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Abstract. For an almost contact metric manifold N , we find conditions for
which either the total space of an S1-bundle over N or the Riemannian cone

over N admits a strong Kähler with torsion (SKT) structure. In this way we

construct new 6-dimensional SKT manifolds. Moreover, we study the geomet-
ric structure induced on a hypersurface of an SKT manifold, and use such

structures to construct new SKT manifolds via appropriate evolution equa-

tions. Hyper-Kähler with torsion (HKT) structures on the total space of an
S1-bundle over manifolds with three almost contact structures are also studied.

1. Introduction

On any Hermitian manifold (M2n, J, h) there exists a unique Hermitian connec-
tion ∇B with totally skew-symmetric torsion, called in the literature as Bismut
connection [4]. The torsion 3-form h(X,TB(Y, Z)) of ∇B can be identified with the
3-form

−JdF (·, ·, ·) = −dF (J ·, J ·, J ·),

where F (·, ·) = h(·, J ·) is the fundamental 2-form associated to the Hermitian
structure (J, h).

Hermitian structures with closed JdF are called strong Kähler with torsion
(shortly SKT) or also pluriclosed [9]. Since ∂∂̄ acts as 1

2dJd on forms of bide-

gree (1, 1), the latter condition is equivalent to ∂∂̄F = 0. SKT structures have
been recently studied by many authors and they have also applications in type II
string theory and in 2-dimensional supersymmetric σ-models [18, 26, 22].

The class of SKT metrics includes of course the Kähler metrics, but as in [12] we
are interested on non-Kähler geometry, so for SKT metrics we will mean Hermitian
metrics h such that its fundamental 2-form F is ∂∂̄-closed but not d-closed.

Gauduchon in [19] showed that on a compact complex surface an SKT metric
can be found in the conformal class of any given Hermitian metric, but in higher
dimensions the situation is more complicated.

SKT structures on 6-dimensional nilmanifolds, i.e. on compact quotients of
nilpotent Lie groups by discrete subgroups, were classified in [12, 28]. Simply-
connected examples of 6-dimensional SKT manifolds have been found in [17] by
using torus bundles and recently Swann in [27] has reproduced them via the twist
construction, by extending them to higher dimensions, and finding new other com-
pact simply-connected SKT manifolds. Moreover, in [14] it has been showed that
the SKT condition is preserved by the blow-up construction.
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The odd dimensional analog of Hermitian structures are given by normal al-
most contact metric structures. Indeed, on the product N2n+1 × R of a (2n + 1)-
dimensional almost contact metric manifold N2n+1 by the real line R it is possible
to define a natural almost complex structure, which is integrable if and only if the
almost contact metric structure on N2n+1 is normal [25]. More in general, it is
possible to construct Hermitian manifolds starting from an almost contact metric
manifold N2n+1 by considering a principal fibre bundle P with base space N2n+1

and structural group S1, i.e. an S1-bundle over N2n+1 (see [24]). Indeed, in [24] by
using the almost contact metric structure on N2n+1 and the connection 1-form θ,
Ogawa constructed an almost Hermitian structure (J, h) on P and found conditions
for which J is integrable and (J, h) is Kähler.

In Section 2 we determine conditions for which in general an S1-bundle over an
almost contact metric (2n+1)-dimensional manifold N2n+1 is SKT (Theorem 2.3).
We study the particular case when N2n+1 is quasi-Sasakian, i.e. it has an almost
contact metric structure for which the fundamental form is closed (Corollary 2.4).
In this way we are able to construct some new 6-dimensional SKT examples, starting
from 5-dimensional quasi-Sasakian Lie algebras and also from Sasakian ones.

A Sasakian structure can be also seen as the analog in odd dimensions of a Kähler
structure. Indeed, by [7] a Riemannian manifold (N2n+1, g) of odd dimension
2n+ 1 admits a compatible Sasakian structure if and only if the Riemannian cone
N2n+1 × R+ is Kähler. In Section 3 we study which conditions has to satisfy the
compatible almost contact metric structure on a Riemannian manifold (N2n+1, g)
in order to the Riemannian cone N2n+1×R+ to be SKT (Theorem 3.1). An example
of an SKT manifold constructed as Riemannian cone is provided and the particular
case that the Riemannian cone is 6-dimensional is considered in Section 4. This
case is interesting since one can impose that the SKT structure is in addition an
SKT SU(3)-structure and one can find relations with the SU(2)-structures studied
by Conti and Salamon in [8].

In Section 5 we study the geometric structure induced naturally on any oriented
hypersurface N2n+1 of a (2n + 2)-dimensional manifold M2n+2 carrying an SKT
structure and in Section 6 we use such structures to construct new SKT manifolds
via appropriate evolution equations [20, 8], starting from a 5-dimensional manifold
endowed with an SU(2)-structure (Theorem 6.4).

A good quaternionic analog of Kähler geometry is given by hyper-Kähler with
torsion (shortly HKT) geometry. An HKT manifold is a hyper-Hermitian mani-
fold (M4n, J1, J2, J3, h) admitting a hyper-Hermitian connection with totally skew-
symmetric torsion, i.e. for which the three Bismut connections associated to
the three Hermitian structures (Jr, h), r = 1, 2, 3, coincide. This geometry
was introduced by Howe and Papadopoulos [21] and later studied for instance
in [16, 11, 2, 3, 27].

A particular interesting case is when the torsion 3-form of such hyper-Hermitian
connection is closed. In this case the HKT manifold is called strong.

In the last section we find conditions for which an S1-bundle over a (4n + 3)-
dimensional manifold endowed with three almost contact metric structures is HKT
and in particular when it is strong HKT (Theorem 7.1).
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2. SKT structures arising from S1-bundles

Consider a (2n + 1)-manifold N2n+1 with an almost contact metric structure
(I, ξ, η, g), that is, I is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form
and g is a Riemannian metric on N2n+1 satisfying the following conditions:

I2 = −Id+ η ⊗ ξ, η(ξ) = 1, g(IU, IV ) = g(U, V )− η(U)η(V ),

for any vector fields U , V on N2n+1. Denote by ω the fundamental 2-form of
(I, ξ, η, g), i.e. ω is the 2-form on N2n+1 given by

ω(., .) = g(., I.).

Given the tensor field I consider its Nijenhuis torsion [I, I] defined by

(1) [I, I](X,Y ) = I2[X,Y ] + [IX, IY ]− I[IX, Y ]− I[X, IY ].

On the product N2n+1×R it is possible to define a natural almost complex structure

J

(
X, f

d

dt

)
=

(
IX + fξ,−η(X)

d

dt

)
,

where f is a C∞-function on N2n+1 × R and t is the coordinate on R.
We recall the following

Definition 2.1. [25] An almost contact metric structure (I, ξ, η, g) on N2n+1 is
called normal if the almost complex structure J on N2n+1 × R is integrable, or
equivalently if

[I, I](X,Y ) + 2dη(X,Y )ξ = 0,

for any vector fields X,Y on N2n+1.

By [5, Lemma 2.1] for a normal almost contact metric structure (I, ξ, η, g), one
has that iξdη = 0.

Remark 2.2. The normality of the almost contact structure implies also that
Idη = dη. Indeed, we have that d(η − idt) = dη has no (0, 2)-part and therefore
it has also no (2, 0)-part since dη is real. Thus Jdη = dη, but we have also that
Jdη = Idη since iξdη = 0.

We recall that a Hermitian manifold (M,J, h) is SKT if and only if the 3-form
JdF is closed, where F is the fundamental 2-form of (J, h). In the paper we will
use the convention that J acts on r-forms β as

(Jβ)(X1, . . . , Xr) = β(JX1, . . . , JXr),

for any vector fields X1, . . . , Xr.
We now show conditions for which in general an S1-bundle over an almost contact

metric (2n+ 1)-dimensional manifold is SKT.
Let (N2n+1, I, ξ, η) be a (2n + 1)-dimensional almost contact manifold, and let

Ω be a closed 2-form on N2n+1 which represents an integral cohomology class on
N2n+1. From the well-known result of Kobayashi [23], we can consider the circle
bundle S1 ↪→ P → N2n+1, with connection 1-form θ on P whose curvature form is
dθ = π∗(Ω), where π : P → N2n+1 is the projection.
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By using the almost contact structure (I, ξ, η) and the connection 1-form θ, one
can define an almost complex structure J on P as follows (see [24]). For any
right-invariant vector field X on P , JX is given by

(2)
θ(JX) = −π∗(η(π∗X)),

π∗(JX) = I(π∗X) + θ̃(X)ξ,

where θ̃(X) is the unique function on N2n+1 such that

(3) π∗θ̃(X) = θ(X).

The above definition can be extended to arbitrary vector fields X on P , since X
can be written in the form

X =
∑
j

fjXj ,

with fj smooth functions on P and Xj right-invariant vector fields. Then JX =∑
j fjJXj .

In [24] it has been showed that if (N2n+1, I, ξ, η) is normal, then the almost
complex structure J on P defined by (2) is integrable if and only if dθ is J-invariant,
that is,

J(dθ) = dθ,

or equivalently

dθ(JX, Y ) + dθ(X, JY ) = 0,

for any vector fields X,Y on P , i.e. dθ is a complex 2-form on P having bidegree
(1, 1) with respect to J .

In terms of the 2-form Ω whose lifting to P is the curvature of the circle bundle
S1 ↪→ P → N2n+1, the previous condition means that Ω is I-invariant, i.e. I(Ω) =
Ω, and therefore iξΩ = 0.

If {e1, . . . , e2n, η} is an adapted coframe on a neighborhood U on N2n+1, i.e.
such that

Ie2j−1 = −e2j , Ie2j = e2j−1, 1 ≤ j ≤ n,
then we can take {π∗e1, . . . , π∗e2n, π∗η, θ} as a coframe in π−1(U). By using the
coframe {π∗e1, . . . , π∗e2n}, we may write

dθ = π∗α+ π∗β ∧ π∗η,

where α is a 2-form in
∧2

< e1, . . . , e2n > and β ∈
∧1

< e1, . . . , e2n >.
Next, suppose that N2n+1 has a normal almost contact metric structure

(I, ξ, η, g). We consider a principal S1-bundle P with base space N2n+1 and con-
nection 1-form θ, and endow P with the almost complex structure J (associated to
θ) defined by (2). Since N2n+1 has a Riemannian metric g, a Riemannian metric
h on P compatible with J (see [24]) is given by

(4) h(X,Y ) = π∗g(π∗X,π∗Y ) + θ(X)θ(Y ),

for any right-invariant vector fields X,Y . The above definition can be extended to
any vector field on P .

Theorem 2.3. Let (N2n+1, I, ξ, η, g) be a (2n + 1)-dimensional almost contact
metric manifold and let Ω be a closed 2-form on N2n+1 which represents an integral
cohomology class. Consider the circle bundle S1 ↪→ P → N2n+1 with connection 1-
form θ whose curvature form is dθ = π∗(Ω), where π : P → N2n+1 is the projection.
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Then, the almost Hermitian structure (J, h) on P , defined by (2) and (4), is SKT
if and only if (I, ξ, η, g) is normal, dθ is J-invariant and such that

(5)
d(π∗(I(iξdω))) = 0,
d(π∗(I(dω)− dη ∧ η)) = (−π∗(I(iξdω)) + π∗Ω) ∧ π∗Ω,

where ω denotes the fundamental form of the almost contact metric structure
(I, ξ, η, g).

Proof. As we mentioned previously, a result of Ogawa [24] asserts that the almost
complex structure J is integrable if and only if (g, I, ξ, η) is normal and J(dθ) = dθ.
Thus (J, h) is SKT if and only if the 3-form JdF is closed. By using the first
equality of (2), we have that the fundamental 2-form F on P is

F (X,Y ) = h(X,JY ) = π∗g(π∗X,π∗JY ) + θ(X)θ(JY )

= π∗g(π∗X,π∗JY )− θ(X)π∗η(π∗Y ).

Therefore, taking into account that we are working with a circle bundle, and so its
fibre is 1-dimensional, we have

F = π∗ω + π∗η ∧ θ.
Thus,

dF = π∗(dω) + π∗(dη) ∧ θ − π∗η ∧ dθ,
and

(6) JdF = J(π∗(dω))− J(π∗(dη)) ∧ π∗η − θ ∧ dθ,
since J(π∗η) = θ and J is integrable, so J(dθ) = dθ.

Moreover, we have

(7) J(π∗(dω)) = π∗(I(dω)) + π∗(I(iξdω)) ∧ θ.

Indeed, locally and in terms of the adapted basis {e1, . . . , e2n+1} such that

Ie2j−1 = −e2j , 1 ≤ j ≤ n, Ie2n+1 = 0, η = e2n+1,

we can write
dω = α+ β ∧ η,

where the local forms α ∈ Λ3 < e1, . . . , e2n > and β ∈ Λ2 < e1, . . . , e2n > are
generated only by e1, . . . , e2n. Furthermore, we have

Iα = I(dω), β = iξdω.

Thus,
J(π∗(dω)) = J(π∗(α)) + J(π∗(iξdω)) ∧ θ.

Now, by using (2) and (3), we see that J(π∗(α)) = π∗(Iα) and J(π∗(iξdω)) =
π∗(I(iξdω)), which proves (7). As a consequence of Remark 2.2 we have

(8) J(π∗(dη)) = π∗(I(dη))− π∗(I(iξdη)) ∧ θ = π∗(dη),

since iξdη = 0 and Idη = dη.
By using (7) and (8) we get

(9) JdF = π∗(I(dω)) + π∗(I(iξdω)) ∧ θ − π∗(dη) ∧ π∗η − θ ∧ dθ.
Therefore

d(JdF ) = d (π∗(I(dω))) + d(π∗{I(iξdω)}) ∧ θ + π∗(I(iξdω)) ∧ dθ
−d(π∗(dη)) ∧ π∗η − π∗(dη) ∧ dπ∗η − dθ ∧ dθ.



STRONG KÄHLER WITH TORSION STRUCTURES 6

Consequently, d(JdF ) = 0 if and only if

d(π∗(I(iξdω))) = 0,

and
d(π∗(I(dω)− dη ∧ η)) = (π∗(−I(iξdω)) + dθ) ∧ dθ,

which completes the proof. �

We recall that an almost contact metric manifold (N2n+1, I, ξ, η, g) is quasi-
Sasakian if it is normal and its fundamental form ω is closed. If, in particular,
dη = αω, then the almost contact metric structure is called α-Sasakian. When
α = −2, the structure is said to be Sasakian.

By [15, Theorem 8.2] an almost contact metric manifold (N2n+1, I, ξ, η, g) admits
a connection ∇c preserving the almost contact metric structure and with totally
skew-symmetric torsion tensor if and only if the Nijenhuis tensor of I, given by
(1), is skew-symmetric and ξ is a Killing vector field. Moreover, this connection is
unique.

Then, in particular on any quasi-Sasakian manifold (N2n+1, I, ξ, η, g) there exists
a unique connection ∇c with totally skew-symmetric torsion such that

∇cI = 0, ∇cg = 0, ∇cη = 0.

Such connection ∇c is uniquely determined by

(10) g(∇cXY,Z) = g(∇gXY,Z) +
1

2
(dη ∧ η)(X,Y, Z),

where ∇g denotes the Levi-Civita connection and 1
2 (dη ∧ η) is the torsion 3-form

of ∇c.

Corollary 2.4. Let (N2n+1, I, ξ, η, g) be a quasi-Sasakian (2n + 1)-manifold and
let Ω be a closed 2-form on N2n+1 which represents an integral cohomology class.
Consider the circle bundle S1 ↪→ P → N2n+1 with connection 1-form θ whose
curvature form is dθ = π∗(Ω), where π : P → N2n+1 is the projection. Then, the
almost Hermitian structure (J, h) on P , defined by (2) and (4), is SKT if and only
if Ω is I-invariant, iξΩ = 0 and

(11) dη ∧ dη = −Ω ∧ Ω.

Moreover, the Bismut connection ∇B of (J, h) on P and the connection ∇c on N
given by (10) are related by

(12) h(∇BXY, Z) = π∗g(∇cπ∗Xπ∗Y, π∗Z),

for any vector fields X,Y, Z ∈ Ker θ.

Proof. Since dω = 0, if we impose the SKT condition, by using the previous theo-
rem, we get the equation (11).

The Bismut connection ∇B associated to the Hermitian structure (J, h) on P is
given by:

(13) h(∇BXY,Z) = h(∇hXY,Z)− 1

2
dF (JX, JY, JZ),

for any vector fields X,Y, Z on P , where∇h is the Levi-Civita connection associated
to h. Then, for any X,Y, Z in the kernel of θ we have

h(∇BXY, Z) = π∗g(∇hXY,Z) +
1

2
(π∗(dη) ∧ π∗η)(X,Y, Z).
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By [24, Lemma 3] and the definition of ∇c we get

h(∇BXY, Z) = π∗g(∇gπ∗X
π∗Y, π∗Z)+

1

2
(π∗(dη)∧π∗η)(X,Y, Z) = π∗g(∇cπ∗Xπ∗Y, π∗Z),

for any X,Y, Z in the kernel of θ. �

Remark 2.5. If the structure (I, ξ, η, g) is α-Sasakian, equation (11) reads as

Ω ∧ Ω = −α2 ω ∧ ω.

In the case of a trivial S1-bundle, i.e. by considering the natural almost Hermit-
ian structure on the product N2n+1 × R, we get the following

Corollary 2.6. Let (N2n+1, I, ξ, η, g) be a (2n + 1)-dimensional almost contact
metric manifold. Consider on the product N2n+1×R the almost complex structure J
given by

JX = IX, X ∈ Ker η, Jξ = − d

dt
,

and the product metric h = g+(dt)2. The Hermitian structure (J, h) is SKT if and
only if (I, ξ, η, g) is normal and such that

d(I(dω)) = d(dη ∧ η), d(I(iξdω)) = 0,

where ω denotes the fundamental 2-form of the almost contact metric structure
(g, I, ξ, η).

As a consequence of previous results we get

Corollary 2.7. Let (N2n+1, I, ξ, η, g) be a (2n + 1)-dimensional quasi-Sasakian
manifold such that dη∧dη = 0. Then, the Hermitian structure (J, h) on N2n+1×R
is SKT. Moreover, its Bismut connection ∇B coincides with the unique connection
∇c on N2n+1 given by (10).

Proof. In this case, since dω = 0 we get

d(JdF ) = −d(dη ∧ η).

Moreover, by using (12)

h(∇BXY,Z) = g(∇cXY,Z),

for any vector fields X,Y, Z on N2n+1. �

2.1. Examples. We will start presenting three examples of quasi-Sasakian Lie al-
gebras satisfying the condition dη ∧ dη = 0. By applying Corollary 2.7 one gets
an SKT structure on the product of the corresponding simply-connected Lie group
by R.

Example 2.8. Let s be the 5-dimensional Lie algebra with structure equations

de1 = e13 + e23 + e25 − e34 + e35,

de2 = 2e12 − 2e13 + e14 − e15 − e24 + e34 + e45,

de3 = −e12 + e13 + e14 − e15 + 2e24 − 2e34 + e45,

de4 = −e12 − e23 + e24 − e25 − e35,
de5 = e12 − e13 − e24 + e34,

where by eij we denote ei ∧ ej .
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Consider on s the quasi-Sasakian structure (I, ξ, η, g) given by

(14) η = e5, Ie1 = −e2, Ie3 = −e4, ω = −e12 − e34, g =

5∑
j=1

(ej)2.

We have that the above quasi-Sasakian structure satisfies the condition d(dη ∧
η) = 0.

The Lie algebra s is 2-step solvable since the commutator

s1 = [s, s] = R < e1 − e4, e2 + e3, e1 − e2 + 2e3 − e5 >
is abelian, where {e1, . . . , e5} denotes the dual basis of {e1, . . . , e5}. Moreover s has
trivial center, it is irreducible and non unimodular, since we have that the trace of
ade1 is equal to −3.

Example 2.9. Consider the family of 2-step solvable Lie algebras sa, a ∈ R−{0},
given by 

de1 = a e23 + 3 e25,

de2 = −a e13 − 3 e15,

de3 = a e34,

de4 = 0,

de5 = −a
2

3 e
34.

The almost contact metric structure (I, ξ, η, g) given by (14) is quasi-Sasakian and
satisfies the condition dη ∧ dη = 0. Moreover, the second cohomology group of sa
is generated by e12 and e45.

Example 2.10. Another example of family of quasi-Sasakian Lie algebras satisfy-
ing the condition dη ∧ dη = 0 is gb, b ∈ R− {0}, with structure equations

de1 = b (e13 + e14 − e23 + e24) + e25,

de2 = b (−e13 + e14 − e23 − e24)− e15,
de3 = 2 e45,

de4 = −2 e35,

de5 = −4b2 e34,

and endowed with the quasi-Sasakian structure given by (14). The second coho-
mology group of gb is generated by e12. The Lie algebras gb are not solvable since
for the commutator we have [gb, gb] = gb.

The Lie groups underlying examples 2.9 and 2.10 satisfy also the conditions of
Corollary 2.4 with Ω∧Ω = 0 just by considering as connection 1-form the 1-form e6

such that de6 = λe12 and then Ω = λe12. With this expression of de6 we have that:
d2e6 = 0, J(de6) = de6 and de6 ∧ de6 = 0, and therefore equation (11) is satisfied.
Observe that λ = 0 provides examples of trivial S1-bundles.

We can recover also one of the 6-dimensional nilmanifolds found in [12].

Example 2.11. Consider the 5-dimensional nilpotent Lie algebra with structure
equations {

dej = 0, j = 1, . . . , 4,
de5 = e12 + e34,

and endowed with the quasi-Sasakian structure given by (14). If we consider the
closed 2-form Ω = e13 + e24 and we apply Corollary 2.4 we have that there exists a
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non trivial S1-bundle over the corresponding 5-dimensional nilmanifold. Moreover,
since de5 ∧ de5 = −Ω∧Ω 6= 0, the total space of this S1-bundle is an SKT nilmani-
fold. More precisely, according to the classification given in [12] (see also [28]), the
nilmanifold is the one with underlying Lie algebra isomorphic to h3 ⊕ h3, where by
h3 we denote the real 3-dimensional Heisenberg Lie algebra.

Since the starting Lie algebra in Example 2.11 is Sasakian, it is natural to start
with other 5-dimensional Sasakian Lie algebras to construct new SKT structures in
dimension 6. A classification of 5-dimensional Sasakian Lie algebras was obtained
in [1].

Example 2.12. Consider the 5-dimensional Lie algebra k3 with structure equations
dej = 0, j = 1, 4,
de2 = −e13,
de3 = e12,
de5 = λ e14 + µ e23,

where λ, µ < 0. By [1] k3 admits the Sasakian structure given by

Ie1 = e4, Ie2 = e3, η = e5,

g = −λ2 e1 ⊗ e1 −
λ
2 e2 ⊗ e2 −

µ
2 e3 ⊗ e3 −

µ
2 e4 ⊗ e4 + e5 ⊗ e5,

and it is isomorphic to R n (h3 × R). Moreover, by [1] the corresponding solvable
simply-connected Lie group admits a compact quotient by a discrete subgroup.

Consider on k3 the closed 2-form Ω = λ e14−µ e23. Ω is I-invariant and satisfies
Ω ∧ Ω = −2λµ e1234. Since e5 is the contact form and de5 ∧ de5 = 2λµ e1234,
again we get by Corollary 2.4 an SKT structure on a non trivial S1-bundle over the
5-dimensional solvmanifold. We will denote by e6 the connection 1-form.

The orthonormal basis {α1 = e1, α2 = e4, α3 = e2, α4 = e3, α5 = e5, α6 = θ}
for the SKT metric satisfies the equations

dα1 = dα2 = 0, dα3 = −α14, dα4 = α13,

dα5 = λα12 + µα34, dα6 = λα12 − µα34,

and the complex structure is given by J(X1) = X2, J(X3) = X4, J(X5) = X6,
where {Xi}6i=1 denotes the basis dual to {αi}6i=1. Since the fundamental 2-form is
F = α12 + α34 + α56, one has that the 3-form torsion T of the SKT structure is

T = λα12(α5 + α6) + µα34(α5 − α6).

Moreover, ∗T = λα12(α5+α6)−µα34(α5−α6), where ∗ denotes the Hodge operator
of the metric, which implies that the torsion form is also coclosed.

The only nonzero curvature forms (ΩB)ij of the Bismut connection ∇B are

(ΩB)12 = −2λ2α12, (ΩB)34 = −2µ2α34.

A direct calculation shows that the 1-forms α5, α6 and the 2-forms α12, α34 are
parallel with respect to the Bismut connection, which implies that ∇BT = 0.

Finally, since ∇Bαi 6= 0 for i = 1, 2, 3, 4, we conclude that Hol(∇B) = U(1) ×
U(1) ⊂ U(3).
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3. SKT structures arising from Riemannian cones

Let N2n+1 be a (2n+ 1)-dimensional manifold endowed with an almost contact
metric structure (I, ξ, η, g) and denote by ω its fundamental 2-form.

The Riemannian cone of N2n+1 is defined as the manifold N2n+1×R+ equipped
with the cone metric:

(15) h = t2g + (dt)2.

The cone N2n+1 × R+ has a natural almost Hermitian structure defined by

(16) F = t2ω + tη ∧ dt.
The almost complex structure J on N2n+1 × R+ defined by (F, h) is given by

JX = IX, X ∈ Ker η, Jξ = −t d
dt
.

In terms of a local orthonormal adapted coframe {e1, . . . , e2n} for g such that

(17) ω = −
n∑
j=1

e2j−1 ∧ e2j ,

we have

(18)
Je2j−1 = −e2j , Je2j = e2j−1, j = 1, . . . , n,
J(te2n+1) = dt, J(dt) = −te2n+1.

The almost Hermitian structure (J, h) on N2n+1 × R+ is Kähler if and only if the
almost contact metric structure (I, ξ, η, g) on N2n+1 is Sasakian, i.e. a normal
contact metric structure.

If we impose that the almost Hermitian structure (J, h) on N2n+1×R+ is SKT,
we can prove the following

Theorem 3.1. Let (N2n+1, I, ξ, η, g) be a (2n + 1)-dimensional almost contact
metric manifold. The almost Hermitian structure (J, h) on the Riemannian cone
(N2n+1×R+, h), given by (15) and (16), is SKT if and only if (I, ξ, η, g) is normal
and

(19) −4η ∧ ω + 2I(dω)− 2dη ∧ η = d(I(iξdω)),

where ω denotes the fundamental 2-form of the almost contact metric structure
(I, ξ, η, g).

Proof. J is integrable if and only if the almost contact metric structure is normal.
Now we compute JdF . We have that

dF = 2tdt ∧ ω + t2dω + tdη ∧ dt,
and

JdF = −2t2η ∧ ω + t2J(dω)− t2dη ∧ η,
since

Jω = ω, J(dt) = −tη, Jdη = dη.

Moreover, with respect to an adapted basis {e1, . . . , e2n+1} we may prove, in a
similar way as in the proof of Theorem 2.3, that

(20) Jdω = I(dω) + I(iξdω) ∧ Jη.
As a consequence we get

JdF = −2t2η ∧ ω + t2I(dω) + tdt ∧ I(iξdω)− t2dη ∧ η.
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Therefore, by imposing d(JdF ) = 0 we obtain the two equations{
−4η ∧ ω + 2I(dω)− 2dη ∧ η − d(I(iξdω)) = 0,

−2d(η ∧ ω) + d(I(dω))− d(dη ∧ η) = 0.

Since the second equation is consequence of the first one, we have that the Hermitian
structure (F, h) on the Riemannian coneN2n+1×R+ is SKT if and only if the almost
contact metric structure (I, η, ξ, g, ω) on N2n+1 satisfies the equation (19). �

Remark 3.2. As a consequence of previous theorem we have that, if n = 1,
equation (19) is satisfied if and only if the 3-dimensional manifold N is Sasakian.
On the other hand, if n > 1 and the almost contact metric structure on N2n+1 is
quasi-Sasakian (i.e. dω = 0), then the structure has to be Sasakian, i.e. dη = −2ω.

Example 3.3. Consider the 5-dimensional Lie algebras ga,b,c with structure equa-
tions 

de1 = a e23 + 2 e25 +
(
− 1

2ab+ b3

2a + 2 ba

)
e34 + b e45,

de2 = −a e13 − 2 e15 − 1
2bc e

34 − b e35,

de3 =
(
− 4
a −

b2

a

)
e34,

de4 = c e34,

de5 = 2 e12 + b e14 − b e23 + (2 + b2) e34,

where a, b, c ∈ R and a 6= 0, endowed with the normal almost contact metric
structure (I, ξ, η, g, ω) with

Ie1 = −e2, Ie3 = −e4, η = e5, ω = −e12 − e34.

This structure satisfies (19) and therefore, the Riemannian cones over the corre-
sponding simply-connected Lie groups are SKT.

4. SKT SU(3)-structures

Let (M6, J, h) be a 6-dimensional almost Hermitian manifold. An SU(3)–
structure on M6 is determined by the choice of a (3, 0)-form Ψ = Ψ+ + iΨ− of
unit norm. If Ψ is closed, then the underlying almost complex structure J is inte-
grable and the manifold is Hermitian. We will denote the SU(3)-structure (J, h,Ψ)
simply by (F,Ψ), where F is the fundamental 2-form, since from F and Ψ we can
reconstruct the almost Hermitian structure.

We can give the following

Definition 4.1. We say that an SU(3)-structure (F,Ψ) on M6 is SKT if

(21) dΨ = 0, d(JdF ) = 0,

where J is the associated complex structure.

We will see the relation between SKT SU(3)-structures in dimension 6 and
SU(2)-structures in dimension 5.

First we recall some facts about SU(2)-structures on a 5-dimensional manifold.
An SU(2)-structure on a 5-dimensional manifold N5 is an SU(2)-reduction of the
principal bundle of linear frames on N5. By [8, Proposition 1], these structures are
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in 1 : 1 correspondence with quadruplets (η, ω1, ω2, ω3), where η is a 1-form and ωi
are 2-forms on N5 satisfying

ωi ∧ ωj = δijv, v ∧ η 6= 0,

for some 4-form v, and

iXω3 = iY ω1 ⇒ ω2(X,Y ) ≥ 0,

where iX denotes the contraction by X. Equivalently, an SU(2)-structure on N5

can be viewed as the datum of (η, ω1,Φ), where η is a 1-form, ω1 is a 2-form and
Φ = ω2 + i ω3 is a complex 2-form such that

η ∧ ω1 ∧ ω1 6= 0, Φ ∧ Φ = 0, ω1 ∧ Φ = 0, Φ ∧ Φ = 2ω1 ∧ ω1,

and Φ is of type (2, 0) with respect to ω1.
SU(2)-structures are locally characterized as follows (see [8]): If (η, ω1, ω2, ω3) is

an SU(2)-structure on a 5-manifold N5, then locally, there exists an orthonormal
basis of 1-forms {e1, . . . , e5} such that

ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23, η = e5 .

We can also consider the local tensor field I given by

Ie1 = −e2, Ie2 = e1, Ie3 = −e4, Ie4 = e3, Ie5 = 0.

This tensor gives rise to a global tensor field of type (1, 1) on the manifold N5

defined by ω1(X,Y ) = g(X, IY ), for any vector fields X,Y on N5, where g is
the Riemannian metric on N5 underlying the SU(2)-structure. The tensor field I
satisfies

I2 = −Id+ η ⊗ ξ,
where ξ is the vector field on N5 dual to the 1-form η.

Therefore, given an SU(2)-structure (η, ω1, ω2, ω3) we also have an almost con-
tact metric structure (I, ξ, η, g) on the manifold, where ω1 is the fundamental form.

Remark 4.2. Notice that we have two more almost contact metric structures when
one considers ω2 and ω3 as fundamental forms.

If N5 has an SU(2)-structure (η, ω1, ω2, ω3), the product N5 × R has a natural
SU(3)-structure given by

(22)
F = ω1 + η ∧ dt,
Ψ = (ω2 + iω3) ∧ (η − idt).

Moreover, by Corollary 2.6 the previous SU(3)-structure is SKT if and only if

(23)
d(I(dω1)) = d(dη ∧ η), d(I(iξdω1)) = 0,

dω2 = −3ω3 ∧ η, dω3 = 3ω2 ∧ η.

Then we have proved the following

Theorem 4.3. Let N5 be a 5-dimensional manifold endowed with an SU(2)-
structure (η, ω1, ω2, ω3). The SU(3)-structure (F,Ψ), given by (22), on the product
N5 × R is SKT if and only if the equations (23) are satisfied.
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Example 4.4. Consider on the 5-dimensional Lie algebras, introduced in Examples
2.8, 2.9 and 2.10, the SU(2)-structure given by

ω = ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23.

For the example 2.8 we have:

dω2 = −2 ω3 ∧ η − 4(e124 − e134),

dω3 = 2 ω2 ∧ η + 4(e123 + e234).

For the examples 2.9 and 2.10 we get dω2 = −3ω3 ∧ η and dω3 = 3ω2 ∧ η,
therefore on the product of the corresponding simply-connected Lie groups by R
one gets an SKT SU(3)-structure.

We will study the existence of SKT SU(3)-structures on a Riemannian cone
over a 5-dimensional manifold N5 endowed with an SU(2)-structure (η, ω1, ω2, ω3).
Then N5 has an induced almost contact metric structure (I, ξ, η, g) and ω1 is its
fundamental form.

The Riemannian cone (N5 × R+, h) of (N5, g) has a natural SU(3)-structure
defined by

F = t2ω1 + tη ∧ dt,
Ψ = t2(ω2 + iω3) ∧ (tη − idt).

In terms of a local orthonormal coframe {e1, . . . , e5} for g such that

ω1 = −e12 − e34, ω2 = −e13 + e24, ω3 = −e14 − e23, η = e5,

we have that

Je1 = −e2, Je2 = e1, Je3 = −e4, Je4 = e3, J(te5) = dt, J(dt) = −te5.

We recall that the SU(3)-structure (F,Ψ) on N5×R+ is integrable if and only if
the SU(2)-structure (η, ω1, ω2, ω3) on N5 is Sasaki-Einstein, or equivalently if and
only if

dη = −2ω1, dω2 = −3ω3 ∧ η, dω3 = 3ω2 ∧ η.

For the Riemannian cones we can prove the following

Corollary 4.5. Let N5 be a 5-dimensional manifold endowed with an SU(2)-
structure (η, ω1, ω2, ω3). The SU(3)-structure (F,Ψ) on the Riemannian cone
(N5 × R+, h) is SKT if and only if

(24)


−4η ∧ ω1 + 2I(dω1)− 2dη ∧ η = d(I(iξdω1)),

dω2 = 3ω3 ∧ η,
dω3 = −3ω2 ∧ η.

Proof. By imposing that dΨ = 0 we get the conditions

dω2 = −3ω3 ∧ η, dω3 = 3ω2 ∧ η.

By imposing d(JdF ) = 0, we obtain, as in the proof of Theorem 3.1, the equation
(19) for ω = ω1.

�
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5. Almost contact metric structure induced on a hypersurface

Here we study the almost contact metric structure induced naturally on any
oriented hypersurface N2n+1 of a (2n+ 2)-manifold M2n+2 equipped with an SKT
structure.

Let f : N2n+1 −→M2n+2 be an oriented hypersurface of a (2n+ 2)-dimensional
manifold M2n+2 endowed with an SKT structure (J, h, F ) and denote by U the
unitary normal vector field. It is well known that N2n+1 inherits an almost contact
metric structure (I, ξ, η, g) such that η and the fundamental 2-form ω are given by

(25) η = −f∗(iUF ), ω = f∗F,

where F is the fundamental 2-form of the almost Hermitian structure (see for
instance [6]).

Proposition 5.1. Let f : N2n+1 −→ M2n+2 be an immersion of an oriented
(2n + 1)-dimensional manifold into a (2n + 2)-dimensional Hermitian manifold
(M2n+2, J, h). If the Hermitian structure (J, h) is SKT, then the induced almost
contact metric structure (I, ξ, η, g) on N2n+1, with η and ω given by (25), satisfies

(26) d
(
Idω − I(f∗(iUdF )) ∧ η

)
= 0.

Proof. We can choose locally an adapted coframe {e1, . . . , e2n+2} for the Hermitian
structure such that the unitary normal vector field U is dual to e2n+2. Since the
almost complex structure J is given in this adapted basis by

Je2j−1 = −e2j , Je2j = e2j−1, j = 1, . . . , n,

Je2n+1 = e2n+2, Je2n+2 = −e2n+1,

the tensor field I on N2n+1 satisfies that If∗ei = f∗Jei, i = 1, . . . , 2n+ 1, that is,

If∗e2j−1 = −f∗e2j , If∗e2j = f∗e2j−1, j = 1, . . . , n, If∗e2n+1 = 0.

However, If∗e2n+2 = 0 6= f∗e2n+1 = −f∗Je2n+2.
Now we compute f∗JdF . First we decompose (locally and in terms of the

adapted basis) the differential of F as follows:

dF = α+ β ∧ e2n+1 + γ ∧ e2n+2 + µ ∧ e2n+1 ∧ e2n+2,

where the local forms α ∈
∧3

< e1, . . . , e2n >, β, γ ∈
∧2

< e1, . . . , e2n > and

µ ∈
∧1

< e1, . . . , e2n > are generated only by e1, . . . , e2n. Then,

JdF = Jα+ Jβ ∧ e2n+2 − Jγ ∧ e2n+1 + Jµ ∧ e2n+1 ∧ e2n+2.

Since f∗e2n+2 = 0 and using that f∗e2n+1 = η, we get

f∗JdF = f∗Jα− (f∗Jγ) ∧ η.
But f∗(iUdF ) = f∗γ + f∗µ ∧ η, which implies that

I(f∗(iUdF )) = If∗γ = f∗Jγ.

On the other hand,

Idω = Idf∗F = If∗dF = If∗α = f∗Jα.

We conclude that

f∗JdF = f∗Jα− (f∗Jγ) ∧ η = Idω − I(f∗(iUdF )) ∧ η.
Now, if the Hermitian structure is SKT, then JdF is closed and the induced struc-
ture satisfies (26). �
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Remark 5.2. Notice that using that iUdF = LUF − diUF we can write (26) as

d
(
Idω − I(f∗(LUF ) + dη) ∧ η

)
= 0.

Therefore, if f∗(LUF ) = 0, the induced almost contact metric structure has to
satisfy the equation

d
(
Idω − I(dη) ∧ η

)
= 0.

In the case of the product N2n+1 × R the condition f∗(LUF ) = 0 is satisfied.
In the case of the Riemannian cone we have that

L d
dt
F = 2tω + dt ∧ η,

and therefore we get f∗(L d
dt
F ) = 2ω.

In this way we recover some of the equations obtained in Corollary 2.6 and in
Theorem 3.1.

Now we study the structure induced naturally on any oriented hypersurface N5

of a 6-manifold M6 equipped with an SKT SU(3)-structure.
Let f : N5 −→ M6 be an oriented hypersurface of a 6-manifold M6 endowed

with an SU(3)-structure (F,Ψ = Ψ+ + iΨ−) and denote by U the unitary normal
vector field. Then N5 inherits an SU(2)-structure (η, ω1, ω2, ω3) given by

(27) η = −f∗(iUF ), ω1 = f∗F, ω2 = −f∗(iUΨ−), ω3 = f∗(iUΨ+).

As a consequence of Proposition 5.1 we have the following

Corollary 5.3. Let f : N5 −→M6 be an immersion of an oriented 5-dimensional
manifold into a 6-dimensional manifold with an SU(3)-structure. If the SU(3)-
structure is SKT, then the induced SU(2)-structure on N5 given by (27) satisfies

(28) d
(
Idω1 − If∗(iUdF ) ∧ η

)
= 0,

and

(29) d(ω2 ∧ η) = 0, d(ω3 ∧ η) = 0.

Proof. The equation (28) follows by Proposition 5.1 taking ω = ω1. We can choose
locally an adapted coframe {e1, . . . , e5, e6} for the SU(3)-structure such that the
unitary normal vector field U is dual to e6. From (27) it follows that ω2∧η = f∗Ψ+

and ω3 ∧ η = f∗Ψ−. Now, if Ψ = Ψ+ + iΨ− is closed then the induced structure
satisfies (29). �

5.1. A simple example. Consider the 6-dimensional nilmanifold M6 whose un-
derlying nilpotent Lie algebra has structure equations dej = 0, j = 1, 2, 3, 6,

de4 = e12,
de5 = e14,

and it is endowed with the SU(3)-structure given by

F = −e14 − e26 − e53, Ψ = (e1 − ie4) ∧ (e2 − ie6) ∧ (e5 − ie3).

The oriented hypersurface with normal vector field dual to e2 is a 5-dimensional
nilmanifold N5, which has by [8] no invariant hypo structures, but the SU(2)-
structure on N5

(30) η = e2, ω1 = −e14 − e53, ω2 = −e15 − e34, ω3 = −e13 − e45,
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satisfies (28) and (29). In section 6 we will show that by using this SU(2)-structure
and appropriate evolution equations we can construct an SKT SU(3)-structure on
the product of N5 with an open interval.

6. SKT evolution equations

The goal here is to construct SKT SU(3)-structures by means of appropriate
evolution equations starting from a suitable SU(2)-structure on a 5-dimensional
manifold, following ideas of [20] and [8].

Lemma 6.1. Let (η(t), ω1(t), ω2(t), ω3(t)) be a family of SU(2)-structures on a
5-dimensional manifold N5, for t ∈ (a, b). Then, the SU(3)-structure on M6 =
N5 × (a, b) given by

F = ω1(t) + η(t) ∧ dt, Ψ = (ω2(t) + iω3(t)) ∧ (η(t)− idt),
satisfies the condition dΨ = 0 if and only if (η(t), ω1(t), ω2(t), ω3(t)) is an SU(2)-
structure such that

(31)
d̂(ω2(t) ∧ η(t)) = 0, d̂(ω3(t) ∧ η(t)) = 0,

∂t(ω2(t) ∧ η(t)) = −d̂ω3(t), ∂t(ω3(t) ∧ η(t)) = d̂ω2(t),

hold, for any t in the open interval (a, b).

Here d̂ denotes the exterior differential on N5 and d the exterior differential on
M6. Now we show which are the additional evolution equations to add to the last
two equations of (31) to ensure that dJdF = 0.

Proposition 6.2. Let (η(t), ω1(t), ω2(t), ω3(t)) be a family of SU(2)-structures on
N5, for t ∈ (a, b). Then, the SU(3)-structure on M6 = N5 × (a, b) given by

(32) F = ω1(t) + η(t) ∧ dt, Ψ = (ω2(t) + iω3(t)) ∧ (η(t)− idt),
satisfies that JdF is closed if and only if (η(t), ω1(t), ω2(t), ω3(t)) satisfies the fol-
lowing evolution equations

(33)


d̂
(
Itd̂ω1(t)− It(∂tω1(t) + d̂η(t)) ∧ η(t)

)
= 0,

∂t

(
Itd̂ω1(t)− It(∂tω1(t) + d̂η(t)) ∧ η(t)

)
=

−d̂
(
It(iξd̂ω1(t))− It(iξ(∂tω1(t) + d̂η(t))) ∧ η(t)

)
,

where, for each t ∈ (a, b), ξ(t) denotes the vector field on N5 dual to η(t).

Proof. Since F = ω1(t) + η(t) ∧ dt, we have that

dF = d̂ω1 + (∂tω1 + d̂η) ∧ dt.
Let {e1(t), . . . , e4(t), η(t)} be a local adapted basis for the SU(2)-structure

(η(t), ω1(t), ω2(t), ω3(t)). Then {e1(t), . . . , e4(t), η(t), dt} is an adapted basis for
the SU(3)-structure (32) and J is given by

Je1(t) = −e2(t), Je2(t) = e1(t), Je3(t) = −e4(t), Je4(t) = e3(t),

Jη(t) = dt, Jdt = −η(t).

Then, the structures It induced on N5 for each t are given by

Ite
1(t) = −e2(t), Ite

2(t) = e1(t), Ite
3(t) = −e4(t), Ie4(t) = e3(t), Itη(t) = 0.
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Now, given τ(t) ∈ Ωk(N5), t ∈ (a, b), we can decompose it locally as

τ(t) = α(t) + β(t) ∧ η(t),

where α(t) ∈
∧k

< e1(t), . . . , e4(t) > and β(t) ∈
∧k−1

< e1(t), . . . , e4(t) >. There-
fore

Jτ(t) = Jα(t)+Jβ(t)∧Jη(t) = Itα(t)+Itβ(t)∧dt = Itτ(t)−(−1)kIt(iξ(t)τ(t))∧dt.

Applying this to JdF we get

JdF = Jd̂ω1 − J(∂tω1 + d̂η) ∧ η(t)

= Itd̂ω1−It(∂tω1+d̂η)∧η(t)+It(iξ(t)d̂ω1)∧dt−It
(
iξ(∂tω1+d̂η)

)
∧η(t)∧dt.

Finally, taking the differential of JdF we get

dJdF = d̂
(
Itd̂ω1 − It(∂tω1 + d̂η)∧ η(t)

)
+ ∂t

(
Itd̂ω1 − It(∂tω1 + d̂η)∧ η(t)

)
∧ dt

+ d̂
[
It(iξ(t)d̂ω1)− It

(
iξ(∂tω1 + d̂η)

)
∧ η(t)

]
∧ dt. �

Remark 6.3. Observe that the first equation in (33) is exactly condition (28) for
F = ω1(t) + η(t) ∧ dt (see Remark 5.2).

As a consequence of Lemma 6.1 and Proposition 6.2, we get

Theorem 6.4. Let (η(t), ω1(t), ω2(t), ω3(t)), t ∈ (a, b), be a family of SU(2)-
structures on a 5-dimensional manifold N5, such that

(34) d̂(ω2(t) ∧ η(t)) = 0, d̂(ω3(t) ∧ η(t)) = 0,

for any t. If the following evolution equations

(35)



d̂
(
Itd̂ω1(t)− It(∂tω1(t) + d̂η(t)) ∧ η(t)

)
= 0,

∂t

(
Itd̂ω1(t)− It(∂tω1(t) + d̂η(t)) ∧ η(t)

)
=

−d̂
(
It(iξd̂ω1(t))− It(iξ(∂tω1(t) + d̂η(t))) ∧ η(t)

)
,

∂t(ω2(t) ∧ η(t)) = −d̂ω3(t),

∂t(ω3(t) ∧ η(t)) = d̂ω2(t),

are satisfied, then the SU(3)-structure on M = N × (a, b) given by

(36) F = ω1(t) + η(t) ∧ dt, Ψ = (ω2(t) + iω3(t)) ∧ (η(t)− idt),

is SKT.

Example 6.5. Let us consider the Lie algebra with structure equations dej = 0, j = 1, 2, 3,
de4 = e12,
de5 = e14,

underlying the 5-dimensional nilmanifold N5 considered in Example 5.1 and en-
dowed with the SU(2)-structure given by (30). It is straight forward to verify
that

d(ω2 ∧ η) = d(ω3 ∧ η) = d(ω1 ∧ ω1) = 0.
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Let us evolve the previous SU(2)-structure in the following way:

ω1(t) = −e14 − e53,

ω2(t) = −
(
1 + 3

2 t
)1/3

e15 −
(
1 + 3

2 t
)−1/3

e34,

ω3(t) = −
(
1 + 3

2 t
)1/3

e13 −
(
1 + 3

2 t
)−1/3

e45,

η(t) =
(
1 + 3

2 t
)1/3

e2,

where t ∈ (−2/3,∞).
It is immediate to observe that the family (ω1(t), ω2(t), ω3(t), η(t)) verifies equa-

tions (34) and the two last equations in (35) for any t ∈ (−2/3,∞). Moreover, it
verifies the following conditions:

∂tω1(t) = 0, d̂(η(t)) = 0, iξ

(
d̂(ω1(t))

)
= 0, ∂t

(
It(d̂ω1(t))

)
= 0,

which implies that the evolution equations (33) are also satisfied.
On the product N5 × R let us consider the local basis of 1-forms given by

β1 =
(
1 + 3

2 t
)1/3

e1, β2 =
(
1 + 3

2 t
)−1/3

e4, β3 = e5, β4 = e3,

β5 =
(
1 + 3

2 t
)1/3

e2, β6 = dt.

The structure equations are:

dβ1 = − 1
2

(
1 + 3

2 t
)−1

β16,

dβ2 =
(
1 + 3

2 t
)−1 (

β15 + 1
2 β

26
)
,

dβ3 = β12,

dβ4 = 0,

dβ5 = − 1
2

(
1 + 3

2 t
)−1

β56,

dβ6 = 0.

J is given locally by Jβ1 = −β2, Jβ3 = −β4, Jβ5 = β6. The fundamental
form F = −β12 − β34 + β56 verifies that d(JdF ) = 0 and the (3, 0)-form Ψ =
(β1 + i β2) ∧ (β3 + i β4) ∧ (β5 − i β6) is closed. Therefore, (F,Ψ) is a local SKT
SU(3)-structure on N5 × R.

Remark 6.6. A Hermitian structure (J, h) on a 6-dimensional manifold M6 is
called balanced if F ∧ F is closed, F being the associated fundamental 2-form.
In [10] it was introduced the notion of balanced SU(2)-structures on 5-dimensional
manifolds, together with appropriate evolution equations whose solution gives rise
to a balanced SU(3)-structure in six dimensions.

If M6 is compact, then a balanced structure cannot be SKT (see for in-
stance [12]).

The SU(2)-structure (30) on the previous example is also balanced and it gives
rise to a balanced metric on the product of N5 with a open interval (see (11) in [10]).
However one can check directly that this solution is not SKT.

Notice that if G is the nilpotent Lie group underlying N5, the product G×R has
no left-invariant SKT structures and it does not admit any left-invariant complex
structures; however we find a local SKT SU(3)-structure on it.
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7. HKT structures

In this section we will find conditions for which an S1-bundle over a
(4n + 3)-dimensional manifold endowed with three almost contact metric struc-
tures is hyper-Kähler with torsion (HKT for short). We recall that a 4n-
dimensional hyper-Hermitian manifold (M4n, J1, J2, J3, h) is a hypercomplex man-
ifold (M4n, J1, J2, J3) endowed with a Riemannian metric h which is compatible
with the complex structures Jr, r = 1, 2, 3, i.e. such that

h(JrX, JrY ) = h(X,Y ),

for any r = 1, 2, 3 and any vector fields X,Y on M4n.
A hyper-Hermitian manifold (M4n, J1, J2, J3, h) is called HKT if and only if

(37) J1dF1 = J2dF2 = J3dF3,

where Fr denotes the fundamental 2-form associated to the Hermitian structure
(Jr, h) (see [16]).

Let us consider a (4n + 3)-dimensional manifold N4n+3 endowed with three
almost contact metric structures (Ir, ξr, ηr, g), r = 1, 2, 3, such that

(38)
Ik = IiIj − ηj ⊗ ξi = −IjIi + ηi ⊗ ξj ,
ξk = Iiξj = −Ijξi, ηk = ηiIj = −ηjIi.

By applying Theorem 2.3 we can construct hyper-Hermitian structures on S1-
bundles over N4n+3 and study when they are strong HKT.

Theorem 7.1. Let N4n+3 be a (4n + 3)-dimensional manifold with three normal
almost contact metric structures (Ir, ξr, ηr, g), r = 1, 2, 3, satisfying (38), and
let Ω be a closed 2-form on N4n+3 which represents an integral cohomology class
and which is Ir-invariant for every r = 1, 2, 3. Consider the circle bundle S1 ↪→
P → N4n+3 with connection 1-form θ whose curvature form is dθ = π∗(Ω), where
π : P → N is the projection. Then, the hyper-Hermitian structure (J1, J2, J3, h) on
P , defined by (2) and (4), is HKT if and only if

(39)

π∗(I1(dω1))− π∗(dη1) ∧ π∗η1 = π∗(I2(dω2))− π∗(dη2) ∧ π∗η2
= π∗(I3(dω3))− π∗(dη3) ∧ π∗η3,

π∗(I1(iξ1dω1)) = π∗(I2(iξ2dω2)) = π∗(I3(iξ3dω3)),

where ωr denotes the fundamental form of the almost contact structure
(Ir, ξr, ηr, g). Moreover, the HKT structure is strong if and only if

(40)
d(π∗(Ir(iξrdωr))) = 0,
d(π∗(Ir(dωr)− dηr ∧ ηr)) = (π∗(−Ir(iξrdωr)) + π∗Ω) ∧ π∗Ω,

for every r = 1, 2, 3.

Proof. The almost hyper-Hermitian structure (J1, J2, J3, h) on P , defined by (2)
and (4), is hyper-Hermitian if and only (Ir, ξr, ηr, g) is normal and dθ is Jr-invariant
for every r = 1, 2, 3. The HKT condition is equivalent to (37). By (9) we have

JrdFr = π∗(Ir(dωr)) + π∗(Ir(iξrdωr)) ∧ θ − π∗(dηr) ∧ π∗ηr − θ ∧ dθ,
where Fr is the fundamental 2-form of (Jr, h). Therefore, the condition (37) is
satisfied if and only if (39) holds. Finally, JrdFr are closed forms if and only if (40)
holds. �
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Consider on N4n+3 × R the almost Hermitian structures (Jr, Fr, h) defined by

(41) h = g + (dt)2, Fr = ωr + ηr ∧ dt,

and

(42) Jr(ηr) = dt, Jr(X) = Ir(X), X ∈ Ker ηr.

Moreover, by (38) we have:

J1J2 = J3 = −J2J1,
J1η2 = I1η2 = −η3, J2η3 = I2η3 = −η1, J3η1 = I3η1 = −η2.

Therefore (Jr, Fr, h), r = 1, 2, 3, is a hyper-Hermitian structure on N4n+3×R if
and only if the structures (Ir, ξr, ηr) for r = 1, 2, 3 are normal.

Corollary 7.2. Let N4n+3 be a (4n+ 3)-dimensional manifold endowed with three
normal almost contact metric structures (Ir, ξr, ηr, g), r = 1, 2, 3. Consider on
the product N4n+3×R the hyper-Hermitian structure (J1, J2, J3, h) defined by (41)
and (42). Then, (J1, J2, J3, h) is HKT if and only if

I1(dω1)− dη1 ∧ η1 = I2(dω2)− dη2 ∧ η2 = I3(dω3)− dη3 ∧ η3,

I1(iξ1dω1) = I2(iξ2dω2) = I3(iξ3dω3).

The HKT structure is strong if and only if

d(Ir(iξrdωr)) = 0, d(Ir(dωr)− dηr ∧ ηr) = 0

for every r = 1, 2, 3.
Moreover, if (J1, J2, J3, h) is such that

dη1 ∧ η1 = dη2 ∧ η2 = dη3 ∧ η3,

and one of the following conditions:

(a) dωr = 0 for any r = 1, 2, 3, i.e. (Ir, ξr, ηr) is quasi-Sasakian for any
r = 1, 2, 3 or

(b) dωi ∧ ηj ∧ ηk 6= 0, where (i, j, k) is a permutation of (1, 2, 3), and

I1(dω1) = I2(dω2) = I3(dω3), I1(iξ1dω1) = I2(iξ2dω2) = I3(iξ3dω3),

is satisfied, then (J1, J2, J3, h) is HKT. In the case (a) the HKT structure is strong.
In the case (b) the HKT structure is strong if and only if

d (I1(dω1)) = d (I1(iξ1dω1)) = 0.

Proof. By Theorem 7.1 the hyper-Hermitian structure (Jr, Fr, h), r = 1, 2, 3, is
HKT if and only if

(43)
I1(dω1)− dη1 ∧ η1 = I2(dω2)− dη2 ∧ η2 = I3(dω3)− dη3 ∧ η3,

I1(iξ1dω1) = I2(iξ2dω2) = I3(iξ3dω3).

Let us express locally

(44) dωr = αr +

3∑
i=1

βri ∧ ηi +

3∑
i<j=1

γrij ∧ ηi ∧ ηj + ρr η1 ∧ η2 ∧ η3,

where αr, β
r
i and γrij are 3-forms, 2-forms and 1-forms respectively in

⋂3
i=1 Ker ηi

and ρr are smooth functions.
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By using the normality of the three almost contact metric structures, and then
that iξrdηr = 0 and Ir(dηr) = dηr, we can write locally:

(45)

dη1 = A1 +B1 ∧ η2 − I1B1 ∧ η3 + C1 η2 ∧ η3,
dη2 = A2 +B2 ∧ η1 + I2B2 ∧ η3 + C2 η1 ∧ η3,
dη3 = A3 +B3 ∧ η1 − I3B3 ∧ η2 + C3 η1 ∧ η2,

where IrAr = Ar. Ar and Br are 2-forms and 1-forms respectively in
⋂3
i=1 Ker ηi

and Cr are smooth functions.
We have

Jr(dFr) = Jr(dωr) + Jr(dηr ∧ dt) = Jr(dωr)− dηr ∧ ηr.
Therefore, by using (44) and (45), we obtain

J1(dF1) = I1α1 + I1β
1
1 ∧ dt−A1 ∧ η1 − I1β1

3 ∧ η2 − I1β1
2 ∧ η3

−I1γ113 ∧ η2 ∧ dt+ I1γ
1
12 ∧ η3 ∧ dt+B1 ∧ η1 ∧ η2 − I1B1 ∧ η1 ∧ η3

+I1γ
1
23 ∧ η2 ∧ η3 + ρ1 η2 ∧ η3 ∧ dt− C1 η1 ∧ η2 ∧ η3,

J2(dF2) = I2α2 + I2β
2
2 ∧ dt− I2β2

3 ∧ η1 −A2 ∧ η2 + I2β
2
1 ∧ η3

+I2γ
2
23 ∧ η1 ∧ dt+ I2γ

2
12 ∧ η3 ∧ dt−B2 ∧ η1 ∧ η2 + I2γ

2
13 ∧ η1 ∧ η3

+I2B2 ∧ η2 ∧ η3 − ρ2 η1 ∧ η3 ∧ dt+ C2 η1 ∧ η2 ∧ η3,

J3(dF3) = I3α3 + I3β
3
3 ∧ dt+ I3β

3
2 ∧ η1 − I3β3

1 ∧ η2 −A3 ∧ η3

+I3γ
3
23 ∧ η1 ∧ dt− I3γ313 ∧ η2 ∧ dt+ I3γ

3
12 ∧ η1 ∧ η2 −B3 ∧ η1 ∧ η3

+I3B3 ∧ η2 ∧ η3 + ρ3 η1 ∧ η2 ∧ dt− C3 η1 ∧ η2 ∧ η3.
The conditions (43) are satisfied if and only if

(46)

γ112 = γ113 = γ212 = γ223 = γ313 = γ323 = 0, ρr = 0, C1 = −C2 = C3,

I1α1 = I2α2 = I3α3, I1β
1
1 = I2β

2
2 = I3β

3
3 ,

A1 = I2β
2
3 = −I3β3

2 , A2 = −I1β1
3 = I3β

3
1 , A3 = I1β

1
2 = −I2β2

1 ,

B1 = −B2 = I3γ
3
12, −I1B1 = −B3 = I2γ

2
13, I2B2 = I3B3 = I1γ

1
23.

Since IrAr = Ar we obtain that the coefficients βri for r 6= i = 1, 2, 3 must satisfy
the following conditions:

Ii
(
βij − Ikβij

)
= 0, ∀i, j, k = 1, 2, 3, i 6= j, j 6= k, k 6= i.

The last three equations in (46) are satisfied if and only if γ123 = γ213 = γ312 = 0.
Thus, finally, we obtain:

(47)

dωr = αr +
∑3
i=1 β

r
i ∧ ηi, dηi = Ai + λ ηj ∧ ηk,

Ii
(
βij − Ikβij

)
= 0, ∀i, j, k = 1, 2, 3, i 6= j, j 6= k, k 6= i,

I1α1 = I2α2 = I3α3,

A1 = I2β
2
3 = −I3β3

2 , A2 = −I1β1
3 = I3β

3
1 , A3 = I1β

1
2 = −I2β2

1 .

for any even permutation of (1, 2, 3).
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Now, the expression for d(J1dF1) is the following:

d(J1dF1) = d
(
I1(dω1) + I1(iξ1dω1) ∧ dt

)
− d ((dη1) ∧ η1)

= d (I1(dω1)) + d
(
I1(iξ1dω1)

)
∧ dt− dη1 ∧ dη1

= d (I1(dω1)− dη1 ∧ η1) + d
(
I1(iξ1dω1)

)
∧ dt,

and thus the HKT structure is strong if and only if

d(I1(dω1)− dη1 ∧ η1) = 0, and d(I1(iξ1dω1)) = 0.

To prove the last part of the corollary it is sufficient to consider coefficients βir = 0
if r 6= i in expression (44).

�

Example 7.3. Consider the 7-dimensional Lie group G = SU(2) nR4 with struc-
ture equations 

de1 = − 1
2e

25 − 1
2e

36 − 1
2e

47,

de2 = 1
2e

15 + 1
2e

37 − 1
2e

46,

de3 = 1
2e

16 − 1
2e

27 + 1
2e

45,

de4 = 1
2e

17 + 1
2e

26 − 1
2e

35,

de5 = e67,

de6 = −e57,
de7 = e56.

By [13] G admits a compact quotient M7 = Γ\G by a uniform discrete subgroup Γ
and it is endowed with a weakly generalized G2-structure. Moreover, by [3] M7×S1

admits a strong HKT structure. We can show that M7 has three normal almost
contact metric structures (Ir, ξr, ηr, g) for r = 1, 2, 3 given by

I1e
1 = e2, I1e

3 = e4, I1e
5 = e6, η1 = e7,

I2e
1 = e3, I2e

2 = −e4, I2e
5 = −e7, η2 = e6,

I3e
1 = e4, I3e

2 = e3, I3e
6 = e7, η3 = e5,

satisfying the conditions (a) of Corollary 7.2.
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[18] S.J. Gates, C.M. Hull, M. Roček, Twisted multiplets and new supersymmetric non-linear
σ-models, Nuclear Phys. B 248 (1984), 157–186.

[19] P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267
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mento de Matemáticas, Apartado 644, 48080 Bilbao, Spain

E-mail address: marisa.fernandez@ehu.es

(Fino) Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10,
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