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Abstract. We construct explicit compact supersymmetric solutions with non-zero field strength,
non-flat instanton and constant dilaton to the heterotic string equations in dimension five. We
present a quadratic condition on the curvature which is necessary and sufficient the heterotic su-
persymmetry and the anomaly cancellation to imply the heterotic equations of motion in dimen-
sion five. We supply compact nilmanifold in dimension 5 satisfying the heterotic supersymmetry
equations with non-zero fluxes and constant dilaton which obey the three-form Bianchi identity
and solves the heterotic equations of motion in dimension five.
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1. Introduction. Field and Killing-spinor equations

The bosonic fields of the ten-dimensional supergravity which arises as low energy effective
theory of the heterotic string are the spacetime metric g, the NS three-form field strength H, the
dilaton φ and the gauge connection A with curvature FA. The bosonic geometry considered in
this paper is of the form R1,9−d ×Md where the bosonic fields are non-trivial only on Md, d ≤ 8.
We consider the two connections

(1.1) ∇± = ∇g ± 1
2
H,

where ∇g is the Levi-Civita connection of the Riemannian metric g. Both connections preserve
the metric, ∇±g = 0 and have totally skew-symmetric torsion ±H, respectively.

The Green-Schwarz anomaly cancellation mechanism requires that the three-form Bianchi iden-
tity receives an α′ correction of the form

(1.2) dH =
α′

4
(p1(Mp)− p1(E)) =

α′

4
8π2

(
Tr(R ∧R)− Tr(FA ∧ FA)

)
,

where p1(Mp), p1(E) are the first Pontrjagin forms of Mp with respect to a connection ∇ with
curvature R and the vector bundle E with connection A, respectively.

A class of heterotic-string backgrounds for which the Bianchi identity of the three-form H
receives a correction of type (1.2) are those with (2,0) world-volume supersymmetry. Such models
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were considered in [42]. The target-space geometry of (2,0)-supersymmetric sigma models has
been extensively investigated in [42, 53, 39]. Recently, there is revived interest in these models
[29, 11, 30, 31, 32] as string backgrounds and in connection to heterotic-string compactifications
with fluxes [10, 1, 2, 3, 47, 25, 26, 4].

In writing (1.2) there is a subtlety to the choice of connection ∇ on Mp since anomalies
can be cancelled independently of the choice [40]. Different connections correspond to different
regularization schemes in the two-dimensional worldsheet non-linear sigma model. Hence the
background fields given for the particular choice of∇must be related to those for a different choice
by a field redefinition [51]. Connections on Mp proposed to investigate the anomaly cancellation
(1.2) are∇g [53, 31], ∇+ [11],∇− [7, 10, 32, 43], Chern connection∇c when p = 6 [53, 47, 25, 26, 4].

A heterotic geometry will preserve supersymmetry if and only if, in 10 dimensions, there exists
at least one Majorana-Weyl spinor ε such that the supersymmetry variations of the fermionic
fields vanish, i.e. the following Killing-spinor equations hold [53]

δλ = ∇mε =
(
∇g
m +

1
4
HmnpΓnp

)
ε = ∇+ε = 0

δΨ =
(

Γm∂mφ−
1
12
HmnpΓmnp

)
ε = (dφ− 1

2
H) · ε = 0(1.3)

δξ = FAmnΓ
mnε = FA · ε = 0,

where λ,Ψ, ξ are the gravitino, the dilatino and the gaugino fields, respectively and · means
Clifford action of forms on spinors.

The bosonic part of the ten-dimensional supergravity action in the string frame is [7]

S =
1

2k2

∫
d10x

√
−ge−2φ

[
Scalg + 4(∇gφ)2 − 1

2
|H|2 − α′

4

(
Tr|FA|2)− Tr|R|2

)]
.(1.4)

The string frame field equations (the equations of motion induced from the action (1.4)) of the
heterotic string up to two-loops [41] in sigma model perturbation theory are (we use the notations
in [32])

Ricgij −
1
4
HimnH

mn
j + 2∇g

i∇
g
jφ−

α′

4

[
(FA)imab(FA)mabj −RimnqR

mnq
j

]
= 0;

∇g
i (e

−2φH i
jk) = 0;(1.5)

∇+
i (e−2φ(FA)ij) = 0,

The field equation of the dilaton φ is implied from the first two equations above.
We search for solutions to lowest nontrivial order in α′ of the equations of motion that follow

from the bosonic action which also preserves at least one supersymmetry.
It is known [17, 30] ([32] for dimension 6), that the equations of motion of type I supergravity

(1.5) with R = 0 are automatically satisfied if one imposes, in addition to the preserving su-
persymmetry equations (1.3), the three-form Bianchi identity (1.2) taken with respect to a flat
connection on TM,R = 0.

A lot of effort had been done in dimension six and compact torsional solutions for the het-
erotic/type I string are known to exist [16, 1, 2, 11, 31, 47, 25, 26, 4, 15, 20]. In dimensions
7 and 8 non-compact heterotic/type I solutions with non-zero fluxes to the equations of motion
preserving at least one supersymmetry are constructed in [19, 27, 38, 37, 43] and the first compact
torsional solutions are presented recently in [21].

In dimension 5, to the best of our knowledge, there are not known any compact solution either
to the supersymmetry equations (1.3) or to the heterotic equations of motion (1.5) with non-zero
fluxes. If the field strength vanishes, H = 0, the 5-dimensional case reduces to dimension four since
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any five dimensional Riemannian spin manifold admitting ∇g-parallel spinor is reducible. Non
compact solutions on circle bundle over 4-dimensional base endowed with a hyper Kähler metric
(when the 4-dimensional metric is Egushi-Hanson, Taub-NUT, Atiyah-Hitchin) have appeared
in [48, 28, 52, 6], the compact cases are discussed in [31] where a cohomological obstruction is
presented.

The main goal of this paper is to construct explicit compact supersymmetric valid solutions
with non-zero field strength, non-flat instanton and constant dilaton to the heterotic equations of
motion (1.5) in dimension 5.

It was known [23, 24] that solutions to the first two Killing spinor equations in dimension
five are quasi-Sasaki manifolds with anti-self-dual exterior derivative of the almost contact form
and their special conformal transformations (see the precise definitions below). In particular,
Sasakian manifolds can not solve the heterotic supersymmetry equations. In the case when the
quasi-Sasaki structure is regular the solutions to the first two equations in (1.3) are S1-bundles
over a Calabi-Yau 4-manifold with anti-self-dual curvature 2-form. Solutions we present in this
paper are S1-bundles over a 4-torus.

In Theorem 2.5, Theorem 2.6 we give structure equations of any solution to the first two Killing
spinor equations in (1.3) in terms of exterior derivatives of an SU(2)-structure in dimension five,
a notion introduced in [13, 28], and express its Ricci tensor in terms of the structure forms. Based
on the analisys made in [23, 24] we also simplify the formula for the torsion tensor of the unique
almost contact metric connection with totally skew-symmetric torsion described in [23].

According to no-go (vanishing) theorems (a consequence of the equations of motion [22, 17];
a consequence of the supersymmetry [46, 45] for SU(n)-case and [31] for the general case) there
are no compact solutions with non-zero flux and non-constant dilaton satisfying simultaneously
the supersymmetry equations (1.3) and the three-form Bianchi identity (1.2) if one takes flat
connection on TM , more precisely a connection with zero first Pontrjagin 4-form, Tr(R∧R) = 0.
Therefore, in the compact case one necessarily has to have a non-zero term Tr(R∧R). However,
under the presence of a non-zero curvature 4-form Tr(R ∧R) the solution of the supersymmetry
equations (1.3) and the anomaly cancellation condition (1.2) obeys the second and the third equa-
tions of motion but does not always satisfy the Einstein equation of motion (the first equation
in (1.5)). We give in Theorem 3.1 a quadratic expression for R which is necessary and sufficient
condition in order that (1.3) and (1.2) imply (1.5) in dimension 5 based on the properties of the
special geometric structure induced from the first two equations in (1.3). (A similar condition
in dimension six, seven and eight we presented in [20, 21], respectively). In particular, if R is
an SU(2)-instanton the supersymmetry equations together with the anomaly cancellation con-
dition imply the equations of motion in dimension 5. The latter can also be seen following the
considerations in the Appendix of [30].

We present in Theorem 4.4 compact nilmanifolds in dimension five satisfying the heterotic
supersymmetry equations (1.3) with non-zero flux H, non-trivial instanton and constant dilaton
obeying the three-form Bianchi identity (1.2) with curvature term R = R+ which also solve the
heterotic equations of motion (1.5). Our solutions are S1-bundles over a 4-torus and seem to be
the first explicit compact valid supersymmetric heterotic solutions with non-zero flux and constant
dilaton in dimension 5 satisfying the equations of motion (1.3).

Finally, in Proposition 4.5 we show compact nilmanifolds in dimension five satisfying the het-
erotic supersymmetry equations (1.3) with non-zero fluxes and the three-form Bianchi identity
(1.2) with curvature term R = Rg in dimension five.

Remark 1.1. We do not know compact non-regular solutions to the first two heterotic Killing
spinor equations, i.e. compact quasi-Sasaki manifolds of this kind with non-closed orbits of the
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Reeb vector field, or, in view of Theorem 2.5 below, compact 5-manifolds satisfying the structure
equations (2.13) with non-closed orbits of the Reeb vector field.

Our conventions: We rise and lower the indices with the metric and use the summation
convention on repeated indices. For example,

BijkC
ijk = Bjk

i C
i
jk = BijkCijk =

n∑
ijk=1

BijkCijk.

The connection 1-forms ωji of a metric connection ∇,∇g = 0 with respect to a local basis
{E1, . . . , En} are given by

ωji(Ek) = g(∇Ek
Ej , Ei),

since we write ∇XEj = ωsj (X)Es.
The curvature 2-forms Ωi

j of ∇ are given in terms of the connection 1-forms ωij by

Ωi
j = dωij + ωik ∧ ωkj , Ωji = dωji + ωki ∧ ωjk, Rlijk = Ωl

k(Ei, Ej), Rijkl = Rsijkgls.

and the first Pontrjagin class is represented by the 4-form

p1(∇) =
1

8π2

∑
1≤i<j≤d

Ωi
j ∧ Ωi

j .

2. Geometry of the heterotic supersymmetry equations

Geometrically, the vanishing of the gravitino variation is equivalent to the existence of a non-
trivial real spinor parallel with respect to the metric connection ∇+ with totally skew- symmetric
torsion T = H. The presence of ∇+-parallel spinor leads to restriction of the holonomy group
Hol(∇+) of the torsion connection ∇+. A detailed analysis of the induced geometries is carried
out in [31] and all possible geometries (including non compact stabilizers) are investigated in
[34, 36, 35, 49].

The existence of ∇+-parallel spinor in dimension 5 determines an almost contact metric struc-
ture whose properties as well as solutions to gravitino and dilatino Killing-spinor equations are
investigated in [23, 24].

We recall that an almost contact metric structure consists of an odd dimensional manifold
M2k+1 equipped with a Riemannian metric g, vector field ξ of length one, its dual 1-form η as
well as an endomorphism ψ of the tangent bundle such that

(2.1) ψ(ξ) = 0, ψ2 = −id+ η ⊗ ξ, g(ψ., ψ.) = g(., .)− η ⊗ η.

The Reeb vector field ξ is determined by the equations η(ξ) = 0, ξydη = 0, where y denotes
the interior multiplication. The Nijenhuis tensor N and the fundamental form F of an almost
contact metric structure are defined by

F (., .) = g(., ψ.), N = [ψ., ψ.] + ψ2[., .]− ψ[ψ., .]− ψ[., ψ.] + dη ⊗ ξ.

There are many special types of almost contact metric structures. We introduce those which are
relevant to our considerations:

- normal almost contact structures determined by the condition N = 0;
- contact metric structures characterized by dη = 2F ;
- quasi-Sasaki structures, N = 0, dF = 0. Consequently, ξ is a Killing vector [8];
- Sasaki structures, N = 0, dη = 2F . Consequently, ξ is a Killing vector [8].
- the class of almost contact metric structures with totally skew-symmetric Nijenhuis tensor

and Killing vector field ξ introduced in [23].
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In dimension five any solution to the gravitino Killing spinor equation, i.e. any parallel spinor
with respect to a metric connection with torsion 3-form defines an almost contact metric structure
(g, ξ, η, ψ) via the formulas

ξ · ε =
√
−1 · ε, −2ψX · ε+ ξ ·X · ε =

√
−1X · ε,

which is preserved by the torsion connection.
An almost contact metric structure admits a linear connection ∇+ with torsion 3-form pre-

serving the structure, i.e. ∇+g = ∇+ξ = ∇+ψ = 0, if and only if the Nijenhuis tensor is totally
skew-symmetric and the vector field ξ is a Killing vector field [23]. In this case the torsion
connection is unique. The torsion T of ∇+ is expressed by ([23], Theorem 8.2)

(2.2) T = η ∧ dη + dψF +N − η ∧ (ξyN),

where dψF = −dF (ψ., ψ., ψ). In particular one has dη = ξyT, ξydη = 0.
In fact, (2.2) simplifies since if the Nijenhuis tensor is totally skew-symmetric then ξ is a Killing

vector field exactly when ([24], Proposition 3.1 and its proof)

(2.3) ξydF = 0 ⇔ ξyN = 0.

The proof of Lemma 8.3 in [23] also yields dη(., .) = dη(ψ., ψ.).
Now, Theorem 8.2 in [23] is formulated as follows

Theorem 2.1. [23, 24] An almost contact metric structure admits a unique linear connection
∇+ with torsion 3-form preserving the structure, i.e. ∇+g = ∇+ξ = ∇+ψ = 0, if and only if the
Nijenhuis tensor is totally skew-symmetric and ξyN = 0. The torsion T of ∇+ is expressed by

(2.4) T = η ∧ dη + dψF +N.

Since ∇+ξ = 0 the restricted holonomy group Hol(∇+) of ∇+ containes in U(k). The spinor
bundle Σ of a (2k + 1)-dimensional almost contact metric spin manifold decomposes under the
action of the fundamental 2-form F into the sum Σ = Σ0⊕· · ·⊕Σk, dim(Σr) =

(
k
r

)
. The isotropy

group of a spinor of type Σ0 or Σk coincides with the subgroup SU(k) ⊂ U(k). Consequently,
there exists locally a ∇+-parallel spinor of type Σ0 or Σk exactly when Hol(∇+) ⊂ SU(k). The
equivalent curvature condition found in Proposition 9.1 [23] reads

(2.5) R+
ijklF

kl = 0 ⇔ Ric+ij = −∇+
i θj −

1
4
ψsjdTislmF

lm,

where the Lee form θ is defined in [24] by

(2.6) θi =
1
2
ψsi TsklF

kl =
1
2
dFiklF

kl.

Consequently, θ(ξ) = 0.
(Warning: note that the Lee form ω∇ defined in [23] differs slightly from θ, ω∇(ψ.) = θ(.)).
It is shown in [24] that solutions to the both gravitino and dilatino Killing spinor equations are

connected with a special type ’conformal’ transformations of an almost contact metric structure
introduced in [24] by

(2.7) ψ′ := ψ, η′ := η, ξ′ := ξ, g′ := e2fg + (1− e2f )η ⊗ η,

where f is a smooth function which is constant along the integral curves of ξ, df(ξ) = 0. The new
torsion T ′ and Lee form θ′ are given by

T ′ = T + (e2f − 1)dψF + 2e2fdψf ∧ F, θ′ = θ + 2df,

where dψf = −df(ψ.).
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We restrict our attention to dimension five. In dimension five the Nijenhuis tensor is totally
skew-symmetric exactly when it vanishes [12], i.e. the structure is normal. In this case ξ is
automatically a Killing vector field [8], the Lee form determines completely the three form dF
due to (2.3), dF = θ∧F and the dilatino equation (the second equation in (1.3)) admits a solution
exactly when the normal almost contact manifold is special conformal to a quasi-Sasaki 5-manifold
([24], Theorem 5.5). If the non-trivial spinor ε ∈ Σ1 then the space is special conformal to the
standard Sasaki structure on the 5-dimensional Heisenberg group.

For a non-trivial spinor ε ∈ {Σ0,Σ2} the dilatino equation admits a solution if and only if the
next equalities hold ([24], Proposition 5.5)

(2.8) 2dφ = θ, ∗Hdη = −dη,

where ∗H denote the Hodge operator acting in the 4-dimensional orthogonal complement H of
the vector ξ, H = Kerη. We call an H-valued 2-form satisfying the second equation of (2.8)
H-anti-self dual.

In this case the torsion is given by

(2.9) T = η ∧ dη + 2dψφ ∧ F

and the space is special conformal to a quasi-Sasaki 5-manifold with H-anti-self-dual 2 form dη.
In particular, there is no solution on any Sasaki 5-manifold.

Remark 2.2. The ∇+-parallel spinor ε ∈ {Σ0,Σ2} transforms under special conformal transfor-
mations into a (∇+)′-parallel spinor since dη is H-anti-self-dual [[24], Theorem 5.1]. Hence, a
solution to the supersymmetry equations (1.3) in dimension five reduces to solve (1.3) in the case
of constant dilaton. Then any special conformal transformation gives again a solution to (1.3)
and the anomaly cancellation condition could be reduced to a highly non-linear PDE for a real
function f .

The simplest case is when the normal almost contact structure is regular, i.e. the orbit space
N4 = M5/ξ is a smooth manifold. Then M5 is a principal S1-bundle with H-anti-self-dual
curvature form equal to dη and any spinor ε ∈ {Σ0,Σ2} solving the gravitino and dilatino Killing
spinor equation projects to N4. Indeed, its Lie derivative Lξε (see [9]), calculated in [24] is

Lξε = ∇g
ξε−

1
4
dη · ε = −1

2
dη · ε = 0

since dη is anti-self-dual and ε ∈ {Σ0,Σ2}. Now, Theorem 3.2 in [24] and (2.7) yield

Theorem 2.3. [24] If (M5, g, η, ξ, ψ) is a compact regular almost contact metric manifold solving
the gravitino and dilatino Killing spinor equations for ε ∈ {Σ0,Σ2} then M5 is an S1-bundle over
a flat torus or a K3-surface with an H-anti-self-dual curvature equal to dη. The metric has the
form

g5 = e2fgcy + η ⊗ η,(2.10)

where gcy is the Calabi-Yau metric on the 4-dimensional base and f is a smooth function on it.
The dilaton φ = 2f depends only on the Calabi-Yau 4-manifold.
The torsion is T = η ∧ dη − 2e2f (df ◦ ψ) ∧ F and the flux H = T .

Remark 2.4. The third case of Theorem 3.2 in [24], namely S1 bundle over the Hopf surfaces,
should be excluded since this solves the dilatino equation only locally.
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2.1. The SU(2)-structure point of view. The gravitino Killing spinor equation, i.e. the ∇+-
parallel spinor ε ∈ {Σ0,Σ2} defines a reduction of the structure group SO(5) to SU(2) which is
described in terms of forms by Conti and Salamon in [13] (see also [28]) as follows: an SU(2)-
structure on 5-dimensional manifold M is (η, F = F1, F2, F3), where η is a 1-form dual to ξ via
the metric and Fp, p = 1, 2, 3 are 2-forms on M satisfying

(2.11) Fp ∧ Fq = δpqv, v ∧ η 6= 0,

for some 4-form v, and

(2.12) XyF1 = Y yF2 ⇒ F3(X,Y ) ≥ 0.

Now H = Kerη and the 2-forms Fp, p = 1, 2, 3 can be chosen to form a basis of the H-self-dual 2-
forms [13]. The SU(2)-structure (η, F = F1, F2, F3) is ∇+-parallel, ∇+η = ∇+Fp = 0, p = 1, 2, 3,
since the defining spinor ε is ∇+-parallel.

Involving the dilatino equation, the second equation in (1.3), we get that dη is an H-anti-self-
dual 2-form. We show that if the dilaton is constant then the 2-forms Fp, p = 1, 2, 3 are harmonic,
i.e. closed and co-closed. We have

Theorem 2.5. The first two equations in (1.3) admit a solution with constant dilaton in dimen-
sion five exactly when there exists a five dimensional manifold M endowed with an SU(2)-structure
(M,η, F = F1, F2, F3) satisfying the structure equations:

(2.13) dFp = 0, ∗Hdη = −dη.

The Ricci tensors are given by

(2.14) Ric+mn = −dηimdηin, Ricgmn = −1
2
dηimdηin +

1
4
|dη|2ηmηn.

In particular, if M is compact then the second and the third Betti numbers b2(M), b3(M) are
greater than or equal to three, b2(M) ≥ 3, b3(M) ≥ 3.

Proof. Suppose (M,η, F = F1, F2, F3) is a solution to the first two equations in (1.3) with constant
dilaton. Then the structure is quasi-Sasaki, N = dF1 = 0, the torsion of ∇+ is given by T = η∧dη
and dη is H-anti-self-dual by the discussion in the previous subsection. We shall show that the H-
self-dual forms Fp are closed and therefore harmonic. Let (e1, e2, e3, e4, e5 = ξ) be an orthonormal
basis. Then we calculate for X,Y, Z ∈ TM that

(2.15) (∇g
XFp)(Y, Z) = (∇+

XFp)(Y, Z)− 1
2

5∑
s=1

[
T (X,Y, es)Fp(es, Z) + T (X,Z, es)Fp(Y, es)

]
= −1

2

4∑
s=1

[
(η ∧ dη)(X,Y, es)Fp(es, Z) + (η ∧ dη)(X,Z, es)Fp(Y, es)

]
since ∇+Fp = 0 and ξyFp = 0. The equation (2.15) yields

• Let X,Y, Z ∈ H. Then ∇gFp|H = 0. Consequently, dFp|H = 0.
• Let X = ξ, Y, Z ∈ H. Then

(2.16) (∇g
ξFp)(Y, Z) =

1
2

4∑
s=1

[
Fp(Z, es)dη(Y, es)− Fp(Y, es)dη(Z, es)

]
= 0.

The last equality is a pure algebraic consequence of the fact that Fp is H-self-dual while
dη is H-anti-self-dual.
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• Let X,Y ∈ H, Z = ξ. Then

(2.17) (∇g
XFp)(Y, ξ) =

1
2

4∑
s=1

Fp(Y, es)dη(X, es).

Using (2.16) and (2.17) we get dFp(ξ, Y, Z) = 2(∇g
ξFp)(Y, Z) = 0, for Y, Z ∈ H. Hence, dFp = 0.

For the converse, we consider the Riemannian product N = M × R with the SU(3)-structure
(Ω,Ψ = Ψ+ +

√
−1Ψ−) with Kähler form Ω and complex volume form Ψ defined by

Ω = −F1 − η ∧ dt; Ψ+ = F2 ∧ η − F3 ∧ dt; Ψ− = F3 ∧ η + F2 ∧ dt.(2.18)

Using (2.13) we easily derive from (2.18) that d(Ω ∧ Ω) = dΨ+ = dΨ− = 0, i.e. it is a balanced
hermitian structure with holomorphic complex volume form. In particular, the almost contact
metric structure on M is normal. Applying Theorem 4.1 and Corollary 4.3 from [43] we conclude

(2.19) ∇+
NΩ = ∇+

NΨ+ = ∇+
NΨ− = 0,

where ∇+
N is the Bismut-Strominger metric connection with torsion 3-form TN given by

(2.20) TN = − ∗N dΩ = η ∧ dη

where ∗N denotes the Hodge operator on N and we have used the first equation in (2.18) and the
fact that dη is H-anti-self-dual.

Hence, the torsion TN does not depend on R and therefore the connection ∇+
N descends to M .

Now, (2.19) yield ∇+
Nη = ∇+

NFp = 0, p = 1, 2, 3 and the descended connection on M coincides
with ∇+ as two metric connections with equal torsion must coincide.

The formulas for the Ricci tensors (2.14) follow just taking df = 0 into (2.23) established below.
The last assertion follows from the fact that the three 2-forms Fp and the three 3-forms Fp ∧ η

are harmonic and represent different cohomology classes. Indeed, the equation ∗HFp = Fp implies
δFp = − ∗ d ∗ Fp = − ∗ d(Fp ∧ η) = − ∗ (dFp ∧ η + Fp ∧ dη) = 0 since dη is H-anti-self-dual. �

Combine Remark 2.2 with Theorem 2.5 using (2.7) to derive

Theorem 2.6. The first two equations in (1.3) admit a solution in dimension five exactly
when there exists a five dimensional manifold M endowed with an SU(2)-structure (M,η, F =
F1, F2, F3) satisfying the structure equations:

(2.21) dFp = 2df ∧ Fp, ∗Hdη = −dη, df(ξ) = 0.

The flux H is given by

(2.22) H = T = η ∧ dη + 2dψf ∧ F,

where ψ is the almost complex structure on H defined by g(X,ψY ) = F (X,Y )
The dilaton φ is equal to φ = 2f.
The Ricci tensors are given by:

Ric+mn = −dηimdηin +∇g
mdfn + ∆Hfgmn + dfi(dηimηn − dηinηm),(2.23)

Ricgmn = −1
2
dηimdηin +

1
4
|dη|2ηmηn +∇g

mdfn + ∆Hfgmn − 2dfmdfn + 2|df |2gmn,

where ∆Hf :=
∑4

i=1(∇
g
eidf)ei is the horizontal subLaplacian and |df |2 :=

∑4
i=1 df(ei)2 is the norm

of the horizontal gradient.
In particular, if M is compact then the second and the third Betti numbers b2(M), b3(M) are

greater than or equal to three, b2(M) ≥ 3, b3(M) ≥ 3.
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Proof. We need to prove only (2.23). We shall use (3.4) and (3.3) from below. Using (2.22) and
(2.21), we calculate

−1
4
ψsndTmsijF

ij = −4dηimdηin + 2(ddψf)ijF ij − 8|df |2gmn;

2(ddψf)ijF ij = −4∇+
i dfi + 2dfiψ

j
iTjpqF

pq = −4∆Hf + 8|df |2;
dfiTimn = dfi(dηimηn − dηinηm);(2.24)

TmijTnij = 2dηmidηni + |dη|2ηmηn − 8dfmdfn + 8|df |2gmn.
We get the first equality in (2.23) from (3.4) and the first three equalities in (2.24). The second
equality follows from the already proved first one, the fourth equality in (2.24) and (3.3) below. �

We note that another proof of the second equality in (2.14), (2.23) can be derived from the
general formula of the Ricci tensor for a general SU(2)-structure presented in [5].

In addition to gravitino and dilatino Killing spinor equations, the vanishing of the gaugino
variation requires the 2-form FA to be of instanton type ([14, 53, 38, 50, 18, 31]). In dimension
five, an SU(2)-instanton i.e the gauge field A is a connection with curvature 2-form FA ∈ su(2).
The SU(2)-instanton condition can be written in the form [14, 53]

(2.25) FAmn = −1
2
FApq(F ∧ F )pqmn.

In this paper we consider compact regular SU(2) manifolds in dimension 5, more precisely the
case of S1-bundles over a flat 4-torus. We find a compact solution to (1.3) satisfying the anomaly
cancellation (1.2) with non-zero fluxes, constant dilaton which also solves the heterotic equations
of motion (1.5).

Remark 2.7. It is interesting whether there are compact non-regular (the integral curves of the
Reeb vector fielf ξ are not closed) quasi-Sasaki 5-manifolds with anti-self-dual 2-form dη whose
Riemannian Ricci tensor is given by (2.14), or equivalently, non-regular SU(2)- structures obeying
(2.13) on compact 5-manifold. We do not know any examples of this kind. Such examples might
be relevant in constructing compact heterotic solutions in dimension six since the construction of
T2-bundles over Calabi-Yau surface presented in [33] can be generalized to a circle bundle over
such an example solving automatically the first two equations in (1.3)(see [21]).

3. Heterotic supersymmetry and equations of motion

It is known [17, 30] ([32] for dimension 6), that the equations of motion of type I supergravity
(1.5) with R = 0 are automatically satisfied if one imposes, in addition to the preserving su-
persymmetry equations (1.3), the three-form Bianchi identity (1.2) taken with respect to a flat
connection on TM,R = 0. However, the no-go theorems [22, 17, 46, 45, 31] state that if even
TrR ∧R = 0 there are no compact solutions with non-zero flux H and non-constant dilaton.

In the presence of a curvature term TrR ∧ R 6= 0 a solution of the supersymmetry equations
(1.3) and the anomaly cancellation condition (1.2) obeys the second and the third equations in
(1.5) but does not always satisfy the Einstein equation of motion (the first equation in (1.5)).
However if the curvature R is of instanton type (1.3) and (1.2) imply (1.5) which can also be seen
follow the considerations in the Appendix of [30]. We have

Theorem 3.1. The Einstein equation of motion (the first equation in (1.5)) is a consequence of
the heterotic Killing spinor equations (1.3) and the anomaly cancellation (1.2) if and only if the
next identity holds

(3.1)
1
2

[
RmsabRpqab +RmpabRqsab +RmqabRspab

]
F pqψsn = RmpqrR

pqr
n .
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In particular, if R is an instanton then (3.1) holds.

Proof. The Ricci tensors are connected by (see e.g. [23])

Ricgmn = Ric+mn +
1
4
TmpqT

pq
n − 1

2
∇+
s T

s
mn, Ric+mn −Ric+nm = ∇+

s T
s
mn = ∇g

sT
s
mn,(3.2)

Ricgmn =
1
2
(Ric+mn +Ric+nm) +

1
4
TmpqT

pq
n .(3.3)

In view of (2.8), the Ricci tensor described in (2.5) is given by

(3.4) Ric+mn = −2∇+
mdφn −

1
4
ψsndTmsijF

ij = −2∇g
mdφn + dφsT

s
mn −

1
4
ψsndTmsijF

ij .

Substitute (3.4) into (3.3), insert the result into the first equation of (1.5) and use the anomaly
cancellation (1.2) to conclude the assertion. �

It is shown in [44] that the curvature of R+ satisfies the identity R+
ijkl = R+

klij if and only if
∇+
i Tjkl is a four form. Now Theorem 3.1 yields

Corollary 3.2. Suppose the torsion 3-form is ∇+-parallel, ∇+
i Tjkl = 0. The equations of motion

(1.5) with respect to the curvature R+ of the (+)-connection are consequences of the heterotic
Killing spinor equations (1.3) and the anomaly cancellation (1.2).

3.1. Heterotic supersymmetric equations of motion with constant dilaton. In the case
when the dilaton is constant we arrive to the following problems:

We look for a compact 5-manifold M with an SU(2)-structure (η, Fp), p = 1, 2, 3 which satisfies
the following conditions

a). Gravitino and dilatino Killing spinor equations (the first two equations in (1.3): the forms
Fp are closed and dη is H-anti-self-dual.

b). Gaugino Killing spinor equation (the third equation in (1.3)). Look for a vector bundle E
of rank r over M equipped with an SU(2)-instanton, i.e. a connection A with curvature
2-form ΩA satisfying

(3.5) (ΩA)Ei,Ej (ψEk, ψEl) = (ΩA)Ei,Ej (Ek, El),
5∑

k=1

(ΩA)Ei,Ej (Ek, ψEk) = 0,

where {E1, . . . , E5 = ξ} is an orthonormal basis on M and ψ is the almost complex
structure on H defined by g(X,ψY ) = F1(X,Y ).

c). Anomaly cancellation condition:

(3.6) dH = dT = dη ∧ dη =
α′

4
8π2

(
p1(M)− p1(A)

)
, α′ > 0.

d). The first Pontrjagin form p1(M) satisfies equation (3.1).

4. Explicit compact solutions

In this section we give an explicit family of compact solutions to the heterotic supersymmetric
equations of motion with constant dilaton, based on a quotient of the 5-dimensional generalized
Heisenberg group H(2, 1).
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First, let us recall that H(2, 1) is the nilpotent Lie group consisting of the matrices of the form

H(2, 1) =




1 x1 x2 z
0 1 0 y1

0 0 1 y2

0 0 0 1

 | xi, yi, z ∈ R, 1 ≤ i ≤ 2

 .

For each triple (a, b, c) ∈ R3 such that a2 + b2 6= 0, we consider the basis of left invariant 1-forms
e1, . . . , e5 on H(2, 1) given by

e1 = (a2 + b2 + c2) dx1, e2 = a dy1 + b
(
1 + c2

a2+b2

)
dx2 − ac dy2,

e3 = b dy1 − a
(
1 + c2

a2+b2

)
dx2 − bc dy2, e4 = c dy1 + (a2 + b2) dy2,

e5 = (a2 + b2 + c2)2(x1dy1 + x2dy2 − dz).

In terms of this basis the structure equations of the Lie algebra h(2, 1) of H(2, 1) become

(4.1)

{
de1 = de2 = de3 = de4 = 0,

de5 = a(e12 − e34) + b(e13 + e24) + c(e14 − e23).

Notice that these equations also correspond to h(2, 1) when a = b = 0 and c 6= 0, so (4.1) are
valid for any triple (a, b, c) ∈ R3 − {(0, 0, 0)}. It is immediate to check that the SU(2)-structure
(η, F1, F2, F3) given by

(4.2) F1 = e12 + e34, F2 = e13 + e42, F3 = e14 + e23, η = e5.

satisfies (2.13). In view of Theorem 2.5, this family provides explicit solutions (with constant
dilaton) to the first two equations in (1.3).

Next we prove that this is the unique family of left invariant solutions (with constant dilaton)
to the first two equations in (1.3) on a 5-dimensional Lie group.

Theorem 4.1. Let g be a Lie algebra of dimension 5 with an SU(2)-structure (η, F1, F2, F3)
satisfying

dF1 = 0, dF2 = 0, dF3 = 0, ∗Hdη = −dη 6= 0.

Then, g is isomorphic to the Lie algebra h(2, 1). Moreover, there is a basis e1, . . . , e5 for g∗

satisfying (4.1) for some a, b, c ∈ R with a2 + b2 + c2 6= 0 and such that the SU(2)-structure
(η, F1, F2, F3) expresses as (4.2).

Proof. Let us consider a basis e1, . . . , e5 for g∗ such that the SU(2)-structure (η, F1, F2, F3) ex-
presses as (4.2). In terms of e1, . . . , e5 the equations of the Lie algebra g are of the form

(4.3)


dei = ai1 F1 + ai2 F2 + ai3 F3 + bi1 F

−
1 + bi2 F

−
2 + bi3 F

−
3

+(ci1 e1 + ci2 e
2 + ci3 e

3 + ci4 e
4)e5,

de5 = a(e12 − e34) + b(e13 + e24) + c(e14 − e23),

for i = 1, . . . , 4, where aij , bij , cij ∈ R and

F−1 = e12 − e34, F−2 = e13 + e24, F−3 = e14 − e23.

Let us denote by F jkli the component in ejkl of the 3-form dFi. It is easy to see that

F 125
1 = −c11 − c22, F 135

2 = −c11 − c33, F 145
3 = −c11 − c44, F 345

1 = −c33 − c44,
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which imply the vanishing of cii, for i = 1, . . . , 4. Moreover,

F 135
1 = −c23 + c41, F 245

1 = c14 − c32, F 125
2 = −c32 − c41, F 345

2 = c14 + c23,

F 145
1 = −c24 − c31, F 235

1 = c13 + c42, F 125
3 = c31 − c42, F 345

3 = −c13 + c24,

F 145
2 = c21 − c34, F 235

2 = −c12 + c43, F 135
3 = −c21 − c43, F 245

3 = −c12 − c34,

which imply the following equalities:

(4.4) c41 = c23 = −c32 = −c14, c42 = c31 = −c24 = −c13, c43 = −c34 = −c21 = c12.

Let E1, . . . , E5 be the basis of g dual to e1, . . . , e5, and let us denote by P lijk the component in
El of

[
[Ei, Ej ], Ek

]
+

[
[Ej , Ek], Ei

]
+

[
[Ek, Ei], Ej

]
, i.e.

[
[Ei, Ej ], Ek

]
+

[
[Ej , Ek], Ei

]
+

[
[Ek, Ei], Ej

]
=

5∑
l=1

P lijk El

It is clear that the Jacobi identity of the Lie algebra g is equivalent to P lijk = 0 for 1 ≤ i < j <

k ≤ 5 and 1 ≤ l ≤ 5. From the vanishing of cii and (4.4), a direct calculation shows that

P 5
235 = −2(b c12 − a c13), P 5

245 = −2(c c12 − a c14), P 5
345 = −2(c c13 − b c14).

Therefore, P 5
235P

5
245 = P 5

345 = 0 if and only if there is λ ∈ R such that

(4.5) c12 = λ a, c13 = λ b, c14 = λ c.

Moreover,

(4.6)

{
P 1

125 + P 1
345 = 2λ(a a21 + b a31 + c a41), P 2

125 + P 2
345 = −2λ(a a11 + c a31 − b a41),

P 3
125 + P 3

345 = −2λ(b a11 − c a21 + a a41), P 4
125 + P 4

345 = −2λ(c a11 + b a21 − a a31),

(4.7)

{
P 1

135 − P 1
245 = 2λ(a a22 + b a32 + c a42), P 2

135 − P 2
245 = −2λ(a a12 + c a32 − b a42),

P 3
135 − P 3

245 = −2λ(b a12 − c a22 + a a42), P 4
135 − P 4

245 = −2λ(c a12 + b a22 − a a32),

(4.8)

{
P 1

145 + P 1
235 = 2λ(a a23 + b a33 + c a43), P 2

145 + P 2
235 = −2λ(a a13 + c a33 − b a43),

P 3
145 + P 3

235 = −2λ(b a13 − c a23 + a a43), P 4
145 + P 4

235 = −2λ(c a13 + b a23 − a a33),

If λ 6= 0, since a2 + b2 + c2 6= 0, then it follows from (4.6), (4.7) and (4.8) that a11 = a21 =
a31 = a41 = 0, a12 = a22 = a32 = a42 = 0 and a13 = a23 = a33 = a43 = 0, respectively. Now, a
direct calculation similar to the given above shows that P l235 = P l245 = P l345 = 0 for l = 1, . . . , 4 if
and only if all the coefficients bij are zero. But then P 3

124 = λ(a2 + b2 + c2) 6= 0, that is to say,
the Jacobi identity is not satisfied. This proves that the coefficient λ in (4.5) vanishes.

Since λ = 0 then (4.4) and (4.5) imply that all the coeffcients cij in (4.3) vanish, and therefore
the Lie algebra g is an extension of a 4-dimensional Lie algebra a having a triple of 2-forms
F1, F2, F3 satisfying Fi ∧ Fi = Fj ∧ Fj 6= 0 and Fi ∧ Fj = 0 for i 6= j. This gives a hyperKähler
structure on a and it follows that the Lie algebra a is necessarily abelian. Therefore, all the
coefficients aij , bij , cij vanish, i.e. (4.3) reduces to (4.1) and g is isomorphic to h(2, 1). �

From now on, we restrict our attention to the family of SU(2)-structures (η, F1, F2, F3) given
by (4.1)–(4.2). Let Γ(2, 1) denote the subgroup of matrices of H(2, 1) with integer entries and
consider the compact nilmanifoldN(2, 1) = Γ(2, 1)\H(2, 1). We can describeN(2, 1) as a principal
circle bundle over a 4-torus

S1 ↪→ N(2, 1) → T 4,
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by the projection (x1, y1, x2, y2, z) 7→ (x1, y1, x2, y2). Since the SU(2)-structure given by (4.1)–
(4.2) is left invariant, it descend to an SU(2)-structure on the compact manifold N(2, 1) satisfy-
ing (2.13).

Since the torsion 3-form T of the SU(2)-structure is

(4.9) T = η ∧ dη = a e125 + b e135 + c e145 − c e235 + b e245 − a e345,

we have that

(4.10) dT = −2(a2 + b2 + c2)e1234.

It is straightforward to check that T is parallel with respect to the torsion connection ∇+, i.e.

Lemma 4.2. For any a, b, c ∈ R such that a2 + b2 + c2 6= 0, we have ∇+T = 0.

On the other hand, using (1.1) and the expression (4.9), we calculate the non-zero curvature
forms (Ω+)ij = −(Ω+)ji of the torsion connection are determined by:

(4.11) (Ω+)12 = −(Ω+)34 = −a de5, (Ω+)13 = (Ω+)24 = −b de5, (Ω+)14 = −(Ω+)23 = −c de5.
Next we find a large family of SU(2)-instantons.

Proposition 4.3. Let Aλ,µ,τ be the linear connection on N(2, 1) defined by the connection forms

(σAλ,µ,τ )12 = −(σAλ,µ,τ )21 = −(σAλ,µ,τ )34 = (σAλ,µ,τ )43 = −λ e5,

(σAλ,µ,τ )13 = −(σAλ,µ,τ )31 = (σAλ,µ,τ )24 = −(σAλ,µ,τ )42 = −µ e5,

(σAλ,µ,τ )14 = −(σAλ,µ,τ )41 = −(σAλ,µ,τ )23 = (σAλ,µ,τ )32 = −τ e5,

and (σAλ,µ,τ )ij = 0 for the remaining (i, j), where λ, µ, τ ∈ R. Then, Aλ,µ,τ is an SU(2)-instanton
with respect to any of the SU(2)-structures (η, F1, F2, F3) given by (4.1)–(4.2), Aλ,µ,τ preserves
the metric, and its first Pontrjagin form is given by

p1(Aλ,µ,τ ) = −(λ2 + µ2 + τ2)(a2 + b2 + c2)
2π2

e1234.

Proof. A direct calculation shows that the non-zero curvature forms (ΩAλ,µ,τ )ij of the connection
Aλ,µ,τ are:

(ΩAλ,µ,τ )12 = −(ΩAλ,µ,τ )21 = −(ΩAλ,µ,τ )34 = (ΩAλ,µ,τ )43 = −λ de5,

(ΩAλ,µ,τ )13 = −(ΩAλ,µ,τ )31 = (ΩAλ,µ,τ )24 = −(ΩAλ,µ,τ )42 = −µde5,

(ΩAλ,µ,τ )14 = −(ΩAλ,µ,τ )41 = −(ΩAλ,µ,τ )23 = (ΩAλ,µ,τ )32 = −τ de5.
Hence Aλ,µ,τ satisfies (3.5); in fact, since F1 = e12 + e34, the almost complex structure ψ is given
by ψ(E1) = −E2, ψ(E3) = −E4. Therefore, the connection Aλ,µ,τ is an SU(2)-instanton. �

The following results give explicit compact valid solutions on N(2, 1) to the heterotic super-
symmetry equations with non-zero flux and constant dilaton satisfying the anomaly cancellation
condition with respect to ∇+ and the Levi-Civita connection ∇g and show that all our solutions
for ∇+ also solve the equations of motion.

Theorem 4.4. Let N(2, 1) be a compact SU(2)-nilmanifold as above, ∇+ the torsion connection
and Aλ,µ,τ the SU(2)-instanton given in Proposition 4.3. Let (λ, µ, τ) 6= (0, 0, 0) be such that
λ2 + µ2 + τ2 < a2 + b2 + c2; then

dT = 2π2α′ (p1(∇+)− p1(Aλ,µ,τ )),

where α′ = 2(a2 + b2 + c2 − λ2 − µ2 − τ2)−1 > 0.
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Therefore, the nilmanifold manifold (N(2, 1), η, Fs, Aλ,µ,τ ,∇+) is a compact solution to the
supersymmetry equations (1.3) obeying the anomaly cancellation (1.2) and solving the equations
of motion (1.5) in dimension 5.

Denote r = a2 + b2 + c2, the Riemannian metric can be expressed locally by
i) If (a, b) 6= (0, 0) then

g = r2(dx1)2 + r2(dx2)2 + r(dy1)2 + r(a2 + b2)(dy2)2 + r4(x1dy1 + x2dy2 − dz)2,

ii) If a = b = 0 then

g = (dx1)2 + (dx2)2 + (dy1)2 + (dy2)2 + c2(x1dy1 + x2dy2 − dz)2.

Proof. The non-zero curvature forms of the torsion connection ∇+ are given by (4.11), which
implies that its first Pontrjagin form is

p1(∇+) = −(a2 + b2 + c2)2

2π2
e1234.

Now the proof follows directly from (4.10) and Proposition 4.3. The final assertion in the theorem
follows from Lemma 4.2 and Corollary 3.2. �

Proposition 4.5. Let N(2, 1) be a compact SU(2)-nilmanifold as above, ∇g the Levi-Civita con-
nection and Aλ,µ,τ the SU(2)-instanton given in Proposition 4.3. Let (λ, µ, τ) 6= (0, 0, 0) be such
that λ2 + µ2 + τ2 < 3

8(a2 + b2 + c2); then

dT = 2π2α′ (p1(∇g)− p1(Aλ,µ,τ )),

where α′ = 16
(
3(a2 + b2 + c2)− 8(λ2 + µ2 + τ2)

)−1
> 0.

Therefore, the nilmanifold manifold (N(2, 1), η, Fs, Aλ,µ,τ ,∇g) is a compact solution to the su-
persymmetry equations (1.3) satisfying the anomaly cancellation condition (1.2).

Proof. The non-zero curvature forms (Ωg)ij = −(Ωg)ji of the Levi-Civita connection ∇g are deter-
mined by (Ωg)i5 = 1

4(a2 + b2 + c2)ei5, for i = 1, . . . , 4, and

(Ωg)12 = −3a
4 de

5 − 1
4(a2 + b2 + c2)e34, (Ωg)13 = −3b

4 de
5 + 1

4(a2 + b2 + c2)e24,

(Ωg)14 = −3c
4 de

5 − 1
4(a2 + b2 + c2)e23, (Ωg)23 = 3c

4 de
5 − 1

4(a2 + b2 + c2)e14,

(Ωg)24 = −3b
4 de

5 + 1
4(a2 + b2 + c2)e13, (Ωg)34 = 3a

4 de
5 − 1

4(a2 + b2 + c2)e12.

This implies that the first Pontrjagin form of ∇g is

p1(∇g) = − 3
16π2

(a2 + b2 + c2)2e1234.

Now the proof follows directly from (4.10) and Proposition 4.3. �

Remark 4.6. The first Pontrjagin form of the connection ∇− is zero, therefore there is no
compact solution to the heterotic supersymmetry equations satisfying the anomaly cancellation
condition with ∇ = ∇−.

Acknowledgments. This work has been partially supported through grants MEC (Spain)
MTM2005-08757-C04-02, MTM2008-06540-C02/01-02 and under project ”Ingenio Mathematica
(i-MATH)” No. CSD2006-00032 (Consolider Ingenio 2010)Ó. S.I. is partially supported by the
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