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Abstract The number of space debris has increased in the orbital environment and
consequently, the risk of collision between satellites and space debris or space debris
and space debris has become a hot topic in Celestial Mechanics. Unfortunately, just
a small fraction of the biggest and brightest objects are visible by means of radar
and optical telescopes. In the last years, many efforts have been made to simulate the
creation of space debris populations through different models, which use different
sources and diverse orbital propagators, to study how they evolve in the near future.
Modellizing a fragmentation event is rather complex, furthermore large uncertainties
appear in the number of created fragments, the ejection directions and velocities. In this
paper, we propose an innovative way to create a synthetic population of space debris
from simulated data, which are constrained by observational data, plus an Iterative
Proportional Fitting (IPF) method to adjust the simulated population by statistical
means. The final purpose consists in improving a synthetic population of space
debris created with a space debris model helped by an additional data set which
allows to converge towards a new synthetic population whose global statistical
properties are more satisfying.
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1 Introduction

In 1957 with the launch of Sputnik I the space era began. Since that precise moment,
we have been leaving behind all kinds of debris in Space. In particular, the United
Nations COmmittee on the Peaceful Uses of Outer Space (UNCOPUOS) defines
space debris as all man-made objects, including fragments and elements thereof,
in Earth orbit or re-entering the atmosphere, that are non-functional1. Such debris
include nonfunctional spacecraft, abandoned launch vehicle stages, pieces of debris
coming from different missions, explosions (intentional or non-intentional), collisions,
satellite-surface degradation due to solar radiation or small impacts, etc.

In the last decades, several authors have dealt with space debris; from modeling the
short-term evolution of space debris [Wnuk (1997)] to modeling the long-term evolu-
tion of space debris considering the solar radiation pressure [Valk et al. (2009)], the
shadowing effects [Hubaux and Lemaı̂tre (2013)], or short- and long-term evolution of
space debris under different perturbations [Casanova et al. (2015)]. On the other hand,
other authors are focused on the global dynamics of space debris [Celletti et al. (2017)].
Furthermore, not only the orbital evolution is significant, but also the study of col-
lisions between space debris and satellites (for details see [Valsecchi et al. (2002)]
and [Rossi and Valsecchi (2006)]), how to avoid them [Casanova et al. (2014)], or
a tool to quantify the catastrophic collision risk and consequences in the coming
decades [Rossi et al. (2016)].

However, in this work we will focus on how to give an estimation of the un-
known population of space debris. Indeed, the observational means allow us to
detect only the biggest and brightest objects in space and consequently, space de-
bris which are smaller than 10 cm in Low Earth Orbit (LEO), and 1 m in Geosta-
tionary Earth Orbit (GEO), are difficult to track, and even worse to catalog. We
have to remark that, in LEO region, in situ measurements are available for sub-
millimeter size objects and some statistical information is regularly acquired
for objects in the 2-10 cm range (24 h radar staring experiments), and then, it
gives strong constraints for the space debris population models. On the other
hand, in GEO region, no in situ measurements are available and only sparse
data on objects smaller than 1 m are available. Then, using these different sets
of data, several models have been developed to model the space orbital environ-
ment and to give an estimation of the unknown population taking into account
this data. In particular, Meteoroid and Space Debris Terrestrial Environment Ref-
erence (MASTER) [Flegel et al. (2009)] and Orbital Debris Engineering Models (OR-
DEM) are the most popular space debris models. The evolution of the population
generated is then handled by tools like LEO-to-GEO ENvironment Debris model
(LEGEND) [Liou et al. (2004)], Debris Analysis and Monitoring Architecture for the

1 Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space. United
Nations. Vienna. 2010
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Geosynchronous Environment model (DAMAGE) [Lewis et al. (2001)], and Semi-
Deterministic Model (SMD) [Rossi et al. (2009)]. They are semi-deterministic models
whose purpose is to model the different sources of the space debris and to propagate
the orbit of each individual fragment or a group of fragments.

An important issue is the comparison between space debris predictions and optical
or radar ground-station observations, or in-situ measures. In particular, in the GEO
region, several space debris surveys have been performed since the nineties, and they
show the existence of unknown space debris populations [Schildknecht et al. (2004)].
Modifying the parameters of a space debris model, comparing the obtained re-
sults with the existing observations, and iterating this procedure until the simu-
lation and the observable objects fit almost perfectly we can converge toward an
accurate model. Then, as a result we have a synthetic population in agreement
with the observations. Thus, thanks to different simulations, in the GEO region
the clusters of space debris observed could be explained by just eight (unconfirmed)
fragmentations [Jehn et al. (2006)].

The modelling of the orbital environment is a complex task. Even if we know
the sources of space debris, many factors are impossible to model with accuracy.
Nowadays, the NASA2 Breakup Model (NBM) is useful for modeling the debris
clouds generated by on-orbit explosions and collisions in terms of fragment size
and velocity distributions. This model is based on a limited set of controlled ter-
restrial experiments like hypervelocity impacts, and data coming from the obser-
vations of clouds generated by some historical breakups [Johnson et al. (2001)].
The empirical nature of the NBM makes it improvable. A calibration iteration
process can be applied to modify the parameters of the space debris models
and to obtain a better agreement with the different sets of observational data.
However, unknown events, assumptions of the source models, or limited compu-
tational ressources, can produce discrepancies. We are also limited by the com-
putational cost of propagating huge populations of space debris since we count
approximately 20,000 space debris with a size greater than 10 cm, hundreds of
thousands of space debris between 1 cm and 10 cm, and millions of pieces smaller
than 1 mm.

The final goal of this work is the creation of a synthetic population of space
debris whose global statistical characteristics are similar to the assumed as real,
from the synthetic population already created by a space debris model and us-
ing additional constraints coming from different sources (for example, obser-
vations, simulations, ground-based experiments). This innovative way allows to
create new pieces of space debris by using an Iterative Proportional Fitting (IPF)
method, which takes into account the statistical properties of additional data
such as constraints. Then, we create a new synthetic population. However, we
must remark that the IPF technique is independent of the space debris model.
The IPF method just modify the initial population by using simple additional
constrains, without any influence on the used model.

This paper is organized as follows. Section 2 describes the characteristics of the
population in the GEO region according to the Two Line Elements (TLE) catalog

2 National Aeronautics and Space Administration (NASA)
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provided by the United States STRATegic COMmand (USSTRATCOM). In this
section, we are able to reproduce through a simulation in a deterministic way the
same situation as the one obtained with the TLE catalog. Section 3 introduces the
mathematical framework of the IPF method. Then, in Section 4 we apply the IPF
method to our simulated population of space debris in two different ways. The first
application consists in inferring constraints of the simulated population, and using
them to create new pieces of space debris with similar characteristics as the simulated
population but saving computational time. The second application consists in using
additional data which allow to reduce discrepancies between two sets (for example,
simulation and observations). Finally, in Section 5 we conclude this work.

2 Model of the space debris population in the geostationary region

We present a deterministic approach to generate an artificial population of space debris
in the geostationary (GEO) region. Then, we ensure the validity of our method by
verifying that the small amount of observed objects which are known, taken from the
well-known Two Line Elements (TLE) catalog, are close to the generated objects in
the artificial population. After that, we use our simulated population to create a bigger
one by using an Iterative Proportional Fitting (IPF) method, as it will be explained in
Section 3.

2.1 The GEO region

The geostationary orbit is defined as the 1:1 gravitational resonance, where the semi-
major axis is equal to 42,164 km, i.e., where the orbital period of an object corresponds
to one sidereal day (23h 56min 4s). The GEO protected region is defined as the
ring around the Earth, which is delimited by the geostationary altitude (35,786 km)
± 200 km, and the latitude ± 15◦ around the equatorial plane [IADC (2007)]. This
region is very attractive for communication and observation satellites because they
have a fixed position in the sky with respect to a ground observer.

Since the launch of the first GEO satellite in 1964 only five fragmentations are
known to have occurred (at the date of 2017/10/22). The first one took place on
June 25, 1978 caused by a malfunction of the battery of satellite Ekran 2 (mass
1,750 kg) and the second fragmentation was caused by a failure of the upper stage
Titan 3C Transtage (mass 2,500 kg) on February 21, 1992 [Johnson et al. (2008)].
A second explosion of an upper stage Titan 3C Transtage occurred on June 4, 2014,
with the creation of 28 fragments in total [Cowardin et al. (2017)]. On January
16, 2016 an upper-stage Briz-M (mass 1,220 kg) breakup took place in a region
close to the geostationary ring. It happened at an altitude of 34,866 km (at the
subsatellite point 0.17◦ South, 223◦ East). Just 10 fragments were observed but
several hundreds are expected [Orbital Debris Program Office (2016)a]. A second
breakup took place on June 26, 2016 when the satellite BeiDou G2 (mass 1,100
kg) underwent a fragmentation in the GEO region. The resulting orbit presents an
apogee of 36,137 km, a perigee of 35,384 km, and an inclination of 4.7◦. In par-
ticular, at least five fragments were observed but no one was officially cataloged
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Table 1 Confirmed breakup events in the GEO region.

Date 1978/06/25 1992/02/21 2014/06/04 2016/01/16 2016/06/29

Type Spacecraft Rocket-body Rocket-body Rocket-body Spacecraft
Name Ekran 2 Titan Trans. 3C-5 Titan Trans. 3C-17 PROTON-M/BRIZ-M BEIDOU G2
ID SSN 10365 3432 3692 41122 34779
ID COSPAR 1977-092A 1968-081E 1969-013B 2015-075B 2009-018A
a [m] 42,163.500 41,826.000 42,926.390 40,979.800 42,138.874
e 1,779·10−4 8,488·10−3 1.291·10−2 2.868·10−2 8.934·10−3

i [deg] 0.100 11.900 8.706 0.174 4.716
Ω [deg] 78.390 21.802 313.195 135.143 61.365
ω [deg] 325.277 76.279 91.579 5.856 195.139
M [deg] 78.390 284.560 269.90 221.106 164.399
Mass [kg] 1,750 2,500 2,500 1,220 1,100

[Orbital Debris Program Office (2016)b]. All the informations about the five fragmen-
tations are summarized in Table 1. More recently, a second minor breakup oc-
curred for the Titan 3C Transtage (1969-013B) on February 28, 2018 with only
one fragment cataloged [Orbital Debris Program Office (2018)], not considered
in this work.

Currently, if we consider the TLE catalog provided by the USSTRATCOM3,
and we filter the objects with a mean motion between 0.9 and 1.1 revolutions per
day and whose name contain the tag DEB, we obtain 50 space debris in the GEO
region at the date of October 22, 2017. In Figure 1, we plot the repartition of sources.
We can observe that almost a half correspond to the fragmentation of the upper-
stage Titan 3C and a quarter is related to individual objects. No object is related
to BeiDou G2. Unfortunately, many presumed objects are non detectable for
the instruments of the United States Space Surveillance Network (USSSN) and
are not cataloged. The Astronomical Institute of the University of Bern (AIUB)
and the International Scientific Optical Network (ISON) are both maintaining
a catalog of many hundred debris objects in GEO but those catalogs are not
publicly accessible. Nevertheless, in the next subsection, we use the small sample of
space debris cataloged to validate qualitatively our simulation.

2.2 Simulation by a deterministic way

NIMASTEP (Numerical Integration of the Motion of Artificial Satellites orbiting a
TElluric Planet) is an orbit propagator [Delsate and Compère (2012)], it was written
in FORTRAN4, and it was developed to study the dynamic of space debris in the GEO
region taking into account the geopotential, the Moon, the Sun and the solar radiation
pressure with shadowing effects. The orbit of a satellite is computed by the integration
of the equations of motion, expressed with Cartesian coordinates without averaging
process in order to not neglect any resonant effects. An updated version of the orbit
propagator includes the atmospheric drag [Petit and Lemaı̂tre (2016)]. Moreover, to
overcome the computing cost a parallelized hardware architecture was used allowing

3 https://www.space-track.org
4 FORmula TRANslation (FORTRAN) is a widely used programming language.
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Fig. 1 Percentage of space debris in the geostationary region corresponding to different breakups that took
place up to the date 2017/10/22. The objects gathered in the category “Other” are individuals objects not
related to one of the major breakups summarized in Table 1.

to propagate several orbits at the same time, hence reducing the computing time. This
is particularly suited for studying large populations of space debris. In the case of the
GEO region, the atmospheric drag is excluded and we prefer to use a more efficient
orbit propagator named Symplec, previously developed to study the stability of a
geostationary orbit perturbed by the solar radiation pressure [Hubaux et al. (2012)]
[Hubaux and Lemaı̂tre (2013)]. Symplec is a symplectic integrator in its principles;
however the motions of the Moon and of the Sun are introduced as periodic functions of
time, and the energy is then periodically but not linearly, perturbed. This is why we talk
about “control” and not about “conservation” of the energy. To avoid a switch on-off
in the integration, the passage through the umbra has been smoothed, using hyperbolic
functions. Of course, the energy shows small periodic variations, linked to the umbra
seasons, but, again, no systematic increase. Symplec code is available to work on
several Central Processor Units (CPU) and it is more efficient than NIMASTEP.
Thanks to this propagator, just a personal computer is able to propagate several tens of
thousands of space debris fragments during several decades in just a couple of hours.

We performed a FORTRAN implementation of the NASA Breakup Model (NBM)
following the work of Johnson [Johnson et al. (2001)]. Given a log file with the histor-
ical fragmentations the designed implementation is able to generate a cloud of space
debris at a given time and a specific location.5

The following scheme explains how the implemented code works:

5 A version of the code is available on the public repository https://gitlab.obspm.fr/apetit/

nasa-breakup-model.git
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Step 1: Read a file containing the initial conditions of a single object or a set of
objects.

Step 2: Propagate the orbit of each object by using the software Symplec until the
fixed final date or the date of the scheduled fragmentation is reached.

Step 3: Generate the initial conditions of the new fragments by calling the imple-
mented NBM to create a larger population.

Step 4: Continue the propagation of each object until the final date or the date of the
next fragmentation event is reached.

Remark that, in our study, we take into account the geopotential until order and
degree five, the Sun and the Moon as third bodies, and the solar radiation pressure with
shadowing effects. The simulation starts on 1978, and it ends on 2017 and we limit the
minimal size of the objects at 10 cm. All scheduled fragmentations are summarized in
Table 1.

In Figure 2, we plot the distribution of the fragments generated in the plane of the
inclination in function of the right ascension of the ascending node and we also plot
the space debris objects contained in the TLE catalog. We observe that the generated
clouds of fragments of debris are located around the known location of the TLE
objects. This means that our simulation is close enough to the available data. We
provide a qualitative evidence of good accordance between the simulated population
and the TLE objects. However, a quantitative comparison of the generated population
is a difficult task for two main reasons; the small number of objects in the TLE catalog
and the huge number of generated fragments. Nevertheless, for the purpose of this
work, which is the generation of a cloud of fragments of space debris close to the TLE
data, the previous simulation satisfies our expectations.

The simulated population in the GEO region agrees with available data coming
from the TLE catalog, but the rest of the population is missing from the catalog. How-
ever, the parameters of the NBM are empirical and they can not fit properly each
breakup depending on a particular condition. The nominal parameters which
define the distribution laws used by the NBM can not be used for each case.
Even if we fit these parameters on the observations as it is the case for MAS-
TER [Horstmann et al. (2017)], the fundamental assumptions (like normal and
log-normal laws used, or an isotropic distribution of the increments of velocity
of the fragments) can not match the complexity of a real event.

Nevertheless, as isolated surveys give us additional statistical informations,
in the next section we propose a method to reduce the discrepancy between the
simulation and a different set of data which come from another simulation per-
formed with different parameters, but in a future work, it could be replaced by
real observational data. This method is not a calibration process but it allows to
use data of different sources to create a new synthetic population.

3 The Iterative Proportional Fitting process

In this work, we define a synthetic population as the result of a microsimulation tech-
nique, which is the process of integrating multiple data to represent a real-world object
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Fig. 2 Inclination versus Right Ascension of the Ascending Node representation of the simulated artificial
population, and the 32 objects cataloged by USSTRATCOM and related to the major breakups in the GEO
region. We do not consider the space debris not related to the main fragmentations.

into a consistent, accurate, and useful representation. In particular, a complete sample
of data is weighted to satisfy controls using a method based on the Iterative Propor-
tional Fitting (IPF) process, which was demonstrated by Deming and Stephan in 1940.
For more explanation about the technique, we refer to [Lovelace and Dumont (2016)].

A piece of space debris can be located by describing its trajectory through
six classical orbital elements: the semi-major axis a, the eccentricity e, the incli-
nation i, the right ascension of the ascending node Ω , the argument of perigee
ω , and the mean anomaly M, plus the area-to-mass ratio A/m (we neglect other
parameters such as the albedo since it produces a low impact on the global dy-
namics). Thus, in our work, those parameters will represent the individuals of the
population and they will be used to build the synthetic population of space debris.

In particular, the eccentricity, and argument of perigee are not considered to create
the synthetic population since we are in a particular region were the majority of space
debris move on quasi-circular orbits, according to the available data coming from
the TLE catalog. Furthermore, we are not interested in the precise position of the
space debris and consequently, the mean anomaly is neither considered. However,
for future works, these two variables will be included to enrich the creation of the
synthetic population since for objects with large A/m ratio the eccentricity plays an
important role for long time propagations. Thus, in our problem, we deal with four
variables, a, Ω , i and A/m, which are discretized to apply the IPF process. Note that,
when the different variables are independent, IPF is not necessary since each attribute
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of the synthetic population can be generated separately. In our case, to determine the
correlation between the variables, we use the Pearson correlation coefficient, which is a
measure of the linear association, between -1 and +1. If the variables are uncorrelated,
this Pearson correlation approaches 0. In the case of the space debris (coming from
EKRAN), Table 2 indicates that for each possible pair of a, Ω and i, this coefficient is
higher than 0.8, indicating a high correlation (and thus dependence) between these
variables. On the other side, A/m seems linearly uncorrelated with each other variable.
Note that by construction, the evolution of A/m depends on the other considered
attributes, meaning that there is a dependence even if A/m presents no linear
correlation with respect to the three other variables considered one by one.

Pearson correlation a i Ω A/m
a 1.000 0.997 0.831 0.022
i 1.000 0.869 0.013

Ω 1.000 -0.049
A/m 1.000

Table 2 Pearson correlation coefficients for a cloud of space debris coming from the EKRAN breakup
and computed with the NBM.

The way by which the variables are discretized is explained for the semi-major
axis, and the other variables will be discretized in a similar way. The semi-major
axis will take n possible states (a1, ..., an), each one represents a range of values. For
example, and without any loss of generality, we suppose that the semi-major axis
take 4 possible states a ∈ {a1,a2,a3,a4}. This means that a piece of space debris is
allocated to one region if and only if the semi-major axis has a value between the
lower and upper bound (see Table 3) of this region. As an example, if a piece of space
debris has a semi-major axis equal to 42,302 km, this means that the semi-major axis
will be allocated to the state a3.

Possible state (a) Interval (km)
a1 [41,000 , 41,500]
a2 ]41,500 , 42,000]
a3 ]42,000 , 42,500]
a4 ]42,500 , 43,000]

Table 3 Semi-major axis take four possible states given through an upper and lower bound

Consequently, each object of the population of space debris can be allocated to a
state, as in Table 4, depending on the possible states of each variable of the problem.
We limit our analysis to x objects. Each object is defined with its four variables: the
first three, the semi-major axis, the inclination and the right ascension of the ascending
node have for example four possible states, whereas, the fourth, the area-to-mass ratio
has only three possible states.
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Space Debris ID a i Ω
A
m

1 a1 i2 Ω1
A
m 1

2 a4 i1 Ω1
A
m 1

3 a1 i3 Ω3
A
m 2

...
...

...
...

...
x a3 i2 Ω4

A
m 3

Table 4 Allocation of the individuals into different regions. Semi-major axis, inclination and right ascension
of the ascending node are allocated in four different regions, while area-to-mass ratio is classified into three
different regions.

Once we have allocated the population of space debris, to apply the IPF process, we
have to build a contingency table Π , which is a matrix of dimension na×ni×nΩ×nA/m,
where each cell contains the initial frequencies (usually based on a sample of the
population). This table is simply calculated by counting the number of objects in each
possible combination of the four variables. In this work, the contingency table is a
four dimensional matrix, but for clarity, we show in Table 5 the contingency table
Π in a two dimensional case, taking into account only the semi-major axis and the
area-to-mass ratio A

m . To better understand how to read the contingency table we give
two examples; the number of objects whose semi-major axis is equal to a1 and whose
area-to-mass ratio is equal to A

m 2 are 4. The number of objects whose area-to-mass
ratio is equal to A

m 3 is 9.

a1 a2 a3 a4 Total
A
m 1 1 2 1 1 5
A
m 2 4 1 1 0 6
A
m 3 1 3 3 2 9

Total 6 6 5 3 20

Table 5 Expression of the contingency table restricted to two dimensions. The last column and the last row
give the marginal frequencies. The last cell give the total number of objects.

Before applying the IPF method we have to define constraints. In this aim, we
estimate the number of objects to create in each range of values and the total number
of space debris in the synthetic population (from additional data). After that, we will
describe the IPF process restricted to two dimensions to facilitate the understanding.

Let Π be the contingency table and each cell be denoted by Πi, j. The marginal
controls for the i-th row and j-th column are noted mi and m j respectively. The IPF
process is an iterative method, which will weight the frequencies to fit the marginal
controls one after the other. If we write Π t the contingency table at the t-iteration, the
row-fitting is implemented as,

Π
t
i, j = Π

t−1
i, j

mi

∑k Π
t−1
i,k

∀i, j, (1)

and the column-fitting is implemented as,
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Π
t
i, j = Π

t−1
i, j

m j

∑k Π
t−1
k, j

∀i, j. (2)

For example, to give the intuition behind this formula, we illustrate the process
with Tables 6, 7 and 8, already limiting us to a contingency table with two dimensions.
In Table 6, we add the theoretical marginal controls inferred from additional data
coming from other sources, i.e. isolated observations, new simulations, statistical data,
etc. In the last row and last column, we have the total number of space debris in the
new population.

a1 a2 a3 a4 Total Theoretical total
A
m 1 1 2 1 1 5 10
A
m 2 4 1 1 0 6 12
A
m 3 1 3 3 2 9 11

Total 6 6 5 3 20
Theoretical total 12 9 8 4 33

Table 6 Expression of the contingency table restricted to two dimensions. The current and theoretical
(constrained) totals are in the last two rows and columns of the matrix.

Fitting the rows consists in reweighting the cells to perfectly fit to the theoretical
marginals of the area-to-mass ratio. For example, in Table 7, the cell (1,1) is multiplied
by 10 and divided by 5.

a1 a2 a3 a4 Total Theoretical total
A
m 1 1× 10

5 2× 10
5 1× 10

5 1× 10
5 5 10

A
m 2 4× 12

6 1× 12
6 1× 12

6 0× 12
6 6 12

A
m 3 1× 11

9 3× 11
9 3× 11

9 2× 11
9 9 11

Total 6 6 5 3 20
Theoretical total 12 9 8 4 33

Table 7 Expression of the contingency table restricted to two dimensions. First iteration of IPF for the row
fitting.

The first step of the first iteration still needs to update the cells and the current
totals. Table 8 indicates that after the fitting for the area-to-mass ratio, we perfectly
follow the constraint for this variable, but not for the other one. This is the reason why
each iteration performs this process for each constraint.

Since we are dealing with an iterative procedure we need a stopping condition.
Thus, we consider that the convergence of the method is reached when the difference
between two consecutive contingency tables is close to zero (less than the machine
epsilon (10−16). Thus, we compute the distance by using the following equation :

D(Π t
i, j,Π

t−1
i, j ) = ∑

i, j
|Π t

i, j−Π
t−1
i, j |. (3)
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a1 a2 a3 a4 Total Theoretical total
A
m 1 2 4 2 2 10 10
A
m 2 8 2 2 0 12 12
A
m 3 1.22 3.67 3.67 2.44 11 11

Total 11.22 9.67 7.67 4.44 33
Theoretical total 12 9 8 4 33

Table 8 Expression of the contingency table restricted to two dimensions: table after the fit of the first
constraint at the first iteration.

In particular, we fix this stopping condition to 10−13 when the chosen discretization
produces a contingency table of 960 cells.

In Figure 3, we show in a flowchart the followed process to apply the IPF method.
We see that two sets of data are used: the data coming from the simulations (at the
left), and the additional data used as constraints (at the right). The first one gives the
cross-table with the frequencies associated, and the second one gives the constraints
of the new population. Then, we apply the IPF process to create the new cross-table,
which will be converted in a new population of objects. Nevertheless, the created cross-
table by the IPF process contains real values, but integers are required. We apply the
Truncate, Replicate and Sample (TRS) method [Lovelace and Ballas (2013)]. First,
we truncate each cell of the contingency table to keep only the integer part. Then, the
total population is smaller than the target population. We have to add fragments in
the contingency table to complete the population. For this purpose, the decimal part
is kept in a weight table, and normalized to obtain the sum of the weights equal to
one.Then, the probability to add a fragment is given by this weight table. The missing
fragments are chosen by following these probabilities.

The final part consists of a conversion of the new contingency table in the form
of Table 3, i.e in a list of fragments whose variables are defined by a class. To obtain
real values, we compute a random value in the bounds of the class, following the
distribution law used to determine the constraint.

4 Applications

Once we have simulated a population of space debris in the GEO region by a deter-
ministic way considering all the breakup events that took place in the last decades, and
once we have explained how the Iterative Proportional Fitting (IPF) method works, we
can apply both tools together. The first application consists of applying the IPF method
to create a bigger population of space debris by using as constraints the inferred data
from the simulated population in Section 2. Then, the second application consists of
analyzing how constraints will influence in the creation of synthetic populations.

4.1 First application: generation of new space debris

Without loss of generality, we propose to focus the study on the cloud created by the
breakup of Ekran 2. The IPF method will modify the population simulated according
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Fig. 3 Flowchart of the IPF process.

to the inferred constraints of the considered population. The final purpose is to validate
the IPF method, but also to use this methodology to create a reliable population from
a small sample, and save computational time.

In Figure 4, we plot the distribution of each variable obtained by the selection of
the 460 fragments (with a minimum size of 1 cm) of the cloud created by the breakup
of Ekran 2, and propagated until the date of October 16, 2016.

Taking into account the fact that the orbits of the fragments differ from the par-
ent body due to the isotropic velocity increment, we can assume the distributions
of the variables a, i and ω follow Cauchy laws centered around the mean values
(a Kolmogorov-Smirnov confirms this assumption with p-values always greater
than 0.4). We keep in mind that this is not true for all cases and it depends on the
dynamics. Then, a more complex distribution law (or the empirical distribution)
could fit in a better way, however, we consider that the Cauchy law is well suited and
useful for showing the proposed methodology. For the A/m ratio we use a lognormal
law since the NBM uses this kind of distribution. Furthermore, in Fig. 4 we observe
that the selected distributions fit perfectly with the available data. These distributions
are used to compute the new frequencies of the synthetic population by using a Monte-
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Fig. 4 The distribution of the variables a, i, Ω , A
m of the simulation and the fit by a Cauchy law for the first

three ones and by a lognormal law for the last one.

Carlo method and fixing the total number of objects of this bigger population. In this
example, we double the number of fragments of the initial population.

In order to illustrate the convergence of the IPF method, we plot in Figure 5 the
distance computed with equation (3) at each iteration. We observe that the IPF method
converges in less than 100 iterations and it stops when a minimal distance equal to
10−13 is reached. Note that the computation is fast and takes just several seconds.

Finally, in Figure 6, we show a comparison between two families of objects; the
ones corresponding to the simulated population (460 objects), corresponding to the
ones illustrated in Figure 2, and the ones corresponding to the synthetic population,
created thanks to the IPF method (920 objects). Recall that we do not compare the
entire population, we focus on a particular region, i.e. objects whose right ascension
of the ascending node is in a range 300-330◦, and whose inclination is in the range
8-16◦.

Figure 6 indicates that the synthetic population seems to be located in the same
region as the population in terms of inclination and RAAN. The Pearson correlation
coefficient between RAAN and inclination is 0.75, meaning that the IPF has con-
served a high positive correlation between these variables. However, the simulation
showed a slightly higher correlation (0.869 as seen in Table 2). A hypothesis test
of Kolmogorov-Smirnov gives a p-value greater than 0.4 when testing if inclina-
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Fig. 5 Evolution of the distance computed with the equation (3) at each iteration.

Fig. 6 Comparison between the simulation and the synthetic population.
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tion and RAAN follows the same Cauchy distribution as initially. That means,
as Figure 7 shows, the synthetic population follows the assumed distribution.

In conclusion, for this application, the method succeeded in creating a larger
population of space debris by keeping high correlations and following the distributions
used as constraints.

Fig. 7 Distribution of RAAN and inclination for the simulation and the synthetic population.

4.2 Second application: reducing discrepancies between IPF model and the simulated
population

In this second application we consider again the case of Ekran 2 population, but this
time constraints differ from the population simulated in Section 2. Indeed, we alter the
NASA Breakup Model (NBM) and we obtain a different cloud of space debris in the
simulation. The fragments of this cloud have different distributions and consequently,
we infer different constraints, with which the IPF method will produce a different
synthetic populations. Thus, we can observe how different constraints in the initial
simulation can influence the creation of the synthetic population.

The NBM gives an increment of velocity ∆V NBM for each fragment, but in the
reality, the ejection velocity of fragments will depend on the energy of the event and
then, when the cause is unknown, it is impossible to estimate the ejection velocity.
We will consider two different cases; one of them with high ejection velocities of
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Fig. 8 The first simulation of the Ekran 2 cloud is performed with the nominal increments of velocity. The
second simulation is performed dividing by ten the increments of velocity.

the fragments, and a second case with low ejection velocities. For this purpose, we
introduce a factor β to obtain the increment of modified velocity ∆V modi f = β ∆V NBM .

We assume that the ejection velocities of the fragments produced by the explosion
of the satellite Ekran 2 are ten times smaller than the ejection velocities considered
in the simulation presented in Section 2, i.e., we use β = 1

10 . Moreover, we take only
the set of debris with a characteristic size above 1 cm. In Figure 8, we compare the
distribution of the cloud produced with the nominal increments of velocity (simulation
presented in Section 2) and the cloud produced with the modified ones. We observe
that the second cloud (simulation 2) appears less expanded in the considered plane.

We keep the first simulation produced with the nominal values of the NASA
breakup model as our initial population. We apply the IPF method using new con-
straints computed with the second simulation, where the increments of velocity were
divided by ten. Note that this is an extreme test for the method. Indeed, the second
simulation does not follow the same correlation as the first one. The synthetic pop-
ulation created is compared with the population of the first simulation in Figure 9.
We can observe that, as desired, the shape of the scatter plot has been changed by the
procedure. However, even if this change is in the direction suggested, the synthetic
population does not really follow the tendency of simulation 2 used as constraint
(shown in Figure 8). As seen on Figure 8, a high linear correlation is present for both
simulations (0.869 for simulation 1 and 0.910 for simulation 2), but not following
the same relation. This confuses the IPF process and the synthetic population has a
correlation of only 0.529. Thus, the positive correlation is still present but less evident.
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Fig. 9 Comparison between the nominal simulation and the synthetic population created with the modified
simulation.

This is caused by the dense “square” of dots around a RAAN value of 318 degrees
that we can observe on Figure 8.

Figure 10 contains the two simulations, the synthetic population (created from
the constrains of the second simulation) and the linear regressions associated with
each set of space debris. The regression lines of the simulation 2 and the synthetic
population stand close together in comparison to simulation 1, indicating a good (but
not perfect) improvement of the simulation with the IPF.

Try to guess a simulation from another one thanks to microsimulation is a chal-
lenging task. It is possible to summarize the followed procedure:

Step 1: Construct discretized constraints after a continuous fit of the distribution for
simulation 2.

Step 2: Run an IPF initialized to simulation 1 with the constraints defined before.
This step gives the number of object per discretized zone (the square on the
graph).

Step 3: Create a population of space debris by determining for each object a specific
attribute for each variables (thanks to the known cell that gives the range,
and thanks to the continuous distribution of each variable).

This section shows that this method is quite satisfactory and we could improve by
adapting the first and third steps to the application. More precisely, we have several
propositions for a future work.
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Fig. 10 Comparison between the two simulations and the synthetic population created with the modified
simulation.

– Try to use as constraint a density function adapted to the simulation (in
this work we just took a log-normal distribution for A/m and a Cauchy
distribution for all other variables).

– Discretize the environment, i.e. a grid of cells of same dimension is used in
this work, but to use a grid based on the quantiles could give better results.

– Tackle the zero cell problem of the IPF method, i.e. when the target sim-
ulation needs individuals in a cell not present in the simulation, they will
never be in the synthetic population. This zero cell problem can be avoid as
explained in [Suesse et al. (2017)].

Note that step three of the explained procedure is a stochastic process, meaning
that running the code several times could give slightly different results.

5 Conclusion

In this paper we first present a deterministic approach to generate an artificial
population of space debris in the geostationary (GEO) region in agreement with
the population provided by the USSTRATCOM catalog. Then, we use that gen-
erated population to create a new one by using a microsimulation method (IPF
technique). This method is based on a process of integrating multiple data to repre-
sent a real-word object into a consistent, accurate, and useful representation including
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in the model additional constraints. The purpose is to create a population of space de-
bris whose global characteristics are closer to a population assumed as real since it
merges from different sets of observational data used as constraints. Indeed, the
empirical nature of the simulations could give large discrepancies between the
simulated space debris population (with a space debris model) and the observed
space debris population. Furthermore, the limitations of our knowledge about
the events occurred in orbit, the assumptions made in the source models, the
limited computational resources, limit the improvements of the calibration iter-
ative process of the model parameters in order to obtain a space debris model in
accordance with observations.

In this work we show how to create a synthetic population of space debris by
using an IPF technique. We provide two applications. The first one consists of
creating a synthetic population with the same statistical properties than the as-
sumed as real, but it includes more objects; in this application the new pieces are
infered from a similar set of data. The second application provides a synthetic
population different from the initial one. In this case, the final goal is to show
the influence of the statistical properties used as contraints in the creation of a
synthetic population of space debris.

This model is a first idea of producing a synthetic population of space debris,
which explains the main idea of the process and shows the relevance of this method
for the space debris models. In a future work it will be interesting to use real data as
constraints and applied to a population generated by a space debris model. Then, a
work will have to be done to improve the discretization process in order to suit in a
better way the natural distribution of a cloud of space debris. Moreover, we will have
to investigate how the zero cells in the contingency table, a well-known problem in
the microsimulation community, represent a difficulty for the weighting process. We
limited our application on objects with a size greater than 1 cm mainly produced by
breakups to show with the easiest case how the process work but we can generalize it
to other populations generated by Ejecta, NaK droplets or residuals from solid rocket
motor firings.

This research proposes to join two fields: microsimulation and space debris dy-
namics by applying the IPF method in order to create synthetic populations of space
debris. This innovative approach is a first attempt which could be complemented by
testing and comparing other methods of microsimulation based on heuristic methods
(simulated annealing, genetic algorithms).
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