2 = -e^{13} + e^{24}, \quad \omega_3 = -e^{14} - e^{23}, \quad \eta = e^5,
$$

we have that

$$
Je1 = -e2, \quad Je2 = e1, \quad Je3 = -e4, \quad Je4 = e3, \quad J(te5) = dt, \quad J(dt) = -te5.
$$

We recall that the $SU(3)$ -structure (F, Ψ) on $N^5 \times \mathbb{R}^+$ is integrable if and only if the $SU(2)$ -structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N^5 is Sasaki-Einstein, or equivalently if and only if

 $d\eta = -2\omega_1$, $d\omega_2 = -3\omega_3 \wedge \eta$, $d\omega_3 = 3\omega_2 \wedge \eta$.

For the Riemannian cones we can prove the following

Corollary 4.5. Let N^5 be a 5-dimensional manifold endowed with an SU(2)structure $(\eta, \omega_1, \omega_2, \omega_3)$. The SU(3)-structure (F, Ψ) on the Riemannian cone $(N^5 \times \mathbb{R}^+, h)$ is SKT if and only if

(24)
$$
\begin{cases}\n-4\eta \wedge \omega_1 + 2I(d\omega_1) - 2d\eta \wedge \eta = d(I(i_{\xi}d\omega_1)),\\ \nd\omega_2 = 3 \omega_3 \wedge \eta, \\ d\omega_3 = -3 \omega_2 \wedge \eta.\n\end{cases}
$$

Proof. By imposing that $d\Psi = 0$ we get the conditions

$$
d\omega_2 = -3\,\omega_3 \wedge \eta, \quad d\omega_3 = 3\,\omega_2 \wedge \eta.
$$

By imposing $d(JdF) = 0$, we obtain, as in the proof of Theorem 3.1, the equation (19) for $\omega = \omega_1$.

 \Box

5. Almost contact metric structure induced on a hypersurface

Here we study the almost contact metric structure induced naturally on any oriented hypersurface N^{2n+1} of a $(2n+2)$ -manifold M^{2n+2} equipped with an SKT structure.

Let $f: N^{2n+1} \longrightarrow M^{2n+2}$ be an oriented hypersurface of a $(2n+2)$ -dimensional manifold M^{2n+2} endowed with an SKT structure (J, h, F) and denote by U the unitary normal vector field. It is well known that N^{2n+1} inherits an almost contact metric structure (I, ξ, η, g) such that η and the fundamental 2-form ω are given by

(25)
$$
\eta = -f^*(i_{\mathbb{U}}F), \quad \omega = f^*F,
$$

where F is the fundamental 2-form of the almost Hermitian structure (see for instance [6]).

Proposition 5.1. Let $f: N^{2n+1} \longrightarrow M^{2n+2}$ be an immersion of an oriented $(2n + 1)$ -dimensional manifold into a $(2n + 2)$ -dimensional Hermitian manifold (M^{2n+2}, J, h) . If the Hermitian structure (J, h) is SKT, then the induced almost contact metric structure (I, ξ, η, g) on N^{2n+1} , with η and ω given by (25), satisfies

(26)
$$
d(Id\omega - I(f^*(i_{\mathbb{U}}dF)) \wedge \eta) = 0.
$$

Proof. We can choose locally an adapted coframe $\{e^1, \ldots, e^{2n+2}\}\$ for the Hermitian structure such that the unitary normal vector field $\mathbb U$ is dual to e^{2n+2} . Since the almost complex structure J is given in this adapted basis by

$$
Je^{2j-1} = -e^{2j}, \quad Je^{2j} = e^{2j-1}, \quad j = 1, \dots, n,
$$

$$
Je^{2n+1} = e^{2n+2}, \quad Je^{2n+2} = -e^{2n+1},
$$

the tensor field I on N^{2n+1} satisfies that $If^*e^i = f^*Je^i, i = 1, \ldots, 2n+1$, that is,

$$
If^*e^{2j-1} = -f^*e^{2j}, \quad If^*e^{2j} = f^*e^{2j-1}, \quad j = 1, \dots, n, \quad If^*e^{2n+1} =
$$

However,
$$
If^*e^{2n+2} = 0 \neq f^*e^{2n+1} = -f^*Je^{2n+2}.
$$

However, If^*e $2n+2 = 0 \neq f^*e^{2n+1} = -f^*Je^{2n+2}$

Now we compute f^*JdF . First we decompose (locally and in terms of the adapted basis) the differential of F as follows:

$$
dF = \alpha + \beta \wedge e^{2n+1} + \gamma \wedge e^{2n+2} + \mu \wedge e^{2n+1} \wedge e^{2n+2},
$$

where the local forms $\alpha \in \Lambda^3 < e^1, \ldots, e^{2n} > \ldots, \beta, \gamma \in \Lambda^2 < e^1, \ldots, e^{2n} >$ and $\mu \in \Lambda^1 < e^1, \ldots, e^{2n} >$ are generated only by e^1, \ldots, e^{2n} . Then,

$$
JdF = J\alpha + J\beta \wedge e^{2n+2} - J\gamma \wedge e^{2n+1} + J\mu \wedge e^{2n+1} \wedge e^{2n+2}.
$$

Since $f^*e^{2n+2} = 0$ and using that $f^*e^{2n+1} = \eta$, we get

$$
f^*JdF = f^*J\alpha - (f^*J\gamma) \wedge \eta.
$$

But $f^*(i_{\mathbb{U}}dF) = f^*\gamma + f^*\mu \wedge \eta$, which implies that

$$
I(f^*(i_{\mathbb{U}}dF)) = If^*\gamma = f^*J\gamma.
$$

On the other hand,

$$
Id\omega = Idf^*F = If^*dF = If^*\alpha = f^*J\alpha.
$$

We conclude that

$$
f^*JdF = f^*J\alpha - (f^*J\gamma) \wedge \eta = Id\omega - I(f^*(i_{\mathbb{U}}dF)) \wedge \eta.
$$

Now, if the Hermitian structure is SKT, then JdF is closed and the induced structure satisfies (26). \Box

 Ω .

Remark 5.2. Notice that using that $i_{\text{U}}dF = \mathcal{L}_{\text{U}}F - di_{\text{U}}F$ we can write (26) as

$$
d(Id\omega - I(f^*(\mathcal{L}_{\mathbb{U}}F) + d\eta) \wedge \eta) = 0.
$$

Therefore, if $f^*(\mathcal{L}_{\mathbb{U}}F) = 0$, the induced almost contact metric structure has to satisfy the equation

$$
d(Id\omega - I(d\eta) \wedge \eta) = 0.
$$

In the case of the product $N^{2n+1} \times \mathbb{R}$ the condition $f^*(\mathcal{L}_{\mathbb{U}}F) = 0$ is satisfied. In the case of the Riemannian cone we have that

$$
\mathcal{L}_{\frac{d}{dt}}F=2t\omega+dt\wedge\eta,
$$

and therefore we get $f^*(\mathcal{L}_{\underline{d}} F) = 2\omega$.

In this way we recover some of the equations obtained in Corollary 2.6 and in Theorem 3.1.

Now we study the structure induced naturally on any oriented hypersurface N^5 of a 6-manifold M^6 equipped with an SKT SU(3)-structure.

Let $f: N^5 \longrightarrow M^6$ be an oriented hypersurface of a 6-manifold M^6 endowed with an SU(3)-structure $(F, \Psi = \Psi_+ + i \Psi_-)$ and denote by U the unitary normal vector field. Then N^5 inherits an SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ given by

(27)
$$
\eta = -f^*(i_{\mathbb{U}}F), \quad \omega_1 = f^*F, \quad \omega_2 = -f^*(i_{\mathbb{U}}\Psi_-), \quad \omega_3 = f^*(i_{\mathbb{U}}\Psi_+).
$$

As a consequence of Proposition 5.1 we have the following

Corollary 5.3. Let $f: N^5 \longrightarrow M^6$ be an immersion of an oriented 5-dimensional manifold into a 6-dimensional manifold with an $SU(3)$ -structure. If the $SU(3)$ structure is SKT, then the induced SU(2)-structure on N^5 given by (27) satisfies

(28)
$$
d(Id\omega_1 - If^*(i_{\mathbb{U}}dF)\wedge\eta)=0,
$$

and

(29)
$$
d(\omega_2 \wedge \eta) = 0, \qquad d(\omega_3 \wedge \eta) = 0.
$$

Proof. The equation (28) follows by Proposition 5.1 taking $\omega = \omega_1$. We can choose locally an adapted coframe $\{e^1, \ldots, e^5, e^6\}$ for the $SU(3)$ -structure such that the unitary normal vector field U is dual to e^6 . From (27) it follows that $\omega_2 \wedge \eta = f^* \Psi_+$ and $\omega_3 \wedge \eta = f^* \Psi_-.$ Now, if $\Psi = \Psi_+ + i \Psi_-$ is closed then the induced structure satisfies (29).

5.1. A simple example. Consider the 6-dimensional nilmanifold M^6 whose underlying nilpotent Lie algebra has structure equations

$$
\begin{cases}\n\,de^j = 0, j = 1, 2, 3, 6, \\
\,de^4 = e^{12}, \\
\,de^5 = e^{14},\n\end{cases}
$$

and it is endowed with the $SU(3)$ -structure given by

$$
F = -e^{14} - e^{26} - e^{53}, \quad \Psi = (e^1 - ie^4) \wedge (e^2 - ie^6) \wedge (e^5 - ie^3).
$$

The oriented hypersurface with normal vector field dual to e^2 is a 5-dimensional nilmanifold N^5 , which has by [8] no invariant hypo structures, but the SU(2)structure on N^5

(30)
$$
\eta = e^2
$$
, $\omega_1 = -e^{14} - e^{53}$, $\omega_2 = -e^{15} - e^{34}$, $\omega_3 = -e^{13} - e^{45}$,

satisfies (28) and (29) . In section 6 we will show that by using this $SU(2)$ -structure and appropriate evolution equations we can construct an SKT $SU(3)$ -structure on the product of N^5 with an open interval.

6. SKT evolution equations

The goal here is to construct SKT SU(3)-structures by means of appropriate evolution equations starting from a suitable $SU(2)$ -structure on a 5-dimensional manifold, following ideas of [20] and [8].

Lemma 6.1. Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ be a family of SU(2)-structures on a 5-dimensional manifold N^5 , for $t \in (a, b)$. Then, the SU(3)-structure on $M^6 =$ $N^5 \times (a, b)$ given by

$$
F = \omega_1(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_2(t) + i\omega_3(t)) \wedge (\eta(t) - i dt),
$$

satisfies the condition $d\Psi = 0$ if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ is an SU(2)structure such that

(31)
$$
\hat{d}(\omega_2(t) \wedge \eta(t)) = 0, \quad \hat{d}(\omega_3(t) \wedge \eta(t)) = 0, \partial_t(\omega_2(t) \wedge \eta(t)) = -\hat{d}\omega_3(t), \quad \partial_t(\omega_3(t) \wedge \eta(t)) = \hat{d}\omega_2(t),
$$

hold, for any t in the open interval (a, b) .

Here \hat{d} denotes the exterior differential on N^5 and d the exterior differential on $M⁶$. Now we show which are the additional evolution equations to add to the last two equations of (31) to ensure that $dJdF = 0$.

Proposition 6.2. Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ be a family of SU(2)-structures on N^5 , for $t \in (a, b)$. Then, the SU(3)-structure on $M^6 = N^5 \times (a, b)$ given by

(32)
$$
F = \omega_1(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_2(t) + i\omega_3(t)) \wedge (\eta(t) - idt),
$$

satisfies that JdF is closed if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ satisfies the following evolution equations

(33)
$$
\begin{cases} \hat{d}\Big(I_t\hat{d}\omega_1(t) - I_t(\partial_t\omega_1(t) + \hat{d}\eta(t)) \wedge \eta(t)\Big) = 0, \\ \partial_t\Big(I_t\hat{d}\omega_1(t) - I_t(\partial_t\omega_1(t) + \hat{d}\eta(t)) \wedge \eta(t)\Big) = \\ -\hat{d}\Big(I_t(i_\xi\hat{d}\omega_1(t)) - I_t(i_\xi(\partial_t\omega_1(t) + \hat{d}\eta(t))) \wedge \eta(t)\Big), \end{cases}
$$

where, for each $t \in (a, b)$, $\xi(t)$ denotes the vector field on N^5 dual to $\eta(t)$.

Proof. Since $F = \omega_1(t) + \eta(t) \wedge dt$, we have that

$$
dF = \hat{d}\omega_1 + (\partial_t \omega_1 + \hat{d}\eta) \wedge dt.
$$

Let $\{e^1(t), \ldots, e^4(t), \eta(t)\}\$ be a local adapted basis for the SU(2)-structure $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$. Then $\{e^1(t), \ldots, e^4(t), \eta(t), dt\}$ is an adapted basis for the SU(3)-structure (32) and J is given by

$$
Je^{1}(t) = -e^{2}(t), \ Je^{2}(t) = e^{1}(t), \ Je^{3}(t) = -e^{4}(t), \ Je^{4}(t) = e^{3}(t),
$$

$$
J\eta(t) = dt, \ Jdt = -\eta(t).
$$

Then, the structures I_t induced on N^5 for each t are given by

$$
I_t e^1(t) = -e^2(t)
$$
, $I_t e^2(t) = e^1(t)$, $I_t e^3(t) = -e^4(t)$, $I_t e^4(t) = e^3(t)$, $I_t \eta(t) = 0$.

Now, given $\tau(t) \in \Omega^k(N^5)$, $t \in (a, b)$, we can decompose it locally as

$$
\tau(t) = \alpha(t) + \beta(t) \wedge \eta(t),
$$

where $\alpha(t) \in \bigwedge^k \langle e^1(t), \ldots, e^4(t) \rangle$ and $\beta(t) \in \bigwedge^{k-1} \langle e^1(t), \ldots, e^4(t) \rangle$. Therefore

$$
J\tau(t) = J\alpha(t) + J\beta(t) \wedge J\eta(t) = I_t\alpha(t) + I_t\beta(t) \wedge dt = I_t\tau(t) - (-1)^k I_t(i_{\xi(t)}\tau(t)) \wedge dt.
$$

Applying this to JdF we get

 $JdF = J\hat{d}\omega_1 - J(\partial_t\omega_1 + \hat{d}\eta) \wedge \eta(t)$

$$
= I_t \hat{d}\omega_1 - I_t(\partial_t \omega_1 + \hat{d}\eta) \wedge \eta(t) + I_t(i_{\xi(t)}\hat{d}\omega_1) \wedge dt - I_t\Big(i_{\xi}(\partial_t \omega_1 + \hat{d}\eta)\Big) \wedge \eta(t) \wedge dt.
$$

Finally, taking the differential of JdF we get

$$
dJdF = \hat{d}\Big(I_t\hat{d}\omega_1 - I_t(\partial_t\omega_1 + \hat{d}\eta) \wedge \eta(t)\Big) + \partial_t\Big(I_t\hat{d}\omega_1 - I_t(\partial_t\omega_1 + \hat{d}\eta) \wedge \eta(t)\Big) \wedge dt + \hat{d}\Big[I_t(i_{\xi(t)}\hat{d}\omega_1) - I_t\Big(i_{\xi}(\partial_t\omega_1 + \hat{d}\eta)\Big) \wedge \eta(t)\Big] \wedge dt.
$$

Remark 6.3. Observe that the first equation in (33) is exactly condition (28) for $F = \omega_1(t) + \eta(t) \wedge dt$ (see Remark 5.2).

As a consequence of Lemma 6.1 and Proposition 6.2, we get

Theorem 6.4. Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$, $t \in (a, b)$, be a family of SU(2)structures on a 5-dimensional manifold N^5 , such that

(34)
$$
\hat{d}(\omega_2(t) \wedge \eta(t)) = 0, \quad \hat{d}(\omega_3(t) \wedge \eta(t)) = 0,
$$

for any t. If the following evolution equations

(35)

$$
\begin{cases}\n\hat{d}\Big(I_t\hat{d}\omega_1(t) - I_t(\partial_t\omega_1(t) + \hat{d}\eta(t)) \wedge \eta(t)\Big) = 0, \\
\partial_t\Big(I_t\hat{d}\omega_1(t) - I_t(\partial_t\omega_1(t) + \hat{d}\eta(t)) \wedge \eta(t)\Big) = \\
-\hat{d}\Big(I_t(i_\xi\hat{d}\omega_1(t)) - I_t(i_\xi(\partial_t\omega_1(t) + \hat{d}\eta(t))) \wedge \eta(t)\Big), \\
\partial_t(\omega_2(t) \wedge \eta(t)) = -\hat{d}\omega_3(t), \\
\partial_t(\omega_3(t) \wedge \eta(t)) = \hat{d}\omega_2(t),\n\end{cases}
$$

are satisfied, then the SU(3)-structure on $M = N \times (a, b)$ given by

(36)
$$
F = \omega_1(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_2(t) + i\omega_3(t)) \wedge (\eta(t) - idt),
$$

is SKT.

Example 6.5. Let us consider the Lie algebra with structure equations

$$
\begin{cases}\n\,de^j = 0, j = 1, 2, 3, \\
\,de^4 = e^{12}, \\
\,de^5 = e^{14},\n\end{cases}
$$

underlying the 5-dimensional nilmanifold N^5 considered in Example 5.1 and endowed with the $SU(2)$ -structure given by (30). It is straight forward to verify that

$$
d(\omega_2 \wedge \eta) = d(\omega_3 \wedge \eta) = d(\omega_1 \wedge \omega_1) = 0.
$$

Let us evolve the previous $SU(2)$ -structure in the following way:

$$
\omega_1(t) = -e^{14} - e^{53},
$$

\n
$$
\omega_2(t) = -(1 + \frac{3}{2}t)^{1/3} e^{15} - (1 + \frac{3}{2}t)^{-1/3} e^{34},
$$

\n
$$
\omega_3(t) = -(1 + \frac{3}{2}t)^{1/3} e^{13} - (1 + \frac{3}{2}t)^{-1/3} e^{45},
$$

\n
$$
\eta(t) = (1 + \frac{3}{2}t)^{1/3} e^2,
$$

where $t \in (-2/3, \infty)$.

It is immediate to observe that the family $(\omega_1(t), \omega_2(t), \omega_3(t), \eta(t))$ verifies equations (34) and the two last equations in (35) for any $t \in (-2/3, \infty)$. Moreover, it verifies the following conditions:

$$
\partial_t \omega_1(t) = 0, \quad \hat{d}(\eta(t)) = 0, \quad i_{\xi} \left(\hat{d}(\omega_1(t)) \right) = 0, \quad \partial_t \left(I_t(\hat{d}\omega_1(t)) \right) = 0,
$$

which implies that the evolution equations (33) are also satisfied.

On the product $N^5 \times \mathbb{R}$ let us consider the local basis of 1-forms given by

$$
\beta^1 = \left(1 + \frac{3}{2}t\right)^{1/3} e^1, \quad \beta^2 = \left(1 + \frac{3}{2}t\right)^{-1/3} e^4, \quad \beta^3 = e^5, \quad \beta^4 = e^3,
$$

$$
\beta^5 = \left(1 + \frac{3}{2}t\right)^{1/3} e^2, \quad \beta^6 = dt.
$$

The structure equations are:

$$
\begin{cases}\nd\beta^1 = -\frac{1}{2} \left(1 + \frac{3}{2}t\right)^{-1} \beta^{16}, \\
d\beta^2 = \left(1 + \frac{3}{2}t\right)^{-1} \left(\beta^{15} + \frac{1}{2}\beta^{26}\right), \\
d\beta^3 = \beta^{12}, \\
d\beta^4 = 0, \\
d\beta^5 = -\frac{1}{2} \left(1 + \frac{3}{2}t\right)^{-1} \beta^{56}, \\
d\beta^6 = 0.\n\end{cases}
$$

J is given locally by $J\beta^1 = -\beta^2$, $J\beta^3 = -\beta^4$, $J\beta^5 = \beta^6$. The fundamental form $F = -\beta^{12} - \beta^{34} + \beta^{56}$ verifies that $d(JdF) = 0$ and the $(3,0)$ -form $\Psi =$ $(\beta^1 + i \beta^2) \wedge (\beta^3 + i \beta^4) \wedge (\beta^5 - i \beta^6)$ is closed. Therefore, (F, Ψ) is a local SKT $\text{SU}(3)$ -structure on $N^5 \times \mathbb{R}$.

Remark 6.6. A Hermitian structure (J, h) on a 6-dimensional manifold M^6 is called *balanced* if $F \wedge F$ is closed, F being the associated fundamental 2-form. In [10] it was introduced the notion of balanced SU(2)-structures on 5-dimensional manifolds, together with appropriate evolution equations whose solution gives rise to a balanced SU(3)-structure in six dimensions.

If M^6 is compact, then a balanced structure cannot be SKT (see for instance [12]).

The SU(2)-structure (30) on the previous example is also balanced and it gives rise to a balanced metric on the product of N^5 with a open interval (see (11) in [10]). However one can check directly that this solution is not SKT.

Notice that if G is the nilpotent Lie group underlying N^5 , the product $G \times \mathbb{R}$ has no left-invariant SKT structures and it does not admit any left-invariant complex structures; however we find a local SKT SU(3)-structure on it.

7. HKT structures

In this section we will find conditions for which an S^1 -bundle over a $(4n + 3)$ -dimensional manifold endowed with three almost contact metric structures is hyper-Kähler with torsion (HKT for short). We recall that a $4n$ dimensional hyper-Hermitian manifold $(M^{4n}, J_1, J_2, J_3, h)$ is a hypercomplex manifold (M^{4n}, J_1, J_2, J_3) endowed with a Riemannian metric h which is compatible with the complex structures J_r , $r = 1, 2, 3$, i.e. such that

$$
h(J_r X, J_r Y) = h(X, Y),
$$

for any $r = 1, 2, 3$ and any vector fields X, Y on M^{4n} .

A hyper-Hermitian manifold $(M^{4n}, J_1, J_2, J_3, h)$ is called HKT if and only if

(37)
$$
J_1 dF_1 = J_2 dF_2 = J_3 dF_3,
$$

where F_r denotes the fundamental 2-form associated to the Hermitian structure (J_r, h) (see [16]).

Let us consider a $(4n + 3)$ -dimensional manifold N^{4n+3} endowed with three almost contact metric structures (I_r, ξ_r, η_r, q) , $r = 1, 2, 3$, such that

(38)
$$
I_k = I_i I_j - \eta_j \otimes \xi_i = -I_j I_i + \eta_i \otimes \xi_j,
$$

$$
\xi_k = I_i \xi_j = -I_j \xi_i, \quad \eta_k = \eta_i I_j = -\eta_j I_i.
$$

By applying Theorem 2.3 we can construct hyper-Hermitian structures on S^1 bundles over N^{4n+3} and study when they are strong HKT.

Theorem 7.1. Let N^{4n+3} be a $(4n+3)$ -dimensional manifold with three normal almost contact metric structures (I_r, ξ_r, η_r, g) , $r = 1, 2, 3$, satisfying (38), and let Ω be a closed 2-form on N^{4n+3} which represents an integral cohomology class and which is I_r -invariant for every $r = 1, 2, 3$. Consider the circle bundle $S^1 \hookrightarrow$ $P \to N^{4n+3}$ with connection 1-form θ whose curvature form is $d\theta = \pi^*(\Omega)$, where $\pi : P \to N$ is the projection. Then, the hyper-Hermitian structure (J_1, J_2, J_3, h) on P, defined by (2) and (4), is HKT if and only if

$$
\pi^*(I_1(d\omega_1)) - \pi^*(d\eta_1) \wedge \pi^*\eta_1 = \pi^*(I_2(d\omega_2)) - \pi^*(d\eta_2) \wedge \pi^*\eta_2
$$

(39) $= \pi^*(I_3(d\omega_3)) - \pi^*(d\eta_3) \wedge \pi^*\eta_3,$

$$
\pi^*(I_1(i_{\xi_1}d\omega_1)) = \pi^*(I_2(i_{\xi_2}d\omega_2)) = \pi^*(I_3(i_{\xi_3}d\omega_3)),
$$

where ω_r denotes the fundamental form of the almost contact structure (I_r, ξ_r, η_r, g) . Moreover, the HKT structure is strong if and only if

(40)
$$
\begin{aligned} d(\pi^*(I_r(i_{\xi_r}d\omega_r))) &= 0, \\ d(\pi^*(I_r(d\omega_r) - d\eta_r \wedge \eta_r)) &= (\pi^*(-I_r(i_{\xi_r}d\omega_r)) + \pi^*\Omega) \wedge \pi^*\Omega, \end{aligned}
$$

for every $r = 1, 2, 3$.

Proof. The almost hyper-Hermitian structure (J_1, J_2, J_3, h) on P, defined by (2) and (4), is hyper-Hermitian if and only (I_r, ξ_r, η_r, g) is normal and $d\theta$ is J_r -invariant for every $r = 1, 2, 3$. The HKT condition is equivalent to (37). By (9) we have

$$
J_r dF_r = \pi^*(I_r(d\omega_r)) + \pi^*(I_r(i_{\xi_r}d\omega_r)) \wedge \theta - \pi^*(d\eta_r) \wedge \pi^*\eta_r - \theta \wedge d\theta,
$$

where F_r is the fundamental 2-form of (J_r, h) . Therefore, the condition (37) is satisfied if and only if (39) holds. Finally, $J_r dF_r$ are closed forms if and only if (40) $holds.$

Consider on $N^{4n+3} \times \mathbb{R}$ the almost Hermitian structures (J_r, F_r, h) defined by

(41)
$$
h = g + (dt)^2, \quad F_r = \omega_r + \eta_r \wedge dt,
$$

and

(42)
$$
J_r(\eta_r) = dt, \quad J_r(X) = I_r(X), X \in \text{Ker}\,\eta_r.
$$

Moreover, by (38) we have:

$$
J_1 J_2 = J_3 = -J_2 J_1,
$$

\n $J_1 \eta_2 = I_1 \eta_2 = -\eta_3,$ $J_2 \eta_3 = I_2 \eta_3 = -\eta_1,$ $J_3 \eta_1 = I_3 \eta_1 = -\eta_2.$

Therefore (J_r, F_r, h) , $r = 1, 2, 3$, is a hyper-Hermitian structure on $N^{4n+3} \times \mathbb{R}$ if and only if the structures (I_r, ξ_r, η_r) for $r = 1, 2, 3$ are normal.

Corollary 7.2. Let N^{4n+3} be a $(4n+3)$ -dimensional manifold endowed with three normal almost contact metric structures (I_r, ξ_r, η_r, g) , $r = 1, 2, 3$. Consider on the product $N^{4n+3} \times \mathbb{R}$ the hyper-Hermitian structure (J_1, J_2, J_3, h) defined by (41) and (42) . Then, (J_1, J_2, J_3, h) is HKT if and only if

$$
I_1(d\omega_1) - d\eta_1 \wedge \eta_1 = I_2(d\omega_2) - d\eta_2 \wedge \eta_2 = I_3(d\omega_3) - d\eta_3 \wedge \eta_3,
$$

$$
I_1(i_{\xi_1}d\omega_1) = I_2(i_{\xi_2}d\omega_2) = I_3(i_{\xi_3}d\omega_3).
$$

The HKT structure is strong if and only if

$$
d(I_r(i_{\xi_r}d\omega_r)) = 0, \quad d(I_r(d\omega_r) - d\eta_r \wedge \eta_r) = 0
$$

for every $r = 1, 2, 3$.

Moreover, if (J_1, J_2, J_3, h) is such that

$$
d\eta_1 \wedge \eta_1 = d\eta_2 \wedge \eta_2 = d\eta_3 \wedge \eta_3,
$$

and one of the following conditions:

- (a) $d\omega_r = 0$ for any $r = 1, 2, 3$, i.e. (I_r, ξ_r, η_r) is quasi-Sasakian for any $r = 1, 2, 3 \text{ or}$
- (b) $d\omega_i \wedge \eta_j \wedge \eta_k \neq 0$, where (i, j, k) is a permutation of $(1, 2, 3)$, and

$$
I_1(d\omega_1) = I_2(d\omega_2) = I_3(d\omega_3), \quad I_1(i_{\xi_1}d\omega_1) = I_2(i_{\xi_2}d\omega_2) = I_3(i_{\xi_3}d\omega_3),
$$

is satisfied, then (J_1, J_2, J_3, h) is HKT. In the case (a) the HKT structure is strong. In the case (b) the HKT structure is strong if and only if

$$
d(I_1(d\omega_1)) = d(I_1(i_{\xi_1}d\omega_1)) = 0.
$$

Proof. By Theorem 7.1 the hyper-Hermitian structure (J_r, F_r, h) , $r = 1, 2, 3$, is HKT if and only if

(43)
$$
I_1(d\omega_1) - d\eta_1 \wedge \eta_1 = I_2(d\omega_2) - d\eta_2 \wedge \eta_2 = I_3(d\omega_3) - d\eta_3 \wedge \eta_3,
$$

$$
I_1(i_{\xi_1}d\omega_1) = I_2(i_{\xi_2}d\omega_2) = I_3(i_{\xi_3}d\omega_3).
$$

Let us express locally

(44)
$$
d\omega_r = \alpha_r + \sum_{i=1}^3 \beta_i^r \wedge \eta_i + \sum_{i < j=1}^3 \gamma_{ij}^r \wedge \eta_i \wedge \eta_j + \rho_r \eta_1 \wedge \eta_2 \wedge \eta_3,
$$

where α_r , β_i^r and γ_{ij}^r are 3-forms, 2-forms and 1-forms respectively in $\bigcap_{i=1}^3$ Ker η_i and ρ_r are smooth functions.

By using the normality of the three almost contact metric structures, and then that $i_{\xi_r} d\eta_r = 0$ and $I_r(d\eta_r) = d\eta_r$, we can write locally:

(45)
$$
d\eta_1 = A_1 + B_1 \wedge \eta_2 - I_1 B_1 \wedge \eta_3 + C_1 \eta_2 \wedge \eta_3,
$$

$$
d\eta_2 = A_2 + B_2 \wedge \eta_1 + I_2 B_2 \wedge \eta_3 + C_2 \eta_1 \wedge \eta_3,
$$

 $d\eta_3 = A_3 + B_3 \wedge \eta_1 - I_3 B_3 \wedge \eta_2 + C_3 \eta_1 \wedge \eta_2,$

where $I_r A_r = A_r$. A_r and B_r are 2-forms and 1-forms respectively in $\bigcap_{i=1}^3$ Ker η_i and C_r are smooth functions.

We have

$$
J_r(dF_r) = J_r(d\omega_r) + J_r(d\eta_r \wedge dt) = J_r(d\omega_r) - d\eta_r \wedge \eta_r.
$$

Therefore, by using (44) and (45), we obtain

$$
J_1(dF_1) = I_1\alpha_1 + I_1\beta_1^1 \wedge dt - A_1 \wedge \eta_1 - I_1\beta_3^1 \wedge \eta_2 - I_1\beta_2^1 \wedge \eta_3
$$

$$
-I_1\gamma_{13}^1 \wedge \eta_2 \wedge dt + I_1\gamma_{12}^1 \wedge \eta_3 \wedge dt + B_1 \wedge \eta_1 \wedge \eta_2 - I_1B_1 \wedge \eta_1 \wedge \eta_3
$$

$$
+I_1\gamma_{23}^1 \wedge \eta_2 \wedge \eta_3 + \rho_1 \eta_2 \wedge \eta_3 \wedge dt - C_1 \eta_1 \wedge \eta_2 \wedge \eta_3,
$$

$$
J_2(dF_2) = I_2\alpha_2 + I_2\beta_2^2 \wedge dt - I_2\beta_3^2 \wedge \eta_1 - A_2 \wedge \eta_2 + I_2\beta_1^2 \wedge \eta_3
$$

+
$$
I_2\gamma_{23}^2 \wedge \eta_1 \wedge dt + I_2\gamma_{12}^2 \wedge \eta_3 \wedge dt - B_2 \wedge \eta_1 \wedge \eta_2 + I_2\gamma_{13}^2 \wedge \eta_1 \wedge \eta_3
$$

+
$$
I_2B_2 \wedge \eta_2 \wedge \eta_3 - \rho_2 \eta_1 \wedge \eta_3 \wedge dt + C_2 \eta_1 \wedge \eta_2 \wedge \eta_3,
$$

$$
J_3(dF_3) = I_3\alpha_3 + I_3\beta_3^3 \wedge dt + I_3\beta_2^3 \wedge \eta_1 - I_3\beta_1^3 \wedge \eta_2 - A_3 \wedge \eta_3
$$

+
$$
I_3\gamma_{23}^3 \wedge \eta_1 \wedge dt - I_3\gamma_{13}^3 \wedge \eta_2 \wedge dt + I_3\gamma_{12}^3 \wedge \eta_1 \wedge \eta_2 - B_3 \wedge \eta_1 \wedge \eta_3
$$

+
$$
I_3B_3 \wedge \eta_2 \wedge \eta_3 + \rho_3 \eta_1 \wedge \eta_2 \wedge dt - C_3 \eta_1 \wedge \eta_2 \wedge \eta_3.
$$

The conditions (43) are satisfied if and only if

(46)
\n
$$
\gamma_{12}^1 = \gamma_{13}^1 = \gamma_{12}^2 = \gamma_{23}^2 = \gamma_{13}^3 = \gamma_{23}^3 = 0, \quad \rho_r = 0, \quad C_1 = -C_2 = C_3,
$$
\n
$$
I_1 \alpha_1 = I_2 \alpha_2 = I_3 \alpha_3, \quad I_1 \beta_1^1 = I_2 \beta_2^2 = I_3 \beta_3^3,
$$
\n
$$
A_1 = I_2 \beta_3^2 = -I_3 \beta_2^3, \quad A_2 = -I_1 \beta_3^1 = I_3 \beta_1^3, \quad A_3 = I_1 \beta_2^1 = -I_2 \beta_1^2,
$$
\n
$$
B_1 = -B_2 = I_3 \gamma_{12}^3, \quad -I_1 B_1 = -B_3 = I_2 \gamma_{13}^2, \quad I_2 B_2 = I_3 B_3 = I_1 \gamma_{23}^1.
$$

Since $I_r A_r = A_r$ we obtain that the coefficients β_i^r for $r \neq i = 1, 2, 3$ must satisfy the following conditions:

$$
I_i\left(\beta_j^i - I_k\beta_j^i\right) = 0, \quad \forall i, j, k = 1, 2, 3, \quad i \neq j, \ j \neq k, \ k \neq i.
$$

The last three equations in (46) are satisfied if and only if $\gamma_{23}^1 = \gamma_{13}^2 = \gamma_{12}^3 = 0$. Thus, finally, we obtain:

(47)
\n
$$
d\omega_r = \alpha_r + \sum_{i=1}^3 \beta_i^r \wedge \eta_i, \quad d\eta_i = A_i + \lambda \eta_j \wedge \eta_k,
$$
\n
$$
I_i \left(\beta_j^i - I_k \beta_j^i \right) = 0, \quad \forall i, j, k = 1, 2, 3, \quad i \neq j, \ j \neq k, \ k \neq i,
$$
\n
$$
I_1 \alpha_1 = I_2 \alpha_2 = I_3 \alpha_3,
$$
\n
$$
A_1 = I_2 \beta_3^2 = -I_3 \beta_2^3, \quad A_2 = -I_1 \beta_3^1 = I_3 \beta_1^3, \quad A_3 = I_1 \beta_2^1 = -I_2 \beta_1^2.
$$

for any even permutation of $(1, 2, 3)$.

Now, the expression for $d(J_1 dF_1)$ is the following:

$$
d(J_1 dF_1) = d(I_1(d\omega_1) + I_1(i_{\xi_1} d\omega_1) \wedge dt) - d((d\eta_1) \wedge \eta_1)
$$

=
$$
d(I_1(d\omega_1)) + d(I_1(i_{\xi_1} d\omega_1)) \wedge dt - d\eta_1 \wedge d\eta_1
$$

=
$$
d(I_1(d\omega_1) - d\eta_1 \wedge \eta_1) + d(I_1(i_{\xi_1} d\omega_1)) \wedge dt,
$$

and thus the HKT structure is strong if and only if

$$
d(I_1(d\omega_1) - d\eta_1 \wedge \eta_1) = 0
$$
, and $d(I_1(i_{\xi_1}d\omega_1)) = 0$.

To prove the last part of the corollary it is sufficient to consider coefficients $\beta_r^i = 0$ if $r \neq i$ in expression (44).

 \Box

Example 7.3. Consider the 7-dimensional Lie group $G = SU(2) \ltimes \mathbb{R}^4$ with structure equations

$$
\begin{cases}\n de^1 = -\frac{1}{2}e^{25} - \frac{1}{2}e^{36} - \frac{1}{2}e^{47}, \\
 de^2 = \frac{1}{2}e^{15} + \frac{1}{2}e^{37} - \frac{1}{2}e^{46}, \\
 de^3 = \frac{1}{2}e^{16} - \frac{1}{2}e^{27} + \frac{1}{2}e^{45}, \\
 de^4 = \frac{1}{2}e^{17} + \frac{1}{2}e^{26} - \frac{1}{2}e^{35}, \\
 de^5 = e^{67}, \\
 de^6 = -e^{57}, \\
 de^7 = e^{56}.\n\end{cases}
$$

By [13] G admits a compact quotient $M^7 = \Gamma \backslash G$ by a uniform discrete subgroup Γ and it is endowed with a weakly generalized G_2 -structure. Moreover, by [3] $M^7 \times S^1$ admits a strong HKT structure. We can show that $M⁷$ has three normal almost contact metric structures (I_r, ξ_r, η_r, q) for $r = 1, 2, 3$ given by

$$
I_1e^1 = e^2
$$
, $I_1e^3 = e^4$, $I_1e^5 = e^6$, $\eta_1 = e^7$,
\n $I_2e^1 = e^3$, $I_2e^2 = -e^4$, $I_2e^5 = -e^7$, $\eta_2 = e^6$,
\n $I_3e^1 = e^4$, $I_3e^2 = e^3$, $I_3e^6 = e^7$, $\eta_3 = e^5$,

satisfying the conditions (a) of Corollary 7.2.

Acknowledgments. This work has been partially supported through Project MICINN (Spain) MTM2008-06540-C02-01/02, Project MIUR "Riemannian Metrics and Differentiable Manifolds" and by GNSAGA of INdAM.

REFERENCES

- [1] A. Andrada, A. Fino, L. Vezzoni, A class of Sasakian 5-manifolds, preprint math. DG/0807.1800 , to appear in Transformation Groups.
- [2] M. L. Barberis, I. Dotti, M. Verbitsky, Canonical bundles of complex nilmanifolds, with applications to hypercomplex geometry, Math. Res. Lett. 16 (2009), 331–347.
- [3] M. L. Barberis, A. Fino, New strong HKT manifolds arising from quaternionic representations, preprint math.DG/0805.2335.
- [4] J.M. Bismut, A local index theorem for non-Kähler manifolds, $Math. Ann. 284 (1989), 681-$ 699.
- [5] D. L. Blair, The theory of quasi-Sasakian structures, *J. Differ. Geom.* **1** (1967), 331-345.
- [6] D. L. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2002.
- [7] C. P. Boyer, K. Galicki, 3-Sasakian manifolds, in: Surveys in Differential Geometry: Essays on Einstein Manifolds, Surveys in Differential Geometry, Vol. VI, Int. Press, Boston, MA, 1999, pp. 123–184.
- [8] D. Conti, S. Salamon, Generalized Killing spinors in dimension 5, Trans. Amer. Math. Soc. 359 (2007), 5319–5343.
- [9] N. Egidi, Special metrics on compact complex manifolds, *Differential Geom. Appl.* 14 (2001), 217–234.
- [10] M. Fern´andez, A. Tomassini, L. Ugarte, R. Villacampa, Balanced Hermitian metrics from SU(2)-structures, J. Math. Phys. 50 (2009), 033507.
- [11] A. Fino, G. Grantcharov, Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2004), 439–450.
- [12] A. Fino, M. Parton, S. Salamon, Families of strong KT structures in six dimensions, Comment. Math. Helv. 79 (2004), 317–340.
- [13] A. Fino, A. Tomassini, Generalized G_2 -manifolds and SU(3)-structures, *Internat. J. Math.* 19 (2008), 1147–1165.
- [14] A. Fino, A. Tomassini, Blow-ups and resolutions of strong Kähler with torsion metrics, Adv . Math. 221 (2009), 914–935.
- [15] Th. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303–335.
- [16] G. Grantcharov, Y.S. Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), 19–37.
- [17] D. Grantcharov, G. Grantcharov, Y.S. Poon, Calabi-Yau connections with torsion on toric bundles, J. Differ. Geom. 78 (2008), 13–32.
- [18] S.J. Gates, C.M. Hull, M. Roček, Twisted multiplets and new supersymmetric non-linear σ-models, Nuclear Phys. B 248 (1984), 157–186.
- [19] P. Gauduchon, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984) , 495–518.
- [20] N.J. Hitchin, Stable forms and special metrics. In: Fernández, M., Wolf J. (eds.), Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math. 288, Amer. Math. Soc., Providence, RI, 2001, 70–89.
- [21] P. S. Howe, G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), 80-86.
- [22] S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Classical Quantum Gravity 18 (2001), 1089–1110.
- [23] S.Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29–45.
- [24] Y. Ogawa, Some properties on manifolds with almost contact structures, Tohoku Math. J. 15 (1963), 148–161.
- [25] S. Sasaki, Y. Hatekeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tohoku Math. J. 13 (1961), 281–294.
- [26] A. Strominger, Superstrings with torsion, Nuclear Phys. B 274 (1986), 253-284.
- [27] A. Swann: Twisting Hermitian and hypercomplex geometries, preprint math.DG/0812.2780.
- [28] L. Ugarte, Hermitian structures on six dimensional nilmanifolds, Transf. Groups 12 (2007), 175–202.

(Fernández) UNIVERSIDAD DEL PAÍS VASCO, FACULTAD DE CIENCIA Y TECNOLOGÍA, DEPARTAmento de Matematicas, Apartado 644, 48080 Bilbao, Spain ´ E -mail address: marisa.fernandez@ehu.es

(Fino) Dipartimento di Matematica, Universita di Torino, Via Carlo Alberto 10, ` 10123 Torino, Italy

 $E-mail$ $address:$ annamaria.fino@unito.it

(Ugarte) Departamento de Matematicas - I.U.M.A., Universidad de Zaragoza, Campus ´ Plaza San Francisco, 50009 Zaragoza, Spain

E-mail address: ugarte@unizar.es

(Villacampa) Departamento de Matematicas - I.U.M.A., Universidad de Zaragoza, Cam- ´ pus Plaza San Francisco, 50009 Zaragoza, Spain

E-mail address: raquelvg@unizar.es