000130992 001__ 130992
000130992 005__ 20240202151703.0
000130992 0247_ $$2doi$$a10.1109/TPEL.2020.3033833
000130992 0248_ $$2sideral$$a123146
000130992 037__ $$aART-2021-123146
000130992 041__ $$aeng
000130992 100__ $$0(orcid)0000-0002-5996-0474$$aPlumed, Emilio$$uUniversidad de Zaragoza
000130992 245__ $$aInduction Heating Adaptation of a Different-Sized Load with Matching Secondary Inductor to Achieve Uniform Heating and Enhance Vertical Displacement
000130992 260__ $$c2021
000130992 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130992 5203_ $$aThis article presents an inductively coupled heating application, that is, a combination of wireless power transfer and induction heating. The addition of a secondary inductor with a resonant capacitor directly beneath and attached to the ferromagnetic load allows us to improve induction heating adaptation of loads of different sizes to the primary inductor, enhancing power distribution and extending load distance while avoiding increased power losses and stress on electronic components. The extended distance can be used to implement the seamless induction concept, where the typical ceramic glass is substituted by the kitchen surface itself. Finite-element analysis simulations are carried out to determine the suitability of each possible design, and a scoring system is applied to determine the optimal solution, bearing in mind the delivered power, power factor, power distribution, and efficiency. A near optimal design is chosen to develop as a prototype. The prototype is tested under working conditions up to 3680 W at several distances, validating the simulations'' impedance parameters and verifying power distribution with a water boiling test and a dry test with a thermographic camera.
000130992 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/IIU-2023-2017$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103939RB-I00
000130992 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130992 590__ $$a5.967$$b2021
000130992 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b44 / 274 = 0.161$$c2021$$dQ1$$eT1
000130992 592__ $$a3.34$$b2021
000130992 593__ $$aElectrical and Electronic Engineering$$c2021$$dQ1
000130992 594__ $$a14.4$$b2021
000130992 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130992 700__ $$0(orcid)0000-0003-4858-9734$$aLope, Ignacio$$uUniversidad de Zaragoza
000130992 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000130992 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000130992 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000130992 773__ $$g36, 6 (2021), 6929-6942$$pIEEE trans. power electron.$$tIEEE Transactions on Power Electronics$$x0885-8993
000130992 8564_ $$s8185921$$uhttps://zaguan.unizar.es/record/130992/files/texto_completo.pdf$$yPostprint
000130992 8564_ $$s3238295$$uhttps://zaguan.unizar.es/record/130992/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130992 909CO $$ooai:zaguan.unizar.es:130992$$particulos$$pdriver
000130992 951__ $$a2024-02-02-14:51:49
000130992 980__ $$aARTICLE