000130990 001__ 130990
000130990 005__ 20240202151703.0
000130990 0247_ $$2doi$$a10.1109/JESTPE.2019.2935226
000130990 0248_ $$2sideral$$a119885
000130990 037__ $$aART-2020-119885
000130990 041__ $$aeng
000130990 100__ $$0(orcid)0000-0001-7901-9174$$aCarretero, Claudio$$uUniversidad de Zaragoza
000130990 245__ $$aMagnetizable Concrete Flux Concentrators for Wireless Inductive Power Transfer Applications
000130990 260__ $$c2020
000130990 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130990 5203_ $$aWireless inductive power transfer (IPT) systems incorporate magnetic flux concentrators in order to improve some features, as coupling and efficiency, and also to reduce electromagnetic emissions. Usually, flux concentrators consist of ferrite cores, which are arranged according to the size and shape of inductive power pads and also according to the application. Ferrite is the most common magnetic material due to its optimal balance between performance and cost. Despite the availability of ferrite cores with a wide set of shapes and sizes, in some applications, the optimal matching between inductive power paths and flux concentrators becomes problematic. In this article, magnetic cement concrete is evaluated as a size-adaptable material for the arrangement of flux concentrators of IPT systems. Both cement powder and concrete are magnetically characterized at different temperatures, field levels, and frequencies, and measurements show that the achieved levels of permeability, Curie''s temperature, and losses make this material attractive for potential flux concentrator uses. A potential IPT application is evaluated by means of a finite-element study and the results are applied to a prototype design. Feasibility of the use of the magnetic cement is tested by means of different power pads according to different flux concentrator arrangements.
000130990 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130990 590__ $$a4.472$$b2020
000130990 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b49 / 273 = 0.179$$c2020$$dQ1$$eT1
000130990 592__ $$a1.57$$b2020
000130990 593__ $$aEnergy Engineering and Power Technology$$c2020$$dQ1
000130990 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ1
000130990 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130990 700__ $$0(orcid)0000-0003-4858-9734$$aLope, Ignacio$$uUniversidad de Zaragoza
000130990 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000130990 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000130990 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000130990 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000130990 773__ $$g8, 3 (2020), 2696-2706$$pIEEE j. emerg. sel. top. power electron.$$tIEEE Journal of Emerging and Selected Topics in Power Electronics$$x2168-6777
000130990 8564_ $$s5188398$$uhttps://zaguan.unizar.es/record/130990/files/texto_completo.pdf$$yPostprint
000130990 8564_ $$s3406601$$uhttps://zaguan.unizar.es/record/130990/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130990 909CO $$ooai:zaguan.unizar.es:130990$$particulos$$pdriver
000130990 951__ $$a2024-02-02-14:51:42
000130990 980__ $$aARTICLE