000130972 001__ 130972
000130972 005__ 20240202151703.0
000130972 0247_ $$2doi$$a10.2166/hydro.2020.027
000130972 0248_ $$2sideral$$a120634
000130972 037__ $$aART-2020-120634
000130972 041__ $$aeng
000130972 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000130972 245__ $$aA robust two-dimensional model for highly sediment-laden unsteady flows of variable density over movable beds
000130972 260__ $$c2020
000130972 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130972 5203_ $$aIn this work, a novel 2D depth-integrated numerical model for highly sediment-laden shallow flows over non-uniform erodible beds is presented, including variable density and exchange between the bed layer and the water-sediment mixture flow. The system of equations is formed by the 2D conservation equations for the mass and momentum of the mixture, the mass conservation equation for the different sediment size-classes transported in the flow and the bed evolution equation. The depth-averaged mixture density varies according to the volumetric concentration of the different sediment size-classes that can be incorporated from the bed to the flow and transported as suspended materials. The rheological behaviour of the flow is directly controlled by the properties of the mixture. A new x-split augmented Roe (xA-Roe) scheme is derived to solve the coupled flow and suspended solid-phase equations in both structured and unstructured meshes. The numerical scheme is defined to properly include density variations and momentum source terms, retaining a well-balanced flux formulation in steady states and the correct treatment of the wet-dry fronts. The numerical scheme is assessed with steady and transient cases involving highly sediment-laden flows, demonstrating its accuracy, stability and robustness in the presence of complex bed topography, wetting-drying fronts and rapid morphological changes.
000130972 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000130972 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130972 590__ $$a2.376$$b2020
000130972 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b68 / 111 = 0.613$$c2020$$dQ3$$eT2
000130972 591__ $$aWATER RESOURCES$$b59 / 97 = 0.608$$c2020$$dQ3$$eT2
000130972 591__ $$aENVIRONMENTAL SCIENCES$$b182 / 273 = 0.667$$c2020$$dQ3$$eT3
000130972 591__ $$aENGINEERING, CIVIL$$b72 / 136 = 0.529$$c2020$$dQ3$$eT2
000130972 592__ $$a0.654$$b2020
000130972 593__ $$aAtmospheric Science$$c2020$$dQ2
000130972 593__ $$aWater Science and Technology$$c2020$$dQ2
000130972 593__ $$aGeotechnical Engineering and Engineering Geology$$c2020$$dQ2
000130972 593__ $$aCivil and Structural Engineering$$c2020$$dQ2
000130972 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130972 700__ $$0(orcid)0000-0002-1386-5543$$aMurillo, J.$$uUniversidad de Zaragoza
000130972 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000130972 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000130972 773__ $$g22, 5 (2020), 1138-1160$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000130972 8564_ $$s4332477$$uhttps://zaguan.unizar.es/record/130972/files/texto_completo.pdf$$yPostprint
000130972 8564_ $$s2346811$$uhttps://zaguan.unizar.es/record/130972/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130972 909CO $$ooai:zaguan.unizar.es:130972$$particulos$$pdriver
000130972 951__ $$a2024-02-02-14:50:20
000130972 980__ $$aARTICLE