000131019 001__ 131019
000131019 005__ 20240209144727.0
000131019 0247_ $$2doi$$a10.1016/j.jnnfm.2013.07.004
000131019 0248_ $$2sideral$$a136648
000131019 037__ $$aART-2013-136648
000131019 041__ $$aeng
000131019 100__ $$aBergamasco, L.
000131019 245__ $$aDirect numerical simulation of complex viscoelastic flows via fast lattice-Boltzmann solution of the Fokker-Planck equation
000131019 260__ $$c2013
000131019 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131019 5203_ $$aMicro–macro simulations of polymeric solutions rely on the coupling between macroscopic conservation equations for the fluid flow and stochastic differential equations for kinetic viscoelastic models at the microscopic scale. In the present work we introduce a novel micro–macro numerical approach, where the macroscopic equations are solved by a finite-volume method and the microscopic equation by a lattice-Boltzmann one. The kinetic model is given by molecular analogy with a finitely extensible non-linear elastic (FENE) dumbbell and is deterministically solved through an equivalent Fokker–Planck equation. The key features of the proposed approach are: (i) a proper scaling and coupling between the micro lattice-Boltzmann solution and the macro finite-volume one; (ii) a fast microscopic solver thanks to an implementation for Graphic Processing Unit (GPU) and the local adaptivity of the lattice-Boltzmann mesh; (iii) an operator-splitting algorithm for the convection of the macroscopic viscoelastic stresses instead of the whole probability density of the dumbbell configuration. This latter feature allows the application of the proposed method to non-homogeneous flow conditions with low memory-storage requirements. The model optimization is achieved through an extensive analysis of the lattice-Boltzmann solution, which finally provides control on the numerical error and on the computational time. The resulting micro–macro model is validated against the benchmark problem of a viscoelastic flow past a confined cylinder and the results obtained confirm the validity of the approach.
000131019 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000131019 590__ $$a1.944$$b2013
000131019 591__ $$aMECHANICS$$b26 / 139 = 0.187$$c2013$$dQ1$$eT1
000131019 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131019 700__ $$0(orcid)0000-0001-6906-9143$$aIzquierdo, S.$$uUniversidad de Zaragoza
000131019 700__ $$aAmmar, A.
000131019 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000131019 773__ $$g201 (2013), 29-38$$pJ. non-Newton. fluid mech.$$tJOURNAL OF NON-NEWTONIAN FLUID MECHANICS$$x0377-0257
000131019 8564_ $$s1396261$$uhttps://zaguan.unizar.es/record/131019/files/texto_completo.pdf$$yPostprint
000131019 8564_ $$s1864947$$uhttps://zaguan.unizar.es/record/131019/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131019 909CO $$ooai:zaguan.unizar.es:131019$$particulos$$pdriver
000131019 951__ $$a2024-02-09-14:46:17
000131019 980__ $$aARTICLE