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Abstract

In this work, a novel 2D depth-integrated numerical model for highly sediment-laden
shallows-flows over non-uniform erodible beds is presented, including variable density
and exchange between the bed layer and the water-sediment mixture flow. The system
of equations is formed by the 2D conservation equations for the mass and momentum
of the mixture, the mass conservation equation for the different sediment size-classes
transported in the flow and the bed evolution equation. The depth-averaged mixture
density varies according to the volumetric concentration of the different sediment size-
classes that can be incorporated from the bed to the flow and transported as suspended
materials. The rheological behaviour of the flow is directly controlled by the properties
of the mixture. A new x-split augmented Roe (xA-Roe) scheme is derived to solve the
coupled flow and suspended solid phase equations in both structured and unstructured
meshes. The numerical scheme is defined to properly include density variations and
momentum source terms, retaining a well-balanced flux formulation in steady states and
the correct treatment of the wet-dry fronts. The numerical scheme is assessed with steady
and transient cases involving highly sediment-laden flows, demonstrating its accuracy,
stability and robustness in presence of complex bed topography, wetting-drying fronts
and rapid morphological changes.

Keywords: Sediment-laden flows, Variable density, Source terms integration,
Augmented Roe solvers, Bed-flow exchange flux, Well-balanced schemes

1. Introduction

Water-sediment mixture flows are widely present in environmental and geophysical
processes such as rivers and estuaries morphodynamics. When water bodies are well-
mixed and the transported suspended sediment is distributed uniformly over the water
column, assuming a single value of the mixture density along the flow depth allows the use5

of depth-integrated models. In natural river modelling, the description usually includes
the transport of different suspended sediment fractions with a total concentration low
enough to assume that the mixture density is equal to the density of the water. This
is no longer valid in flows dealing with highly laden water-sediment mixtures, where the
density of the mixture can be more than twice the density of the water. This kind of flows10

are usually classified as hyperconcentrated flows or mud/debris flows, mainly depending
on the size of the solid particles being transported.

Hyperconcentrated flow lies between clear-water and mud/debris flow. A clear-water
flow transitions into a hyperconcentrated flow when particles on the bed begin to move
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together and coarse sediment becomes suspended in the flow. The water-sediment flow15

begins to be affected by suspended sediment when particle concentration reaches about
4% by volume [1]. For higher concentrations, the mixture starts to show a non-Newtonian
behavior. Furthermore, fine sediment fractions have greater impact on the mixture rhe-
ology than coarse sediments. A hyperconcentrated flow transitions into a mud/debris
flow when rising concentrations of sediment generate a critical yield stress in the fluid20

which allows that coarse particles can be suspended indefinitely in the mixture flow [2].
Mud/debris flows are characterized by high sediment volume concentrations, often greater
than 60%. In debris flows, sand/gravel and coarser sediment fractions predominate in the
solid phase whereas dominant fine fractions (silt and clay) are typical for mud flows. The
sediment size distribution of the solid phase causes changes in the characteristics of the25

flow: mud flows show high Darcy numbers and reduced values of the modified Reynolds
number, while debris flows are characterized by high values of modified Reynolds num-
bers and smaller Darcy numbers [3]. Nevertheless, these transitional processes in the flow
behaviour are extremely complex and continue to be debated up to now. Furthermore,
mathematical modelling of hyperconcentrated, mud and debris flows and their numerical30

resolution is still a challenging topic, especially when dealing with realistic applications.
Generally, natural hyperconcentrated and mud/debris flows consist of highly unsteady

shallow flows running over non-uniform erodible beds, i.e. beds composed by different
sediment size-classes. Most of the 1D and 2D numerical models recently reported for
highly sediment-laden flows are based on quasi-single phase assumption [4–6], solving the35

mass and momentum equations for the mixture flow and the continuity equation for the
suspended solid phase. Also, some two-phase models have been reported in the last years
[7, 8], solving the mass and momentum equations for the liquid and solid phase separately.
Although, theoretically, the two-phase mathematical model describes more properly the
complex interaction between fluid and sediment particles, the high uncertainty involved40

in the equations and the difficulty to implement efficient and robust numerical schemes
have hindered its application to realistic geophysical problems.

Usually, sediment-laden flows involve high levels of energy which are related to strong
flow-bed interaction and important morphological changes at the bed. It has been demon-
strated by large-scale laboratory experiments that mud/debris flows gain much of their45

mass and momentum as they flow over steep slopes as a consequence of the material en-
trainment from the erodible bed, before deposition begins on flatter terrain downstream
[9, 10]. For this kind of highly unsteady flows, the coupling between the flow depth and
the mixture density is one of the challenging key points in realistic environmental pro-
cesses computation. The complexity of the numerical resolution and the computational50

cost of the solvers increase exponentially with the number of equations involved and the
coupling between flow variables adds special features to the mathematical model [5, 11].

A novel 2D numerical model for depth-integrated hyperconcentrated and mud/debris
shallow flows, including variable density and non-uniform solid-phase transport, is pre-
sented in this work. The resulting system of equations is formed by the 2D conservation55

equations for the mass and momentum of the mixture, supplemented by the mass con-
servation equation for the different sediment size-classes suspended in the flow [12] and
the bed variation equation. The depth-averaged mixture density varies according to the
volumetric concentration of the different sediment size-classes that can be incorporated
from the bed to the mixture flow and transported as suspended materials. A pioneering60

first-order x-split Augmented Roe (xA-Roe) scheme is derived to solve the flow and the
suspended solid phase equations in both structured and unstructured two-dimensional
meshes. The numerical scheme is defined to properly include the density variations and
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to ensure a well-balanced flux formulation in steady states. The global time step is dy-
namically controlled by the wave celerities of the coupled system of equations, preserving65

the scheme stability even for high flow-bed interaction and reducing the computational
effort required by the model.

This paper is structured as follows: in Section 2 the two-dimensional quasi-single phase
equations for the water-sediment mixture with different suspended size-classes over non-
uniform erodible bed are presented; Section 3 is devoted to describe the proposed x-split70

Augmented Roe (xA-Roe) scheme for variable-density flows, paying especial attention to
the formulation of the numerical fluxes at the cell edges and the correct integration of the
momentum source terms; in Section 3 the numerical scheme is validated against steady
state cases with exact solution and idealized highly transient sediment-laden tests, demon-
strating its stability and robustness in presence of complex bed topography, wetting-drying75

fronts and rapid morphological changes; finally, the conclusions are drawn in Section 4.

2. 2D sediment-laden flow, suspended solid size-phases and bed evolution
equations

The model presented in this work involves the following assumptions: (i) shallow-
water approach: the flow is confined to a layer which is thin compared to the horizontal80

scales of interest, leading to the hydrostatic pressure assumption; (ii) multicomponent
flow: the mixture of water and suspended sediment particles is described by using the
continuum approach and assuming the same velocity for the liquid and the suspended
solid phase; (iii) the different sediment size-classes presented in the flow are distributed
uniformly in the column. Accordingly, φp represents the scalar depth-averaged volumetric85

concentration of pth sediment size-class, with p = 1, ..., N and N the number of sediment
size-classes transported. The mixture density is given by ρ = ρwr where ρw is the density
of the water and r represents the relative density of the bulk mixture to that of the clean
water:

r =
ρ

ρw
= 1 + φχ with: φχ =

N∑
p=1

χp φp (1)

where φχ is the global modified sediment concentration in the mixture and χp = (ρp −90

ρw)/ρw is the relative buoyant density of the pth solid phase, being ρp the density of the
sediment particles.

Figure 1: One-dimensional sketch of the depth-averaged components involved in sediment-laden flows
over erodible bed.
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The relevant formulation for the two-dimensional sediment-laden flow model (Figure 1)
includes the depth-averaged equations for the mixture mass and momentum conservation,
the mass conservation equation for the suspended solid phase and the mass conservation95

equation for the bed layer. The complete 2D system can be expressed in vector form,
following a global coordinates system (GCS) [13], as:

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= Sb(U) + Sτ (U) + Eb(U) (2)

where U is the vector of conserved variables, F(U) and G(U) are the convective fluxes
along the x and y global coordinates respectively, Sb(U) is the momentum source term
associated to the variation of the pressure force on the bottom, Sτ (U) is the momentum100

dissipation due to the boundary shear stress between the mixture flow and the bed layer
and Eb(U) accounts for the mass net exchange flux between the mixture flow and the
bed layer:

U =
(
rh, rhu, rhv, hφχ, zb

)T
(3)

F(U) =


rhu

rhu2 + 1
2
gψrh

2

rhuv
huφχ

0

 G(U) =


rhv
rhuv

rhv2 + 1
2
gψrh

2

hv φχ

0

 (4)

Sb(U) =


0
Sb,x
Sb,y
0
0

 Sτ (U) =


0
−Sτ,x
−Sτ,x

0
0

 (5)

Eb(U) =


−N r

b

0
0
−Nχ

b

N ξ
b

 (6)

where h represents the mixture flow depth, (u, v) are the components of the depth-
averaged flow velocity vector u along the x and y coordinates respectively, zb is the bed105

elevation and gψ = g cos2 ψ is the bed-normal projection of the gravity in the GCS, being
g the gravitational acceleration and cosψ the direction cosine of the bed normal with
respect to the vertical axis [13].

The components of bed slope source term vector Sb(U) (5) along the x and y coordi-
nates are expressed as:110

Sb,x = − gψrh
∂zb
∂x

Sb,y = − gψrh
∂zb
∂y

(7)

and those of the frictional dissipation at the bottom boundary Sτ (U) can be expressed
as:
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Sτ,x =
τb,x
ρw

Sτ,y =
τb,y
ρw

(8)

being (τb,x, τb,y) the components of the boundary shear stress vector τb between the flow
and the bed. To date, there is not an universal closure relation for representing the shear
stress τb in hyperconcentrated and mud/debris flows. The formulation selected to model115

the tangential forces generated by the boundary stresses incorporates the rheological be-
havior of the water-sediment mixture in motion. Different kinds of shear stresses can
determinate this complex rheology: turbulent stress τt, yield stress τy, viscous stress τµ
or Coulomb frictional stress τf .

• The turbulent effects near the bed can be expressed as a function of the Manning’s
roughness coefficient n:

τt = ρgh
n2|u|2

h4/3
(9)

being n the Manning roughness coefficient.120

• In case of a pure Newtonian fluid, the viscous stress can be estimated as:

τµ = 3µ
|u|
h

(10)

being µ the dynamic viscosity.

• The Coulomb-type laws for granular material estimated the tangential shear stress
as a function of the internal stability angle of the mixture fluid θb:

τf = ρgh cosψ tan θb (11)

• Non-Newtonian Bingham-type fluids do not flow until a threshold value of the tan-
gential stress, the yield stress τy, is reached. During the movement, the boundary
shear stress τb is characterized by means of a cubic equation accounting for the
plastic viscosity of the sediment-water mixture:

2|τb|3 − 3(τy + 2τµ)|τb|2 + τ 3
y = 0 (12)

• If the ratio |τb|/τy is smaller than 0.5, the full Bingham relation (12) can be reduced
to:

|τb| =
3

2
τy + 3τµ (13)

All these different types of tangential stresses act simultaneously along the mixture
column and hence participate in the depth-averaged tangential forces in the mixture
momentum equations, i.e. |τb| = f(τt, τy, τµ, τf ) [14]. The different friction formulations
considered in this work have been summarized in Table 1.125

In the source term Eb(U) (6), the global net exchange fluxes for the mixture, solid
phase and bed layer mass conservation equations (N r

b , Nχ
b and N ξ

b respectively) can be
calculated as:
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Formulation Flow resistance relation
1 Pure turbulent |τb| = τt
2 Turbulent & Coulomb |τb| = τt + τf
3 Turbulent & Yield |τb| = τt + τy
4 Simplified Bingham |τb| = 3

2
τy + 3τµ

5 Full Bingham 2|τb|3 − 3(τy + 2τµ)|τb|2 + τ 3
y = 0

Table 1: Flow resistance formulations.

N r
b =

N∑
p=1

rb,p ξp(Dp − Fb,pEp)

Nχ
b =

N∑
p=1

χp(Dp − Fb,pEp)

N ξ
b =

N∑
p=1

ξp(Dp − Fb,pEp)

(14)

where rb,p = 1 + χp(1 − pp) is the relative density of the bed layer for the pth sediment
size-class and ξp = 1/(1 − pp), being pp the porosity of the pth sediment size-class [15].130

The terms Dp and Ep are the deposition and entrainment vertical fluxes, respectively, for
the pth sediment size-class and Fb,p is the relative fraction of the pth sediment size-class
at the bed layer. The size-specific deposition and entrainment fluxes can be expressed
respectively as a function of the mixture depth-averaged volumetric concentration φp and
the capacity volumetric concentration φ∗p for each sediment size-class:135

Dp = αp ωs,p φp(1− φp)mp(1− φ0)m0

Ep = αp ωs,p φ
∗
p

(15)

being αp an empirical parameter representing the difference between the near-bed sedi-
ment concentration and the depth-averaged sediment concentration for the pth sediment
class, ωs,p the size-specific settling velocity of the sediment particles in clear water and

φ0 =
∑N

p=1 φp the global volumetric concentration in the mixture. Water and suspended
sediment are generally well mixed along the flow column in highly sediment-laden flows,140

hence it is common to adopt αp = 1. The parameters mp and m0 are two empirical expo-
nents accounting for the hindering effect on the settling velocity due to high suspended
concentrations. Different empirical relationships can be found in literature to estimate the
hindering exponents mp and m0, the settling velocity ωs,p, as well as the capacity volumet-
ric concentration φ∗p. For the sake of clarity, only the Zhang and Xie [16] and Richardson145

and Zaki [17] relations have been used for the estimation of the settling velocity and the
empirical hindering exponents, respectively:

ωs,p =

√(
13.95

ν

dp

)2

+ 1.09χp g dp − 13.95
ν

dp

mp = 4.45Re−0.1
p with: Rep = ωs,p dp/ν

m0 = 4.45Re−0.1
0 with: Re0 = ωs,p d0/ν

(16)

being dp and Rep the characteristic sediment diameter and particle Reynolds number

for the pth sediment size-class, d0 =
∑N

p=1(φpdp)/φ0 and Re0 the median diameter of the
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suspended sediment and the corresponding particle Reynolds number, and ν the kinematic150

viscosity of water. The Zhang and Xie [16] formula has been used to calculate the capacity
suspended concentration φ∗p for each sediment size-class:

φ∗p =
1

20ρp

(
|u|3

ghωs,p

)1.5

/

[
1 +

(
1

45

|u|3

ghωs,p

)1.15
]

(17)

This set of equations modeling variable density flows over erodible bed will be referred
to as VD model. It is a generalized formulation which can be simplified to model situation
of reduced complexity.155

3. X-split augmented Roe (xA-Roe) solver for 2D sediment-laden flows

This section is devoted to the derivation of a new numerical scheme for 2D sediment-
laden flows considering net exchange mass flux between the mixture flow and the bed layer.
System (2) is time dependent, non linear and contains source terms. Under the hypothesis
of dominant advection it can be classified and numerically dealt with as belonging to the160

family of hyperbolic systems. In order to obtain a numerical solution for the five equations,
the spatial domain is divided in computational cells using a mesh fixed in time and system
(2) is integrated in each cell Ωi using the Gauss theorem:

d

dt

∫
Ωi

U dΩ +

∮
∂Ωi

En(U) dl =

∫
Ωi

S(U) dΩ +

∫
Ωi

Eb(U) dΩ (18)

being En(U) = F(U)nx+G(U)ny the flux normal to the Ωi cell boundary, n = (nx, ny)
the outward unit normal vector and S(U) = Sb(U) +Sτ (U) the momentum source terms165

vector. Assuming a constant piecewise representation of the conserved variables U at the
cell Ωi for the time t = tn:

Un
i =

1

Ai

∫
Ωi

U(x, y, tn) dΩ (19)

where Ai is the cell area, (18) can be expressed as:

d

dt

∫
Ωi

U dΩ +
NE∑
k=1

(En)k lk =
NE∑
k=1

∫
Ωi,k

S(U) dΩ +

∫
Ωi

Eb(U) dΩ (20)

being NE the number of edges for the i cell, (En)k the value of the normal flux through
each edge, lk the length of the edge and Ωi,k the area of the i cell associated to the kth170

edge.
Assuming a first-order reconstruction approach for the conserved variables in (20), the

theory of Riemann problems (RP) can be used to solve the 2D problem. For each kth
cell edge, it is possible to define a local 1D RP along the direction normal to the edge
including the momentum source terms:175

∂U

∂t
+
∂En(U)

∂x̂
= S

U(x̂, 0) =

{
Ui if x̂ < 0
Uj if x̂ > 0

(21)

being x̂ the coordinate normal to the kth cell edge. The solution of (21) provides the
variation of the conserved variables in time and space, U(x̂, t), in time and space. Note
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that the net exchange term between the mixture flow and the bed, Eb, has been dropped
in the local RP (21) since it implies a mass source rather than a momentum source and
will be incorporated into the solution as a cell-centered contribution.180

The augmented value of the fluxes through the kth cell edge incorporates the non-
conservative contribution of the momentum source terms S into the convective fluxes
(En)k. In order to integrate (21) over a suitable control volume [0,∆t]× [−∆x̂/2,∆x̂/2],
the momentum source terms are involved in the Riemann solver as a singular source at
the discontinuity x̂ = 0 and linearized in time so that:185 ∫ ∆x̂/2

−∆x̂/2

∫ ∆t

0

S dx̂ dt ≈ ∆t

∫ ∆x̂/2

−∆x̂/2

S dx̂ = ∆tS∨n (22)

where ∆t = tn+1 − tn the time step and S∨n is a suitable numerical momentum source
vector along the normal direction to the cell edge, which can be expressed in the 2D
framework (x, y) as:

S∨n = S∨b,n + S∨τ,n

S∨b,n =
(

0, H̃ nx, H̃ ny, 0, 0
)T

S∨τ,n =
(

0, −T̃ nx, −T̃ ny, 0, 0
)T (23)

being H̃ and T̃ the bed slope and friction momentum contributions, respectively, spatially
integrated in the control volume corresponding to each cell edge.190

Furthermore, (21) satisfies the rotation invariance property [18, 19] and hence can be
expressed as a plane Riemann problem in the local framework (x̂, ŷ), corresponding to
normal and tangential directions to each cell edge respectively. Defining a rotation matrix
T, with an inverse matrix T−1, as:

T =


1 0 0 0 0
0 nx ny 0 0
0 −ny nx 0 0
0 0 0 1 0
0 0 0 0 1

 T−1 =


1 0 0 0 0
0 nx −ny 0 0
0 ny nx 0 0
0 0 0 1 0
0 0 0 0 1

 (24)

which satisfy the condition:195

En(U) = F(U)nx + G(U)ny = T−1 F(TU) (25)

the local RP (21) at each cell edge can be projected in the local framework (x̂, ŷ) as
[20, 21]:

∂Û

∂t
+
∂F(Û)

∂x̂
= Ŝ

Û(x̂, 0) =

{
Ûi if x̂ < 0

Ûj if x̂ > 0

(26)

The new set of projected conserved variables Û is defined as:

Û = TU =
(
rh, rh û, rh v̂, hφχ, zb

)T
(27)

where û = unx + vny and v̂ = −uny + vnx are the flow velocities along the x̂ and ŷ

coordinates, respectively. The projected convective fluxes F(Û) can be expressed as:200
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F(Û) =


rhû

rhû2 + 1
2
gψrh

2

rhûv̂
hû φχ

0

 (28)

Following [20, 21], the projected source vector Ŝ including both the bed slope and
friction terms, can be expressed in the local framework (x̂, ŷ) as:

Ŝ = T S (29)

and, applying the procedure used in (22), it is integrated in the control volume [0,∆t]×
[−∆x̂/2,∆x̂/2] corresponding to each cell edge as:∫ ∆x̂/2

−∆x̂/2

∫ ∆t

0

Ŝ dx̂ dt ≈ ∆tTS∨n = ∆t (TS∨b,n + TS∨τ,n) (30)

leading to express the integrated momentum source vectors on the local framework (x̂, ŷ)205

as:

Ŝ∨n = Ŝ∨b,n + Ŝ∨τ,n

Ŝ∨b,n = TS∨b,n =
(

0, H̃, 0, 0, 0
)T

Ŝ∨τ,n = TS∨τ,n =
(

0, −T̃ , 0, 0, 0
)T (31)

For the left hand side of system (26) it is possible to define a singular Jacobian matrix

M(Û) =
∂F(Û)

∂Û
as follows:

M(Û) =


0 1 0 0 0

1
2
gψh(1 + r)− û2 2û 0 −1

2
gψrh 0

−ûv̂ v̂ û 0 0
−û φχ/ r φχ/ r 0 û 0

0 0 0 0 0

 (32)

Note that the solid lines in M(Û) (32) separate the terms associated to bed evolution
equation from the terms linked to the mixture flow equations. Furthermore, M(Û) has210

five real eigenvalues:

λ1 = û−
√

1

2
gψh(1 + r − φχ) = û−

√
gψh

λ2 = û

λ3 = û+

√
1

2
gψh(1 + r − φχ) = û+

√
gψh

λ4 = û

λ5 = 0

(33)

where λ1,...,4 corresponds to the mixture flow wave structure and λ5 relates to the contact
wave associated to the bed evolution equation.

Using the rotation invariance property and the solution of the projected plane RP
(26), it is possible to rewrite (20) as:215
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d

dt

∫
Ωi

U dΩ = −
NE∑
k=1

T−1k

(
F(Û)− Ŝ∨n

)
k
lk +

∫
Ωi

Eb(U) dΩ (34)

where F(Û)k and (Ŝ∨n)k are the numerical flux and the integrated momentum source
contribution, respectively, resulting from solving the projected plane RP (26) for the kth
edge in the local framework (x̂, ŷ).

Furthermore, the temporal and spatial integration of the net exchange flux term are
approximated by:220 ∫ tn+1

tn

∫
Ωi

Eb(U) dΩ dt ≈ ∆t

∫
Ωi

Eb(Un
i ) dΩ ≈ ∆tE�

b (35)

being E�
b = Ai Eb(Un

i ). Using (19) and (35) it is possible to express (34) as:

Un+1
i = Un

i −
∆t

Ai

NE∑
k=1

T−1k F(Û)
↓
k lk +

∆t

Ai
E�

b (36)

defining an augmented numerical flux F(Û)
↓
k for the kth cell edge which incorporates the

integrated momentum source term into the convective numerical fluxes at each cell edge,
ensuring the well-balance property for steady states [22]:

F(Û)
↓
k =

(
F(Û)− Ŝ∨n

)
k

(37)

The resolution procedure is divided into two steps: first, the augmented fluxes F(Û)
↓
k225

at the intercell edges are determined using a new upwind augmented Roe scheme based
on the x-split transformation (xA-Roe); second, the bed mass exchange source terms E�

b

are later incorporated into the updated solution as a cell-centered contribution to the
conserved variables.

3.1. xA-Roe solver for the mixture flow equations230

The numerical fluxes at the cell edges for the mixture mass and momentum conser-
vation, F

{1,...,4}↓
k , are computed by means of an augmented Roe (A-Roe) Riemann solver.

The numerical flux for the bed evolution equation F
{5}↓
k is null and hence the bed evolu-

tion equation can be discarded for the determination of the mass and momentum fluxes of
the mixture at the intercell edges. Therefore, the plane Riemann problem (26) projected235

in the local framework (x̂, ŷ) of the kth edge, separating the left i cell and the right j
cell, is reduced to the conservation laws for the mixture flow and can be approximated by
using the following constant coefficient linear RP [23]:

∂Û{1...4}

∂t
+ J̃k

∂Û{1...4}

∂x̂
= (Ŝ∨n)

{1...4}
k

Û{1...4}(x̂, 0) =

{
Û
{1...4}
i if x̂ < 0

Û
{1...4}
j if x̂ > 0

(38)

where J̃k = J̃k(Û
{1...4}
i , Û

{1...4}
j ) is a constant coefficient matrix yet to be defined. For

the sake of clarity, the superscript {1 . . . 4} will be removed from now on. Integrating240

(38) over a suitable control volume between x̂i and x̂j leads to the following constraint
involving conservation across discontinuities:
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δF(Û)k = J̃k δÛk (39)

where δÛk = Ûj − Ûi is the conserved variables jump and J̃k is defined as:

J̃k =


0 1 0 0

1
2
gψh̃(1 + r̃)− ũ2 2ũ 0 −1

2
gψh̃r̃

−ũ ṽ ṽ ũ 0

−ũ φ̃χ
/
r̃ φ̃χ

/
r̃ 0 ũ

 (40)

The Roe averages in the approximate Jacobian matrix J̃k are given by:

r̃ =
rihi + rjhj
hi + hj

h̃ =
hi + hj

2

ũ =
ûi
√
rihi + ûj

√
rjhj√

rihi +
√
rjhj

ũ =
v̂i
√
rihi + v̂j

√
rjhj√

rihi +
√
rjhj

φ̃χ = r̃
φχi hi

√
rjhj + φχj hj

√
rihi

rihi
√
rjhj + rjhj

√
rihi

(41)

The approximate Jacobian matrix for the mixture flow J̃k is diagonalizable with four245

approximate real eigenvalues:

λ̃1,k = (ũ− c̃)k λ̃2,k = ũk λ̃3,k = (ũ+ c̃)k λ̃4,k = ũk (42)

where the averaged celerity c̃k is defined as:

c̃k =

(√
1

2
gψh̃ ∆̃

)
k

(43)

being ∆̃k =
(

1 + r̃ − φ̃χ
)
k
.

Therefore, using the associated orthogonal basis of eigenvectors ẽm,k, a matrix P̃k =
(ẽ1, ẽ2, ẽ3, ẽ4)k can be built as:250

P̃k =


1 0 1 r̃

λ̃1 0 λ̃3 r̃ ũ
ṽ c̃ ṽ r̃ ṽ

φ̃χ
/
r̃ 0 φ̃χ

/
r̃ 1 + r̃


k

(44)

with the following property :

J̃k = (P̃Λ̃P̃−1)k Λ̃k =

 λ̃1 0
. . .

0 λ̃4


k

(45)

being P̃−1
k the inverse matrix of P̃k and Λ̃k a diagonal matrix with approximate eigenvalues

in the main diagonal.
One result of Roe’s linearization is that the approximate Riemann solution consists of

only discontinuities and Û(x, t) is constructed as a sum of jumps or shocks. The solution255
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for Û(x, t) is governed by the celerities in Λ̃k and consists of four regions connected by 5
waves, one of them a contact wave with null celerity accounting for the integrated source
term.

According to the Godunov-type method, it is sufficient to provide the solution for
Û(x̂, t) at the intercell position x̂ = 0 in order to obtain the updating numerical fluxes F↓k260

(37). The numerical flux at the left and right side of the kth cell edge can be estimated
using an approximate flux function F(x̂, t):

F↓−k ≡ F↓−i = F(Û−i ) F↓+k ≡ F↓+j = F(Û+
j ) (46)

being Û−i and Û+
j the value of the approximate intermediate states of the solution at the

corresponding side of the kth edge:

Û−i = lim
x̂→0−

Ûi(x̂, t) Û+
j = lim

x̂→0+
Ûj(x̂, t) (47)

Following [24], the conserved variable differences δÛk and source term spatial integral265

(Ŝ∨n)k at the intercell edge are projected on the eigenvector basis in order to obtain the

wave and source strength vectors, Ãk and B̃k respectively.

Ãk = (α̃1, . . . , α̃4)Tk = P̃−1k δÛk −→ δÛk =
4∑

m=1

(α̃mẽm)k

B̃k = (β̃1, . . . , β̃4)Tk = P̃−1k (Ŝ∨n)k −→ (Ŝ∨n)k =
4∑

m=1

(β̃mẽm)k

(48)

The reconstruction of the approximated solution at the left and right sides of the
intercell edge, Û−i and Û+

j respectively, can be expressed as:

Û−i = Ûi +
∑
m−

(γ̃mẽm)k

Û+
j = Ûj −

∑
m+

(γ̃mẽm)k
(49)

where γ̃m = α̃m − β̃m/λ̃m and the subscript m− and m+ under the sums indicate waves270

travelling inward and outward the i cell.
Being the solution defined as a sum of jumps or shocks between the different inter-

mediate states, the solution for the approximate flux function F(x̂, t) involves the initial
unaltered fluxes at the left and right cells, Fn

i and Fn
j , and three intermediate states. Each

inner constant state involves an intermediate constant flux function. The approximate275

flux function F(x̂, t) provides the intercell fluxes at the left and right side of the initial
discontinuity at x̂ = 0, labelled as F↓−i and F↓+j (46), with:

F↓−i = lim
x̂→0−

F(x̂, t) F↓+j = lim
x̂→0+

F(x̂, t) (50)

The relation between the intercell approximate fluxes F↓−i and F↓+j can be analyzed
using the Rankine-Hugoniot (RH) relation at x̂ = 0, that includes a steady contact wave
[25, 26] between approximate solutions Û−i and Û+

j . Following the linear case, the approx-280

imate solution for the fluxes can be constructed defining appropriate RH condition across
each moving wave. The telescopic property of the linear solutions for the approximate
flux function provides the definition of the fluxes at the left and right side of the kth cell
edge:
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F↓−i = Fn
i +

∑
m−

(λ̃mγ̃mẽm)k

F↓+j = Fn
j −

∑
m+

(λ̃mγ̃mẽm)k
(51)

where the subscript m− and m+ under the sums indicate waves travelling inward and285

outward the i cell. It is worth mentioning that, due to the presence of the momentum
source terms, it is no longer possible to define a general intercell flux function contrary
to the homogeneous case. The corresponding intercell flux jump for the approximate
solution is given by:

F↓+j − F↓−i =
4∑

m=1

(β̃mẽm)k = (Ŝ∨n)k (52)

The correct integration of the momentum source term (Ŝ∨n)k for the equivalent 1D290

Riemann problem associated to the kth intercell edge ensures the well-balanced prop-
erty of the xA-Roe scheme and avoids numerical oscillations in the solution when large
momentum sources appear, especially associated to the friction term.

Although the computation of the approximate numerical fluxes F↓k at each k intercell
edge is the key-point of the Godunov-type methods, the whole approximated solution295

participates in the updating of the values at the cells. In order to ensure the stability
of the explicitly computed numerical solution, the time step should be small enough to
avoid the interaction of waves from neighbouring Riemann problems. The dynamical
limitation of the time step at each k edge is addressed here using the Courant-Friedrichs-
Lewy (CFL) condition and assuming that the fastest wave celerity corresponds to the300

absolute maximum of the eigenvalues of the mixture flux Jacobian matrix J̃k (40). The
limiting time steps at kth edge are computed using:

∆t{k} =
min(Ai, Aj)

lk max(|λ̃1,k|, |̃λ4,k|)
(53)

and the global time step ∆t is limited using the CFL condition as:

∆t = CFL min
k

(∆t{k}) (54)

with CFL< 1.

3.2. Momentum source terms integration and friction fix305

A correct integration of both the bed slope and the bed shear stress momentum source
terms is a key point in augmented upwind schemes [22] for shallow-flows and ensures
the proper balance between convective fluxes and source terms in steady state cases.
Furthermore, friction terms can generate numerical instabilities if they are not carefully
integrated [27] and have been reported to require additional time step restrictions over the310

classical CFL condition [28]. These additional time step restrictions can lead to a marked
increase of the computational time required by the model. The consequence is a reduction
of the efficiency, regardless of how the scheme is implemented (programming language,
parallel computing, available hardware, etc). This drawback has been correctly addressed
for constant density shallow flows [14], but is still unresolved for flows including temporal315

and spatial density variations. This section is devoted to the integration procedure for
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the momentum source terms, paying especial attention to the friction term in order to
avoid additional time step restrictions.

The integrated momentum source term (Ŝ∨n)k (31) is projected onto the eigenvectors
basis, separating the contribution associated to the bed slope and the corresponding to the320

friction loss. Therefore, the total source strengths can be expressed as B̃k = B̃b,k + B̃τ,k,
where:

B̃b,k = (β̃b1, 0, β̃b3, 0)Tk = P̃−1k (Ŝ∨b,n)k

B̃τ,k = (β̃τ1, 0, β̃τ3, 0)Tk = P̃−1k (Ŝ∨τ,n)k
(55)

being (Ŝ∨b,n)k and (Ŝ∨τ,n)k the integrated bed slope and friction terms, respectively, at the
kth cell edge:

(Ŝ∨b,n)k =


0

H̃
0
0
0


k

(Ŝ∨τ,n)k =


0

−T̃
0
0
0


k

(56)

where H̃k = (−gψr̃h̃ δzb)k is the integrated bed slope contribution and T̃k is the integrated325

shear force. Considering (52), the source strengths should agree β̃b1,k = −β̃b3,k and β̃τ1,k =

−β̃τ3,k, and hence the first component of the numerical flux vector, i.e. the mixture mass
flux, including the homogeneous flux augmented with the source terms remains equal at
both sides of the kth edge:

F 1↓−
i = F 1↓+

j = F 1↓
k (57)

Considering positive velocity (ũk > 0) and subcritical flow, λ̃1,k < 0 and the rest of330

the waves are positive (Figure 2). The homogeneous mixture mass flux augmented with
the bed slope term F 1↓

b,k can be computed as:

Figure 2: Approximate mass flux function for subcritical regime. The blue region indicates the interme-
diate value of the mass flux considered for the proposed friction fix.

F 1↓
b,k = F 1

k − β̃b1,k with: F 1
k = (rhu)i + (λ̃1α̃1)k (58)

being F 1
k the homogeneous numerical flux for the mixture mass conservation equation.

Then, the integrated shear force T̃k is defined considering the sign of the augmented mass
flux F 1↓

b,k:335
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T̃k = sgn(F 1↓
b,k)

τ̃b,x̂
ρw

dn,k (59)

where τ̃b,x̂ is the averaged normal shear stress at the cell edge, estimated using any re-
sistance formulation (see Table 1), and dn,k is the distance between the center of the
neighboring cells associated to the kth cell edge along the normal direction.

Therefore, the numerical flux for the mixture mass augmented with both the bed slope
and the friction source terms F 1↓

k allows to define a numerical fix to correct overestimated340

friction terms. The numerical flux is computed as:

F 1↓
k = F 1↓

b,k − β̃τ1,k (60)

and the friction fix can be expressed as:

β̃τ1,k =

{
F 1↓
b,k if F 1↓

b,k F
1↓
k < 0

β̃τ1,k otherwise

β̃τ3,k = −β̃τ1,k

(61)

In case of supercritical regime, all the waves are positive and the augmented numerical
mass flux at the cell edge does not depend on the value of the momentum source terms
(Figure 3). However, in order to avoid overestimated source terms, it is possible to define345

an averaged intermediate state of the flux function F 1+̃
b,k at the right side of the edge

including the bed slope term as:

Figure 3: Approximate mass flux function for supercritical regime. The blue region indicates the inter-
mediate value of the mass flux considered for the proposed friction fix.

F 1+̃
b,k = F 1

+k + β̃b3,k with: F 1
+k = (rhu)j − (λ̃3α̃3)k −

(
λ̃4

λ̃3

λ̃4α̃4r̃

)
k

(62)

being F 1
+k the averaged value of the homogeneous numerical mass flux at the right side

of the cell edge. In this case, the integrated shear force T̃k is defined considering the
augmented mass flux F 1+̃

b,k :350

T̃k = sgn(F 1+̃
b,k )

τ̃b,x̂
ρw

dn,k (63)
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Therefore, the averaged intermediate numerical mass flux augmented with both the
bed slope and the friction source terms F 1+̃

k at the right side allows to define a numerical
fix to correct overestimated friction terms. The numerical flux is computed as:

F 1+̃
k = F 1+̃

b,k + β̃τ3,k (64)

and the friction fix can be expressed as:

β̃τ3,k =

{
−F 1+̃

b,k if F 1+̃
b,k F

1+̃
k < 0

β̃τ3,k otherwise

β̃τ1,k = −β̃τ3,k

(65)

The friction fix proposed can be straightforward extended to the case with negative355

velocity (ũk < 0) at the kth cell edge.

4. Numerical results

4.1. Well-balanced equilibrium states

The idealized case with exact solution was initially proposed by [29] for ensuring
the well-balanced character of variable-density shallow-flow in the presence of bed level360

variations. For a pure one-dimensional flow, under quiescent equilibrium (null velocity),
frictionless conditions and null net exchange between the bed and the flow, the mixture
mass and the solid phase mass temporal variations reduce to zero, i.e. the equilibrium
state must be maintained along time, and the 1D momentum equation becomes:

1

2

d(rh2)

dx
= −rhdzb

dx
(66)

At steady state, (66) is an ordinary differential equation which can be reordered as:365

h

r

dr

dx
+ 2

dh

dx
= −2

dzb
dx

(67)

In the generic solution of (67), density and flow depth are both variable. Nonetheless,
the particular variable-depth solution with fixed density and free-surface level, and the
particular variable-density solution with fixed depth, are interesting for numerical model
validation and easy to compute exactly. Following [29], the bed level profile is defined as:

zb(x) = A

[
1− cos

2πx

L

]
(68)

being A the amplitude and L the length of the 1D channel. The depth-variable equilibrium370

equation leads to following conditions for the suspended volumetric concentration and the
flow depth:

φ(x) =
r0 − 1

χ
h(x) = h0 − A

[
1− cos

2πx

L

]
(69)

whereas the density-variable solution can be expressed as:

φ(x) =
1

χ

(
r0 exp

[
2A

h0

cos
2πx

L

]
− 1

)
h(x) = h0 (70)

being r0 and h0 the reference values for the mixture relative density and the flow depth,
respectively.375
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A channel of L = 100m is discretized using a 1D mesh of square cells with ∆x = 0.1m.
Values A = 0.1m, h0 = 1m, r0 = 1.8 and χ = 1.65 are set. The CFL is 0.5 and the
final simulation time is 100 s. The exact depth-variable and density-variable solutions are
imposed as initial conditions for the flow depth and the suspended concentrations.

Figures 4 and 5 show the comparison of the exact depth-variable and density-variable380

solutions with the corresponding numerical results at t = 100 s, respectively. The exact
quiescent equilibrium is maintained along the time for both cases, demonstrating the well-
balance property of the proposed xA-Roe scheme for the simulation of density shallow-
flows involving topography variations.

Figure 4: Exact variable-depth quiescent equilibrium and simulation results at t = 100 s: (left) flow
surface level FSL and (right) suspended volumetric concentration.

Figure 5: Exact variable-density quiescent equilibrium and simulation results at t = 100 s: (left) flow
surface level FSL and (right) suspended volumetric concentration.

4.2. Large-scale and long-term dambreak385

This idealized test was firstly proposed by [30] and consists of a large-scale and log-
term one-dimensional dambreak. Initially the fluid is clear water. The channel length
is set to 50 km, the dam is initially located at the middle of the channel, x = 25 km,
and the initial water surface elevation is hL = 40m and hR = 2m at the left and right
sides, respectively. The movable flat bed is made of an uniform non-cohesive sediment390

of diameter 4mm. The friction term is modelled using the turbulent Manning’s relation
and assuming a constant value of the roughness coefficient n = 0.03 sm−1/3. The aim of
this test is to study the influence of the suspended solid phase incorporated into the flow
from the erodible bed in the dynamics of the dambreak wave in a relatively long channel
and over a comparatively long period rather than under the typical laboratory scales. A395

1D mesh of squared cells is used for the simulation with ∆x = 10m and a CFL=0.5 is
set.
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Figure 6 (left column) shows the flow free surface evolution and bed evolution at
t = 5min, t = 10min and t = 30min after the dambreak starting. For comparison
with the proposed variable-density model (VD model), results obtained with a fixed-400

bed model (FB model) and with a passive-transport model (PT model) have also been
plotted. The passive-transport model is a particular case of the proposed sediment-laden
model but setting the density of the mixture equal to the water density regardless of the
sediment concentration in the flow column. Sediments can be exchanged with the bed and
transported as passive solutes, i.e. without influencing the hydrodynamics of the flow.405

This correspond to (2) with r = 1. The fixed-bed model is an even simpler particular
case where the net exchange bed/flow and suspended sediment transport do not exist. In
order to allow suitable comparisons, the three models are solved with the same numerical
scheme but incorporating the required restrictions to each model. This correspond to (2)
with r = 1, φχ = 0 and Eb = 0.410

Figure 6: Dambreak long-term hydraulics over mobile flat bed: (left column) flow free surface and bed
surface and (right column) depth-averaged solid phase concentration in the flow. Front top to
bottom, t = 5min, t = 10min and t = 30min.

The bed mobility considerably affects the free surface evolution compared to the fixed
bed case. This can be significant for flooding prediction as the dambreak wavefront
progresses faster when bed mobility is considered. Figure 6 (right column) shows the
volumetric concentration profiles of solid phase in the flow at t = 5min, t = 10min and
t = 30min after the dambreak starting. As the dam-break wave progresses downstream,415

the mass exchange term with the bed incorporates into the flow a high quantity of sedi-
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ment, leading to important depth-averaged sediment concentrations in the flow column.
The solid phase volumetric concentration shows a sharp increment at the dambreak wave-
front, with values higher than 40% compared with volumetric concentrations lower than
0.05% at the central reach of the dambreak.420

This suspended concentration change, hence a mixture density change, between the
central reach and the wavefront leads to the appearance of an intermediate shock wave
in the flow surface upstream the dambreak wavefront due to the incorporation of the
mixture density into the mathematical model. However, mathematical models which
incorporate the suspended sediment conservation and bed evolution equations but do not425

take into account density changes are not able to predict this intermediate shock wave.
Incorporating the bed mobility but ignoring the influence of flow properties change due
to sediment entrainment (passive transport approach) leads to an overestimation of the
wavefront velocity propagation (Figure 7-left). Moreover, the flow level increment caused
by the intermediate density shock wave is also unpredicted by this passive transport model,430

with an important drawback for the hazards determination against severe flooding (see
Figure 7-right).

Figure 7: Temporal evolution of the (left) wavefront position and (right) flow free surface elevation at
x = 35 km.

Finally, Figure 8 depicts the dynamic computational time step evolution along the
simulation for the fixed-bed model, the passive-transport model and the proposed variable-
density model. The time step is closely related to the computational time required by435

the model to perform simulations and hence to its efficiency. For the first stages after the
dambreak starting, the fixed-bed model shows higher wavefront propagation velocities,
leading to smaller time steps, than the models considering bed mobility. However, for the
long-term stages the models incorporating the bed evolution into the equations requires
smaller time steps to ensure the computational stability due to the higher wavefront440

velocity. Furthermore, as the passive-transport model overestimates the progression of
the wavefront, also shows much smaller dynamical time steps than the complete model
proposed and probably leads to a loss of computational efficiency for real-scale and long-
term morphodynamical computations.

4.3. Dambreak flow over non-uniform erodible beds445

The aim of this idealized test is to assess the capability of the proposed model to
deal with non-uniform beds and to study the influence of the mixture composition on the
hydrodynamic behavior. The same large-scale and long-term dambreak test described
in the above section is again used here but setting two different non-uniform sediment-
size distributions in the bed layer. Both non-uniform beds consist of a mix of gravel450

(dp > 2mm), medium sand (dp = 1mm) and fine material (dp = 100µm) weighted to
maintain a constant medium diameter dm =

∑
p Fb,pdp = 4mm, allowing to compare
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Figure 8: Time step evolution.

the results with those obtained in the above section for uniform bed. Table 2 shows the
sediment-size distribution for both non-uniform beds considered. Non-uniform bed A is
composed mainly of medium gravel with small fractions of coarse sand and fines. In the455

non-uniform bed B, fine material and medium sand prevails over a small fraction of coarse
gravel.

Bed A Bed B
Fines (Fraction 1) dp = 100µm - Fb,p = 0.10 dp = 100µm - Fb,p = 0.50
Sand (Fraction 2) dp = 1mm - Fb,p = 0.10 dp = 1mm - Fb,p = 0.25

Gravel (Fraction 3) dp = 4.8625mm - Fb,p = 0.80 dp = 14.8mm - Fb,p = 0.25
Medium diameter dm = 4mm dm = 4mm

Table 2: Sediment-size distribution for non-uniform beds.

All the other parameters in simulations are set with the same values as in the above
section.

Figure 9 (left column) shows the flow free surface evolution and bed evolution at460

t = 5min, t = 10min and t = 30min after the dambreak starting, with the non-uniform
beds A and B. The results obtained in the above section with uniform bed configuration
are also depicted as reference. The non-uniform composition of the bed slightly affects
the free surface evolution compared with the uniform bed. The more marked differences
are detected in the density-wave region at long-term stages for the non-uniform bed B.465

The entrainment of fine materials from the bed to the flow makes smoother the jump in
density accompanying the wavefront, which finally causes the appearance of the density-
wave. Figure 9 (right column) shows the total volumetric concentration of solid phase in
the flow. The fine material is incorporated into the mixture in the upstream region of the
dambreak wave, where the erosive flow energy is lower, and hence it reduces the density470

difference between the wavefront and the upstream region. Furthermore, the density peak
associated to the dambreak wavefront is reduced as the presence of fine materials in the
bed increases. The main consequence is that the density-wave becomes smeared.

Nevertheless, the bed level evolution shows more marked differences than the free
surface evolution, especially as the dambreak wave progresses downstream (see Figure475

9). For the coarser non-uniform bed A, the bed level shows significant deviations with
respect to the uniform bed case in the wavefront, even an important deposition appears
in the density-wave region at long-term stages. The finer non-uniform bed B presents a
more marked erosion than the uniform bed configuration, specially at long-term stages as
a consequence of the higher entrainment of fine material from the bed.480
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Figure 9: Dambreak hydraulics over non-uniform bed: (left column) flow free surface and bed surface
and (right column) total solid concentration. Front top to bottom, t = 5min, t = 10min and
t = 30min.

Figure 10 depicts the volumetric concentration of each sediment size-class in the mix-
ture flow for both non-uniform bed configurations at t = 5min, t = 10min and t = 30min
after the dambreak starting. The free surface level has also been plotted for each case. On
one hand, the coarser non-uniform bed A shows higher concentrations of the gravel frac-
tion at the wavefront during all the stages of the dambreak flow, which causes the density485

jump between the wavefront and the upstream region. On the other hand, the finer non-
uniform bed configuration B presents a higher volumetric concentration of sand material
at the wavefront during the early stages of the dambreak flow, whereas the fine material
fraction prevails along the whole dambreak flow at the long-term stages. Moreover, the
volumetric concentration of the finer fraction shows a progressive transition between the490

upstream region and the wavefront region, avoiding the appearance of the marked density
jump detected in the uniform bed case.

4.4. Circular mud dambreak over positive and negative slopes

This test aims to demonstrate the robustness of the proposed scheme with any kind
of boundary shear stress formulation (Table 1) and the correct treatment of the wet-dry495

fronts. A 2D circular dambreak over a completely dry bed is considered. The domain is
100×100m and initially a sediment-water mixture column is considered in the center of the
domain, with height h0 = 10m over the bed at (x, y) = (0, 0) and radius R0 = 10 . Two
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Figure 10: Volumetric concentration of each sediment size-class in the flow: (left column) non-uniform
bed A (right column) non-uniform bed B. Front top to bottom, t = 5min, t = 10min and
t = 30min.

different cases are tested with uniform bed slopes 5% and −5% respectively. An initial
volumetric concentration φ0 = 0.540 of an uniform sediment (grain diameter dp = 0.1mm,500

porosity pp = 0.4 and ρp = 2650 kg/m3) is considered in the mixture column, leading to
bulk density ρ = 1890 kg/m3. The domain is discretized using an unstructured triangular
mesh of 65535 cells, the CFL is set 0.5 and the final simulation time is t = 12 s.

The (1) pure turbulent and (2) turbulent & Coulomb friction formulations have been
used in this test for the determination of the flow resistance term (see Table 1) considering505

a non-cohesive solid phase. Furthermore, the (4) simplified Bingham friction formulation
has also been tested assuming that the solid phase is composed by cohesive materials.
The parameters needed for each friction formulation are presented in Table 3.

(1) Pure turb. (2) Turb. & Coulomb (4) Simp. Bingham

Manning coeff. n 0.03 sm−1/3 0.03 sm−1/3 –
Int. stab. angle θb – 26◦ –
Plastic viscosity µ – – 0.75Pa · s

Yield stress τy – – 7500N/m2

Table 3: Parameters for the friction relationships used in the test 4.4.
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Figure 11: Flow depth distribution at t = 3 s for (left column) positive bed slope S = 5% and (right)
negative bed slope S = −5%. From top to bottom: (1) pure turbulent, (2) turbulent &
Coulomb and (4) simplified Bingham friction formulations.

Figure 11 depicts the depth distribution after flow stops for the positive slope case
(left column) and negative slope case (right column). The flow stops between t = 3 s and510

t = 4 s for the turbulent & Coulomb and simplified Bingham resistance formulations in
both cases, whereas for the pure turbulent friction the flow do not stop and reaches the
domain boundaries at t ≈ 4 s for both cases. Therefore, the depth distribution shows
in Figure 11 for the pure turbulent formulation corresponds to t = 3 s. Regardless of
the flow resistance formulation chosen, the scheme is able to maintain a concentric depth515

distribution, providing a correct treatment of the wet-dry dambreak wavefront without
numerical instabilities.

The positive slope case shows a larger advance of the wavefront before the flow stops for
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Figure 12: (Left) Concentric depth distribution profiles after the flow stop and (right) accumulated de-
position mass for all the cases tested.

the positive slope case (S = 5%) than for the negative slope case (S = −5%), regardless
of the friction formulation. Figure 12-left plots the final flow depth radial profiles for520

the simulation assuming the turbulent & Coulomb and the simplified Bingham friction
formulations, whereas for the pure turbulent friction case the depth profile corresponds
to the time t = 3 s after the initial time. Differences on the depth distribution arise
directly from the flow resistance formulation considered. Furthermore, 12-right shows the
accumulated bed exchange mass between the flow and bed, being deposition negative.525

The accumulate net exchange for the pure turbulent case is only representative at times
before the flow reaches the domain boundaries (t < 4 s). The accumulated deposition mass
depends inversely on the flow velocity an directly on the wetted area. The pure turbulent
case shows a lower deposited mass due to the higher velocity of the dambreak wavefront.
Furthermore, the turbulent & Coulomb friction case generates higher deposition rates530

than the simplified Bingham case since the wetted area after the flow stops is slightly
larger.

Figure 13: Flow density distribution at t = 4 s with (left) pure turbulent and (right) turbulent & Coulomb
resistance formulations.

The mass exchange between the bed and the flow generates change in the solid-phase
mass of the flow and hence changes in the mixture density. Figure 13 depicts the flow
density distribution at t = 4 s with both the pure turbulent and the turbulent & Coulomb535

friction formulations. Densities remains higher for the turbulent case than for the turbu-
lent & Coulomb case as the suspended solid-phase loss due to bed exchange is lower.
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Finally, in order to demonstrate the performance of the friction term integration pro-
posed in Section 3.2, the result obtained with the turbulent & Coulomb resistance for-
mulation with and without including the fix proposed for the friction term are compared.540

Figure 14-left shows the flow surface level along the x-axis at time t = 12 s, whereas
Figure 14-right depicts the u-velocity x-axis profile at the same time. When the proposed
friction fix is applied, the flow reaches the quiescent equilibrium state (null velocity) with
free surface slope angles closed to the internal stability angle θb of the mixture.

Figure 14: X-axis profile for (left) the flow level and (right) the u-velocity at time t = 12 s with ans
without the proposed friction fix. Top: positive slope case. Bottom: negative slope case.

Furthermore, if the friction fix is not considered, residual velocities remain even after545

the wavefront of the dambreak stops, leading to transient oscillations of the flow free
surface. These residual velocities are caused by the imbalance between the convective
fluxes and the overestimated friction terms. Furthermore, the proposed friction fix avoids
the necessity of additional time step reductions to guaranty the stability of the scheme
(see Figure 15). As it was previously stated, these additional time step restrictions can550

lead to a marked increase of the computational time required by the numerical scheme.
Hence, the proposed source term integration procedure also ensures the model remains
computationally efficient when complex friction terms are considered.

Figure 15: Time step evolution with and without friction fix: (left) positive slope case and (right) negative
slope case.
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5. Conclusions

In the proposed 2D model for highly sediment-laden unsteady flows over non-uniform555

erodible beds, two main novelties have been presented. First the mathematical 2D system
of conservation equations includes a new description of the coupling between the mass and
momentum of the water-sediment mixture flow and the mass conservation equation for
the different sediment size-classes suspended in the flow. Second, the 2D system is solved
using a pioneering first-order x-split Augmented Roe scheme (xA-Roe) for sediment-laden560

flows, which simplifies considerably the correct integration of the bed slope and friction
source terms. A new integration procedure is proposed to avoid numerical drawbacks and
loss of efficiency when complex non-Newtonian friction terms are considered.

The scheme is able to deal with structured and unstructured square and triangular two-
dimensional meshes. The proposed resolution strategy ensuring the well-balance property565

for steady states and the correct estimation of the momentum source terms at wet-dry
fronts. The stability of the scheme is ensured by a CFL condition based on the eigenvalues
of the Jacobian matrix of the coupled system of equations. Furthermore, the procedure
proposed for integrating the momentum source terms avoids the necessity of additional
time step restrictions to maintain the stability of the solution, even when complex friction570

terms or wet-dry conditions are considered. Finally, the proposed numerical model has
been evaluated with four benchmarking test, including steady state cases with exact
solution and idealized highly transient cases with wet-dry fronts. The proposed scheme
has demonstrated is accuracy, efficiency and robustness for all the cases tested.
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