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Abstract

Micro-macro simulations of polymeric solutions rely on the coupling between
macroscopic conservation equations for the fluid flow and stochastic differen-
tial equations for kinetic viscoelastic models at the microscopic scale. In the
present work we introduce a novel micro-macro numerical approach, where
the macroscopic equations are solved by a finite-volume method and the vis-
coelastic equation by a lattice-Boltzmann one. The kinetic model is given
by molecular analogy with a finitely extensible non-linear elastic (FENE)
dumbbell and is deterministically solved through an equivalent Fokker-Planck
equation. The key features of the proposed approach are: (i) a fast solution
of the microscopic scale equation; (ii) the transport of stresses in Eulerian
framework, thanks to an operator-splitting procedure on the Fokker-Planck
equation. This latter feature allows application of the proposed method
to non-homogeneous flow conditions. The model optimization is achieved
through an extensive analysis of the lattice Boltzmann solution, which pro-
vides control on the numerical error in the domain and on the computa-
tional time. The resulting micro-macro model is validated against the two-
dimensional benchmark problem of a viscoelastic flow past a confined cylin-
der. As a further improvement, three acceleration strategies for the lattice
Boltzmann solution on graphic processing units are introduced and the rel-
ative speed-up discussed.
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1. Introduction

One of the most commonly adopted practices for the simulation of dilute
polymeric suspensions relies on macroscopic constitutive equations, derived
from molecular models and solved via well-established numerical methods [1].
The advantage of this approach is the low computational cost associated, the
drawback is that some kinetic models does not have a closed-form contin-
uous counterpart. With regards to the finitely extensible non-linear elastic
(FENE) model for example, a rheological law can only be derived under
closure approximations (i.e. FENE-P, FENE-LS) [2]. The resulting models
are then able to phenomenologically describe the basic flow features but the
underlying theoretical assumptions can hinder accuracy in the retrieval of
relevant viscoelastic phenomena.
In a more general modeling strategy, the kinetic origin of the molecular mod-
els is retained [3]. Methods using this approach are generally described as
micro-macro models, due to the separated solution of the micro and macro
scales. Continuity and momentum equations are solved using continuous
equations (macro-scale) and kinetic equations are solved by stochastic or de-
terministic methods (micro-scale) [4]. In this framework, one of the most
popular methodologies is the CONNFFESSIT approach, where a finite ele-
ment solution of the macroscopic equations is combined with stochastic simu-
lations for the dumbbell configuration [5]. One of the major issues concerned
with this approach is the high computational expense and the embedded sta-
tistical noise, which can be filtered using variance reduction techniques [6].
Another similar and commonly used approach is the Brownian configuration
field method [7]. This method already embeds efficient variance reduction, as
long as individual molecules are clustered in continuous configuration fields
according to their initial configuration and applied force, but the computa-
tional cost of the stochastic simulation is anyway a limit.
An alternative approach for noise reduction and faster computations consists
in the solution of an equivalent Fokker-Planck equation for the probability
density of the dumbbell configuration. However, a literature review reveals
that due to the dimensionality of the problem and the lack of efficient numer-
ical methods to solve the Fokker-Planck equation, little progress has been
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done in this framework [4] and no method prevail. Relevant recent work
about the direct solution of the Fokker-Planck equation for complex flows
relies on a Galerkin spectral element technique for 2D [8] and the relative
extension to 3D [9].
Another group of promising methods are those that approximate the solution
of the Fokker-Planck equation reducing the dimensionality of the problem.
This order-reduction can be done a priori, like in the lattice-Fokker-Planck
method [10], or a posteriori like in the proper generalized decomposition [11].
Either technique aims to systematically reduce the degrees of freedom and
therefore the computational expense.
In this work we focus on direct deterministic numerical methods, therefore
no approximation occurs beyond mesh resolution. The proposed approach
relies on a previous work by Ammar [12] about a lattice Boltzmann solution
of the Fokker-Planck equation for homogeneous flows. Recently this method
has been also theoretically analyzed [13] and applied for the solution of a
population balance equation (a kinetic-like equation similar to the Fokker-
Planck) [14]. However, none of the previous works [12, 13, 14] deals with
the coupling of the kinetic solution with macroscopic fields, thus we investi-
gate efficient ways to exploit it in multi-scale simulations. In the proposed
micro-macro model, the macroscopic equations are solved by a finite-volume
method using the commercial solver ANSYS Fluent v14.0, while the micro-
scopic equation is solved by a lattice-Boltzmann method. The Fokker-Planck
equation is solved using a time-splitting procedure, which allows the trans-
port of stresses in a full Eulerian framework and thus the application to
non-homogeneous flows.
The outlines of the paper are as follows: the governing equations for the poly-
meric suspension and a derivation of the stochastic equation for the FENE
dumbbell model are firstly introduced; successively, the equivalent Fokker-
Planck equation is derived and the solution strategy explained (Section 2). In
the following (Section 3), the numerical approaches for the continuum and the
kinetic equations are discussed, together with the algorithm for the coupled
solution. Section 4 comprises the numerical analysis of the sub-grid solution,
the validation of the coupled model and its optimization. The last section 5
is dedicated to the acceleration on graphic card and to the relative coupling
with the macroscopic solver. A brief summary of the results obtained and
an outlook on further developments concludes the paper (Section 6).
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2. Theoretical model

2.1. Hydrodynamic system

Let us consider a polymeric solution of a Newtonian and a viscoelastic fluid.
Assuming the flow to be incompressible and isothermal, mass and momentum
conservation reads:

∇x · v = 0; (1)

ρ
∂v

∂t
+ ρ∇x · (v⊗ v) = −∇xp+∇x · σ; (2)

where ρ is the density, p the pressure, v the velocity vector and the subscript
x denotes operators in the physical space. For the sake of clarity, we remark
that the transient and the advective terms are reported for generality, but in
the following we drop them as long as in this paper we are concerned with
steady-state Stokes flow. The total stress tensor σ, embeds contributions
from both the Newtonian solvent σs and the polymeric solute σp, therefore
σ = σs + σp. Denoting by µs the dynamic viscosity of the solvent, σs is
given by Newton’s law as:

σs = µs

(

∇xv+ (∇xv)
†
)

= µsγ̇; (3)

having indicated with γ̇ the rate of strain tensor. In order to close the hydro-
dynamic system, an additional equation must be solved for the viscoelastic
contribution σp.

2.2. Viscoelastic model

In the simplest micro-mechanical approach for polymer rheology, molecular
chains are modeled by two beads and a spring connector, that is by a non-rigid
dumbbell immersed in a fluid. A general kinetic model can then be derived
considering the equations of motion of the beads in the dumbbell, namely
the equilibrium of inertial, frictional, Brownian and connector forces [15].
For a j-th bead located in ri, the equilibrium yields the so called Langevin
equation:

mj
d

dt

(

drj
dt

− v (rj)

)

= ζj

(

drj
dt

− v (rj)

)

+ σ
dWj

dt
+ Fj

c; (4)
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with m being the mass of the bead, ζ a drag coefficient, σ a coefficient for the
standard Wiener process W and Fc the connector force. Indicating with kB
the Boltzmann constant and T the absolute temperature, σ =

√
2kBζT from

the principle of equipartition of energy [1]. Assuming high friction regime and
thus over-dumped Brownian dynamics [16], the inertial term on the left-hand
side can be dropped and, indicating with ξ = r2 − r1 the end-to-end vector
of a dumbbell, yields the following (Itô) stochastic differential equation:

d

dt
ξ = κ · ξ − 2

ζ
Fc (ξ) +

√

4kBT

ζ

d

dt
W; (5)

where W is a standard Brownian motion (W2 −W1) /
√
2 and the symbol

κ has been adopted for the transpose of the velocity gradient tensor (∇xv)
†.

The peculiarity of the dumbbell model lies in the expression of the connector
force law Fc (ξ). In this work we are concerned with the finitely extensible
non-linear elastic model, therefore indicating with h the spring constant and
ξ0 a finite extensibility parameter, the connector force reads:

Fc (ξ) =
h

1− ||ξ||2 /ξ02
ξ; (6)

with ||·|| indicating vector norm. This entropic force law, originally proposed
by Warner [17], exhibits linear behavior for small extensions and the finite
length ξ0 in the limit of an infinite force. In a stochastic approach, Eq. (5)
should then be stochastically solved for the dumbbell configurations in the
random process W with the spring force law (6).
The ordinary stochastic differential equation (5), can be associated with a
partial differential equation for a probability density function (PDF), which
can then be deterministically solved in place of a large ensemble of realiza-
tions for the Brownian driver. In this case the related probability density
function ψ (x, ξ, t) satisfies the Fokker-Planck equation [18]:

∂ψ

∂t
+ v · ∇xψ +∇ξ ·

[(

κ · ξ − 2

ζ
Fc (ξ)

)

ψ

]

=
2kBT

ζ
∇2

ξψ; (7)

which is also called Smoluchowski equation in polymer science. Index ξ
on operators indicates that they act in the configuration space. Due to its
definition in two spaces and the dimensionality, the solution of Eq. (7) is
non-trivial and we proceed as detailed in the next section.
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2.3. Solution strategy

In order to solve the Fokker-Planck equation directly, we consider a time-
splitting procedure similar to that proposed by Lozinski [8]. Following this
idea, the linear operators acting in the configuration space are separated from
those acting in the physical space. In this way Eq. (7) can be firstly solved
in the only configuration space for an intermediate distribution function ψ̃,
which is then used for the solution in the only physical space. We adopt a
mixed explicit/implicit framework for the two stages, thus:

ψ̃n − ψn

∆t
= −∇ξ ·

[(

κ · ξ − 2

ζ
Fc (ξ)

)

ψn

]

+
2kBT

ζ
∇2

ξψ
n; (8)

ψn+1 − ψ̃n

∆t
+ v · ∇xψ

n+1 = 0; (9)

thus Eq. (7) reduces to an advection-diffusion equation in the configuration
space (8) and an advection equation in physical space (9). Let us now firstly
focus on the first stage for Eq. (8): the space scaling is achieved considering
a relaxation time θ = ζ/4h and a dimensionless finite extensibility parameter
b = ξ20h/kBT , therefore ξ is made dimensionless with

√

kBT/h, κ with 1/θ
and time with θ, thus the resulting dimensionless equation reads:

ψ̃n − ψn

∆t̆
= −∇ξ̆ ·

[(

κ̆ · ξ̆ − 1

2
H(ξ̆)ξ̆

)

ψn

]

+ ᾰ∇2
ξ̆
ψn; (10)

with the diffusion coefficient being ᾰ = 1/2. From now on, the convection
vector of ψ in the configuration space (terms in round brackets on right-hand
side of Eq. (10)) will be indicated with u for convenience. The reader should
notice that the scaling of the velocity gradient tensor κ represents the link
between the physical velocity field and the convection vector u through the
relaxation time θ of the polymer. On the basis of this consideration, we
define a microscopic (or local) Weissenberg number that will be used later,
based on the second invariant of the rate of strain tensor as:

Wim = θ

√

1

2
γ̇ : γ̇. (11)

Using the same scaling parameters as above, the connector force law Fc (ξ)
in Eq. (6) is also made dimensionless as:
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H(ξ̆) =
1

1−
∣

∣

∣

∣

∣

∣
ξ̆

∣

∣

∣

∣

∣

∣

2

/b
. (12)

Equation (10) with the connector force law (12) is therefore the final dimen-
sionless equation to be solved in the configuration space. In this work we
assume the dumbbells to be always laying in the same plane, therefore the
configuration space is two-dimensional and the dumbbell extensibility do-
main (support of the PDF) results in a disc of radius

√
b. In this first stage,

Eq. (10) is solved for an equilibrium solution of ψ̃n for the local convection
vector u. The details on the numerical method together with its optimization
will be extensively discussed later.
At this point, the obtained intermediate ψ̃n should be convected in phys-
ical space by Eq. (9) according to the second stage of the time-splitting
procedure. However, we note that the convection of the full PDF in an Eule-
rian framework would require a prohibitively amount of data to be retained
and transported. The problem can be sensibly reduced considering that the
final target for the hydrodynamic system is the viscoelastic stress tensor.
Therefore we proceed by computing an intermediate stress tensor, which is
convected in physical space in place of the PDF. Indicating then with 〈〈·〉〉
the ensemble averaging operator, the intermediate dimensionless viscoelastic
stress tensor ˜̆σn

p is calculated from ψ̃n using the Kramers expression [3]:

˜̆σn
p = 〈〈H(ξ̆)ξ̆ ⊗ ξ̆〉〉 − I =

∫

||ξ̆||2<b

ψ̃n(H(ξ̆)ξ̆ ⊗ ξ̆)dξ̆ − I; (13)

and convected according to Eq. (9) in place of the distribution function:

σ̆n+1
p − ˜̆σn

p

∆t
+ v · ∇˜̆σn+1

p = 0. (14)

In the iterative solution adopted in this work, this procedure is formally
equivalent to the convection of the PDF before computing stresses (the nu-
merical procedure will be discussed in the next section). Furthermore, the
conservation of stresses is analogous to the conservation of the second order
moment of the distribution, which is actually the only needed information
for the solution. The advantage of this approach is that the second stage
for the solution of the Fokker-Planck equation (9), reduces to the convective
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Figure 1: (Color online) Lattice stencils and relative discrete distribution functions: five
links for D2Q5 (black color) and four additional links for D2Q9 (gray diagonals).

transport of three scalar quantities, one for each component of the symmetric
stress tensor. In this case the choice of the time step ∆t has no theoretical
justification and is chosen to achieve convergence of the global solution.
Finally, the dimensionless stress tensor is scaled-up to its corresponding in
the physical space, to serve as volumetric source term in the momentum
equation (2). Indicating with nc the number of polymer chains per unit vol-
ume, an equivalent polymer viscosity can be defined as µp = θnckBT and the
extra stress is scaled as [19]:

σp =
µP

θ
σ̆n+1

p . (15)

3. Numerical methods

3.1. Finite Volume Method

The macroscopic governing equations (1) and (2) and the transport of stresses
(14) are solved by finite volume method (FVM). In this approach, trans-
port equations are numerically solved on a discretized computational domain
(mesh) and the conserved variables are calculated at cell centers. Partial
differential equations are therefore converted to algebraic equations by inte-
gration about the cells (or control volumes), for example Eq. (2):

∫

Vc

ρ
∂v

∂t
dV +

∮

ρ∇x · (v⊗ v) dA =

∮

(−∇xp+∇x · σ) dA. (16)
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Equation (16) is then applied to each control volume and its neighboring
cells in the domain, resulting in a system of algebraic equations with sparse
coefficient matrix to be solved. Fluxes at cell faces, which are required for
convective terms, can then be interpolated using several different numerical
schemes: in this paper we adopt a third order quadratic upwind scheme
(QUICK) for momentum (2) and transport of stresses (14) and a second order
scheme for pressure interpolation. For the sake of clarity, we remark that
despite the hyperbolic nature of Eq. (14), the solution is sufficiently smooth
to be solved with a third order scheme for highly-convective transport. The
interested reader can refer for example to [20] for details on the methods.

3.2. Lattice Boltzmann Method

The advection-diffusion equation for the FENE model (10) is solved by lat-
tice Boltzmann method (LBM). This mesoscopic approach relies on the Boltz-
mann transport equation, whose discrete form in the Bhatnagar-Gross-Krook
(BGK) approximation of the collision operator, reads as [21]:

fi

(

ξ̆ + ciδt̆, t̆+ δt̆
)

− fi

(

ξ̆, t̆
)

= −1

τ

(

fi

(

ξ̆, t̆
)

− f eq
i

(

ξ̆, t̆
))

; (17)

with δt̆ being the time step, fi the discrete particle distribution functions and
ci the associated microscopic velocity vectors. The equilibrium distribution
function f eq

i can be derived, for example, via second-order Taylor expansion
in the Mach number of the Maxwell-Boltzmann equilibrium [22]:

f eq
i =

(

1 +
ciu

c2s
+

(ciu)
2

2c4s
− ||u||2

2c2s

)

ωiψ; (18)

where cs is the lattice speed of sound that, indicating with δξ̆ the lattice
spacing and thus c = δξ̆/δt̆ the lattice speed, is defined as cs = c/

√
3. The

reader should notice that in this case we retain the tilde notation for space
and time for analogy with the equation being solved (10), but rigorously we
should consider dimensionless lattice units. Macroscopic quantities can be
recovered from the moments of the distribution function:

ψ =
∑

i

fi =
∑

i

f eq
i ; (19)
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Figure 2: (Color online) Shaded surface (in polar coordinates) of the analytical equilibrium
PDF (Eq. 23) on a 1,681 DoF lattice (a) and ℓ2-norm convergence of ψ with τ = 0.55 (b).

ψu =
∑

i

cif
eq
i ; (20)

ψ
(

uu+ c2sI
)

=
∑

i

cicif
eq
i ; (21)

which also allow to recover the macroscopic equation (10) by multi-scale
expansion and thus the following expression for the relaxation time (see Ap-
pendix A for details):

τ =
ᾰ

δt̆cs2
+

1

2
. (22)

Given the advective-diffusive nature of Eq. (10), the numerical solution can
be carried out on two lattice topologies, D2Q9 and D2Q5 (Fig. 1). The
lattice constants for both stencils can be found in Appendix B. The domain
length l is imposed to be 20 percent larger then the domain of existence of the
PDF, therefore indicating with N the number of nodes, the lattice spacing
δξ̆ is given by l/N .

3.3. Coupled numerical algorithm

The numerical solution of the coupled model has been carried out using
the commercial CFD code ANSYS Fluent v14.0. The lattice Boltzmann
solution is called at cell centers as a sub-grid routine via compiled-C user
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Figure 3: (Color online) Start-up plane Couette flow: shaded surface (in polar coordinates)
of the equilibrium PDF for Wim = 5 on a 1,681 DoF lattice (a) and dimensionless shear
stress evolution σ̆Pxy

for different Wim on a D2Q9 lattice with 3,721 DoF and τ = 0.55
(b).

defined function (UDF). The numerical procedure can be summarized as
follows:

1. solution of the governing equations by finite volume method: Eq. (1)
and (2);

2. sub-grid lattice Boltzmann solution of the FENE kinetic equation: Eq.
(10);

3. computation of the local viscoelastic stress tensor: Eq. (13);

4. convective transport of the viscoelastic stresses: Eq. (14);

5. addition of the extra-stress to the momentum equation: (Eq. 2).

The procedure is iteratively repeated until global convergence. The conver-
gence criterion for the FVM iterations is a 10−8 residual while for global
convergence is 10−4. For numerical stability, a segregated algorithm (SIM-
PLE) is used for the pressure-velocity coupling and the sub-grid solution is
computed at the end of the FVM iteration.

4. Results and discussion

4.1. Sub-grid solution analysis

In this section the tilde notation and superscripts introduced in section 2.3
are omitted for readability, but they should be kept in mind in the following
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Figure 4: (Color online) Error convergence for Wim = 1 and 5 on the two lattices (a) and
stability map for D2Q9 and D2Q5 lattices (b).

analysis. The relaxation of the probability density ψ(ξ̆, t̆) to equilibrium is
tested considering that for null velocity gradient κ̆, an analytical solution for
Eq. (10) can be found in the form [12]:

ψeq =
H(ξ̆)−b/2

∫

H(ξ̆)−b/2dξ̆
; (23)

which for a dimensionless dumbbell extensibility b = 10 (constant in the pa-
per), yields the equilibrium distribution shown in Fig. 2(a). Given then an
initial distribution function ψ0 (constant in this case), satisfying the normal-
ity condition

∫

ψ(ξ̆)dξ̆ = 1, the relaxation rate and error convergence are
analyzed by an ℓ2-norm with respect to the reference solution defined as:

||ε||2 =
1

N

N
∑

k=1

√

ψ2
eq − ψ2

t ; (24)

being ψt the distribution function at time t. The convergence criterion for
relaxation is a 10−8 residual calculated as backward finite difference on the
norm. The analysis for the two lattices shows that the error of the 8-neighbors
lattice is slightly larger than that of the 4-neighbors one (see Fig. 2(b)).
Passing now to the analysis of non-null κ̆ gradient, we examine the time evo-
lution of the shear stress σ̆pxy for a start-up planar Couette flow [0, κ̆xy; 0, 0].
The initial distribution function is in this case (as in the rest of the paper)
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given as Eq. (23). According to its definition (11), in this case the local Weis-
senberg number corresponds to the magnitude of the component κ̆xy itself.
The obtained equilibrium PDF for Wim = 5 is shown in Fig. 3(a), while the
stress evolution for varying Wim in Fig. 3(b). In this case the relaxation to
equilibrium is checked by the same residual criterion as above, but applied
on the shear stress. The results obtained are consistent with concerning lit-
erature (see for example the results obtained by Leonenko and Phillips [23]
using a reduced basis approximation). The error analysis has been carried
out for Wim = 1 and Wim = 5 and is shown in Fig. 4(a). To allow a proper
visualization of the comparison, the shear stress has been normalized using
the value obtained with the highest number of nodes σ̆pxy/σ̆

ref
pxy for each case.

Notice as for a higher Wim the solution requires a higher number of nodes to
converge, in particular for the D2Q9 lattice. This behavior can be associated
with the shape of the equilibrium distribution function, that for lower Wim
is closer to the initial condition (Fig. 2(a)) than for a higherWim (Fig. 3(a)).

Table 1: Comparison of the computational time [s] and relative numerical error [%] for
the two lattices for τ = 0.55 and τ = τmax (start-up plane Couette flow at Wim = 5).

stencil DoF 1,681 3,721 6,561 10,201 14,641

D2Q9

τ = 0.55 0.98 4.88 15.24 36.86 80.54

τ = τmax 0.33 0.87 2.48 4.63 8.43

speed-up 3.0 5.6 6.1 8.0 9.6

error 0.5357 -0.1933 -0.1538 -0.1690 -0.1092

D2Q5

τ = 0.55 0.62 3.11 6.45 9.93 14.24

τ = τmax 0.2 0.63 1.93 3.92 7.03

speed-up 3.1 4.9 3.4 2.5 2.0

error 0.0764 -0.0594 -0.0297 -0.0347 -0.0198

An analysis of the stability domains for the two tested lattices has been also
carried out for Wim in the range 1 to 10. The results show that the stability
range of the D2Q9 is larger than that of the D2Q5 lattice in the region of
lowWim and high DoF (Fig. 4(b)). Despite the increased stability, the error
of the 8-neighbors lattice is also slightly larger than that of the 4-neighbors
one (Fig. 4(a)).
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Figure 5: (Color online) (a) Mesh layout for the computational domain (1,770 cells dis-
played) and (b) discrete distribution of Wim in the physical domain (mesh M1, number
of bins 50).

Table 1 shows the comparison of the computational time required by the
two lattices to converge to equilibrium for the start-up plane Couette flow at
Wim = 5, using the minimum relaxation time τ = 0.55 and the maximum
stable allowed on the basis of of the stability map. The tested CPU is an
Intel Xeon X5650 2.67GHz. The D2Q5 lattice requires less computational
time due to the reduced number of links and therefore of computational
operations, however the speed-up for the D2Q9, when moving from τmin to
τmax, is greater due to the larger stability range. The relative numerical
error introduced increasing the relaxation time for the two lattices is anyway
always lower than 1% and the maximum speed-up achievable is nearly ten
times for the D2Q9 lattice.
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4.2. Coupled model

In order to validate our model, we decided to adopt a commonly used bench-
mark problem: a two-dimensional viscoelastic flow around a cylinder confined
between two parallel plates [1]. The computational domain is shown in Fig.
5(a), where only 1,770 cells are displayed to allow a proper visualization of
the mesh layout. In order to save in computational time, only half of the
domain is studied and symmetry conditions are applied on the lower bound-
aries. The domain extent is 4 m length (L), 0.5 m height (H) and the hole is
0.25 radius (R) centered in the origin. The ratio of the radius of the cylinder
to the half-width of the channel has been chosen to be Λ = 0.5 and the ratio
of the solvent to the total viscosity is β = µs/(µs + µp) = 0.59 [1, 9]. The
other boundary conditions are: stream-wise periodicity between inlet (AB)
and outflow (CD); no-slip for momentum and homogeneous Neumann for
convection of stresses on the hole and upper boundary (BC). Indicating with
〈·〉 the volume-averaging operator, we define for this problem a macroscopic
(or global) Weissenberg and Reynolds number based on the average velocity
at inlet (or outlet):

WiM =
〈v〉
R
θ = 〈γ̇〉 θ; ReM =

ρ 〈v〉R
µ

. (25)

The Reynolds number is kept constant to 10−3 (creeping flow) in all cases.
In order to test the FVM mesh independence, the solution has been carried
out on two different grids, respectively of 12,500 (M1) and 17,500 (M2). The
number of nodes and relaxation time for the sub-grid solution are N = 81
and τ = 0.55 (D2Q9). The profiles of dimensionless viscoelastic stresses on
the symmetry plane and on the cylinder surface forWiM = 0.6 are consistent
with those obtained by Chauvière and Lozinski [9] with a Galerkin spectral
element method (Fig. 7). The dimensionless dumbbell elongations in the
domain for WiM = 0.9 (Fig. 7), are also qualitatively consistent with the
spectral method for the 3D case (see [9] for the comparison between 2D and
3D solution). As further validation we also compare the drag factor, which
is defined as follows:

CD =
Fx

4πR(µs + µp) 〈v〉
; (26)

where Fx is the drag force on the cylinder surface (with polar angle ϑ),
including pressure, viscous and viscoelastic contributions:
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Fx = 2

∫ π

0

[(

−p+ 2µs
∂vx
∂x

+ σpxx

)

cosϑ+

(

µs

(

∂vy
∂x

+
∂vx
∂y

)

+ σpxy

)

sinϑ

]

Rdϑ.

(27)

The obtained values of the drag factor for different Weissenberg numbers are
reported in table 2. A final assessment of the numerical solution is given by
comparison of the velocity profiles obtained in Fig. (5(b)).
The sub-grid solution has been distributed on 8 cores Intel Xeon X5650
2.67GHz, reducing 8 times the computational time which results in 6.5h/iteration
for mesh M1. An important advantage of this approach indeed, is that it is
linearly scalable on computing nodes (i.e. clusters), hence this time can be
reduced according to the computational power available.

Table 2: Comparison of the calculated drag factor with the results obtained by Chauvière
and Lozinski [9] for different Weissenberg number.

Wi 0.6 0.9 1.1

CD

CD [9] 8.8925 8.5521 8.4056

Let us now focus on a more detailed analysis of the case: solving the macro-
scopic fields for WiM = 0, yields the relative physical velocity gradient ∇xv

that can be used to extrapolate the corresponding Wim (Eq. 11) in the do-
main for a given WiM . For the sake of clarity, we remark that strictly this
procedure is only valid for a preliminary analysis, as long as the streamlines
modifies with the converging solution. However, in the tested range of WiM
(0.1÷ 0.9) for Stokes flow, the velocity gradient modifications are small [24]
and it provides a good approximation.
The discrete distribution of local Weissenberg number for WiM = 0.6 on
mesh M1 is shown in Fig. 5(c). For this case, the local Weissenberg ranges
between 0 and 9, with the highest frequencies between 0 and 2 and tail be-
tween 2 and 9. The parameters for the sub-grid solution (N and τ) can then
be chosen according to the following criteria:

1. Minimize numerical error: high lattice resolution and minimum relaxation
time are to be used. This approach assures converged solution throughout
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the domain but non-homogeneous numerical error. The computational cost
is high due to excessive number of nodes in low −Wim regions.

2. Maximize computational speed: coarse lattice resolution and maximum
stable relaxation time. The lattice parameters are chosen according to the
maximum value of Wim in the domain, that is the coarsest allowed lattice
and the maximum stable relaxation time. This approach does not guarantee
constant nor converged numerical error. The maximum error depends on the
choice of the lattice size (Fig. 4(a)).

3. Locally-adaptive: lattice resolution based on local Wim. The lattice pa-
rameters are dynamically adapted according to the local Wim (Fig. 5(c)).
Therefore, coarser lattices are used in low −Wim regions and finer lattices
in high −Wim ones. This approach represents a trade-off between the two
above discussed ones and allows to optimize the computational speed, pro-
viding control on the error. The number of different lattices to use can be
chosen on the basis of an expanded analysis such as that in Fig. 4(a), ac-
cording to the desirable degree of speed-up/error control.

An overview of the three approaches is reported in Table 3. The parameters
for the comparison of the achievable speed-up are: Nmin = 41, Nmax =
121, τmin = 0.55 and τmax the maximum local stable value for the locally-
adaptive approach (Fig. 4(b)) and the maximum stable value for Wim = 9
for optimizing the computational speed (0.6 for D2Q9 and 0.55 for D2Q5).
In order to compare the advantage of the locally-adaptive approach here
we use two lattice sizes, namely N = 81 for Wim = 1 ÷ 5 and N = 121
for Wim = 5 ÷ 9. We remark that this choice is made to illustrate the
methodology but the number of lattice resolutions is arbitrary.

5. GPU acceleration and coupling

In this section we present and discuss the methodology that progressively
lead us to the faster implementation for Graphic Processing Unit (GPU).
Going into the details of coding goes beyond the purpose of the present
work, therefore we provide a methodological description for each strategy.
A slightly more detailed description is given for the faster implementation
achieved. The available GPU is an NVIDIA Quadro 600 1GB DRAM
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(a) (b)

(c)

Figure 6: (Color online) Contours of dimensionless molecular elongations (configuration

tensor) for WiM = 0.6: (a) 〈〈ξ̆xξ̆x〉〉 (b) 〈〈ξ̆xξ̆y〉〉 (c) 〈〈ξ̆y ξ̆y〉〉

DDR3 96 cores and all the tests are performed in single-precision floating
point operations.

5.1. Sailfish implementation

Sailfish is an open-source code for computational fluid dynamics based on
lattice Boltzmann method and optimized for NVIDIA graphic cards [25].
The structure of the code is non-trivial as it makes use of different scripting
languages. The highest level code is Python, where the simulation param-
eters are set-up (LB-mesh size, methods, initial and boundary conditions).
The code generation passes then through Mako templates, which generate
CUDA C or OpenCL optimized code. The generated code is then compiled
on-the-fly and the resulting binary is run on graphic card. The code in its
current version (0.3) is primarily designed to solve Navier-Stokes equations,
however small changes in the lowest level kernels allow us to tailor it for our
purposes, namely to solve an advection-diffusion equation. The speed-up
achieved with respect to CPU reaches nearly 60x (see Fig. 8(a)).
The coupling with Fluent is then realized by means of serial dynamical
calls to Sailfish from compiled-C user defined function. Despite the simplic-
ity of implementation, this approach has proven not to be computationally
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Figure 7: (Color online) Profiles of the dimensionless viscoelastic stresses on the symme-
tries and on the cylinder for WiM = 0.6. Results for the two tested FVM meshes: (a)
σ̆Pxx

(b) σ̆Pxy
(c) σ̆Pyy

.

efficient due to the time required by Sailfish for the GPU code generation
and compilation for each call. The total time (or wall time) for a single call is
indeed significantly higher than the effective computational time on the GPU
cores (kernel time). A profiling of timing and GPU utilization is reported
in Fig. (8(b)). We conclude that Sailfish in its current version cannot be
straightforwardly exploited for our purposes and an ad-hoc implementation
for GPU has to be developed.

5.2. CUDA implementation 1: texture memory

The Compute Unified Device Architecture (CUDA) is a parallel comput-
ing platform and coding environment developed by NVIDIA [26], which
enables to exploit the power of graphic processing units for scientific applica-
tions (GPGPU). A GPU-oriented implementation for CUDA-enabled cards
can be all the way written in C or C++, taking advantage of the language
extensions (API) provided (see the CUDA Programming Guide [27]).
The general layout of a code, comprises a host function running on CPU and
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Table 3: Summary table of the three sub-grid solution strategies: ME (minimize error),
SA (strain-adaptive) and MS (maximize speed). The comparison of the computational
speed-up per FVM iteration refers to different approaches on the same stencil (results for
mesh M1).

stencil approach N τ error speed-up

D2Q9

(ME) minimize error Nmax τmin variable
13.9 (ME/SA)

(SA) strain-adaptive f(Wim) τmax controlled
17.6 (SA/MS)

(MS) maximize speed Nmin τmax variable

D2Q5

(ME) minimize error Nmax τmin variable
3.1 (ME/SA)

(SA) strain-adaptive f(Wim) τmax controlled
23.3 (SA/MS)

(MS) maximize speed Nmin τmax variable

kernel functions running on the GPU. The kernels therefore take advantage
of the parallelization on the graphic card. Due to the large computing power,
the bottleneck resides in the memory read/write operations. As a general
rule, a proper implementation should then reduce memory accesses as much
as possible and/or use faster memories available on the graphic card. In this
implementation for example we use texture memory, which is an read-only
memory that is spatially cached, making faster the data retrieval in the de-
vice memory [27].
The implementation relies on two kernels, one for the collision step and one
for the streaming. The LB-mesh is hierarchically divided into grid, blocks
and threads. Typically each node is assigned a thread, which is then handled
by a processor. Data is allocated and passed from CPU to GPU and vice-
versa, respectively at the beginning and at the end of the solution process.
The data exchange between the two kernels is optimized using textures, how-
ever this data passage represent a bottleneck in the code. By means of this
approach indeed the maximum speed-up achieved is around 25x with respect
to the CPU.

5.3. CUDA implementation 2: shared memory

In order to overcome the limit of the previous code, in this version we make
use of shared memory, an extremely fast on-chip memory. The main issues
to take into account for the implementation of a lattice Boltzmann method
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Figure 8: (Color online) Comparison of the computational time for compiled C and SAIL-
FISH (D2Q9 lattice with τ = 0.55) on the available hardware (a) and GPU profiling for
the coupling (normalized quantities).

is that it is of limited size (for our card is 48 KB) and that data is shared
only between threads belonging to the same block. A proper implementation
of a lattice Boltzmann method using shared memory was originally proposed
by Tölke [28]. We also refer ther reader to compare [29] for more details
on hardware and code excerpts. Here we propose a similar strategy, but
tailored for small LB-meshes (our case). The code relies on a single kernel
for collision and propagation and the mesh is processed by rows, therefore
each block corresponds to one mesh row and the number of threads to the
mesh width (Fig. 9(a)). In this way the size of the data loaded into shared
memory per block is limited to that required to process one row. Collision
and propagation are then performed on shared memory, where the horizontal
propagation of the distributions is straightforward within the block, while the
vertical one is achieved with a correct alignment between global and shared
memory. The coalescence of global memory accesses and the lack of bank
conflicts on shared memory has been checked using the CUDA visual pro-
filer [30] (we do not go into the details of these issues, the interested reader
can refer to the CUDA Programming Guide [27]). It is important to remark
that this implementation is tailored for small meshes and does not apply in
other cases. Fixing the block size equal to the mesh width indeed, sets a
constraint on the choice of the number of threads (which plays a key-role
for performance). This approach represent a tentative to properly exploit
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Figure 9: (Color online) Scheme of the CUDA implementation using shared memory (a)
and comparison of the computational time for compiled C and the CUDA implementation
using shared memory (D2Q9 and D2Q5 lattices with τ = 0.55) (b).

the GPU for the resolution of small meshes, which is not normally done but
relevant for our application.
The developed code is finally compiled with the CUDA compiler (nvcc) and
dynamically called from a Fluent user defined function. The sub-grid sim-
ulation is driven by passage and retrieval of the required variables between
the two compiled codes through a stream process.
With this implementation the speed-up reaches nearly 60x with respect to
the CPU, as shown in Fig. 9(b) and Table 4). The computational time per
VFM iteration for the D2Q5 lattice with N = 128 mesh and τ = 0.55 for
example, results in 4,5h on a single GPU. Local-adaption and utilization of
multiple GPUs still hold, thus providing the possibility of customization or
acceleration based on the methodology presented in Section 4.

6. Conclusions

In this work, a novel micro-macro model for dilute polymeric solutions in
Stokes flow has been presented. The proposed approach rely on a coupled
numerical solution for the macro and microscopic scales: a finite-volume
method for the fluid-flow equations and a lattice-Boltzmann method for the
kinetic viscoelastic model. The validity of the introduced model has been
proven against a complex benchmark problem of two-dimensional flow past
a confined cylinder. Various optimization strategies have been also discussed
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Table 4: Comparison of the computational time for C and CUDA (shared memory imple-
mentation).

N 96 128 160 192 224 256

D2Q9 CPU 30.4 95.5 235.8 483.0 889.0 1495.0

D2Q9 GPU 0.8 2.0 4.7 10.1 23.3 34.7

speed-up 38 48 50 48 38 43

D2Q5 CPU 19.0 60.0 149.0 303.5 567 948

D2Q5 GPU 0.4 1.3 2.5 5.0 9.6 7.1

speed-up 48 46 60 60 60 55

on the basis of a systematical analysis of the test case and of the numerical
methods. Advantages of the proposed approach are: (i) control of the trade-
off between numerical accuracy and computational cost; (ii) linear scalability
on distributed computing units.
Further optimization has been achieved with a proper implementation of the
sub-grid solution for graphic cards and an efficient coupling strategy. It has
been shown that the speed-up reaches nearly 60x with respect to a high-level
CPU. In this work we used a single graphic card, but the solution can still be
distributed on multiple units, thus further reducing the computational time.
For the sake of completeness we remark that in this work we proposed the
coupling with a finite volume method solver, but the accelerated sub-grid so-
lution can be easily called from other solvers (i.e. FEM-LBM or LBM-LBM
solutions).
Finally, the results obtained suggest that a direct numerical method together
with proper hardware implementation, may deserve attention in the frame-
work of numerical methods for complex fluids.

Appendix A. Asymptotic analysis

In this appendix we briefly report the procedure to recover the FENE equiv-
alent Fokker-Planck equation (10) from the lattice-BGK equation (17) via
asymptotic expansion (Chapman-Enskog procedure) [12]. Tilde notation is
omitted for readability.
Let us consider the 2-nd order Taylor expansion of the post-collision term
(first term on the left-hand side) in Eq. (17):
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Ωi (f) ≈ (∂t +∇ · ci) fi +
1

2

(

∂2t + 2∂t∇ · ci +∇∇ : cici
)

fi; (A.1)

and the following expansions of the time derivative ∂t and distribution func-
tion fi in terms of a small formal number ǫ (spatial derivative is not ex-
panded):

∂t = ǫ∂t1 + ǫ2∂t2 +O
(

ǫ3
)

; (A.2)

fi = f i
eq + ǫf i

(1) + ǫ2f i
(2) +O

(

ǫ3
)

. (A.3)

Applying (A.2) and (A.3) in eq. (A.1) yields the scale-separated form (A.4)
and (A.5). Combining to get rid of higher order derivatives yields (A.6).

(∂t1 +∇ · ci) f i
eq = − 1

τδt
f i

(1); (A.4)

∂t2f i
eq + (∂t1 +∇ · ci) f i

(1) +
δt

2
(∂t1 +∇ · ci)2 f i

eq = − 1

τδt
f i

(2); (A.5)

∂t2f i
eq +

(

1− 1

2τ

)

(∂t1 +∇ · ci) f i
(1) = − 1

τδt
f i

(2). (A.6)

Using now the 0-th order moment (19) and the condition (A.7) on the non-
equilibrium distribution functions, yields (A.8) and (A.9):

∑

i

f i
noneq =

∑

i

f i
(1,2) = 0; (A.7)

∂t1ψ +∇ · (ψu) = 0; (A.8)

∂t2ψ +

(

1− 1

2τ

)

∇ ·
∑

i

cif i
(1) = 0; (A.9)

Recovering f i
(1) from eq. (A.4), the sum in (A.9) becomes (A.10), rearrang-

ing (A.11):
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∑

i

cif i
(1) = −τδt

∑

i

ci (∂t1 +∇ · ci) f i
eq = −τδt

(

∂t1 (ψu) +∇ ·
[

ψ
(

uu+ c2sI
)])

;

(A.10)

∑

i

cif i
(1) = −τδt

(

u (∂t1ψ +∇ · (ψu)) + cs
2∇ψ

)

. (A.11)

Finally using (A.11) into (A.9) and reassembling scales, yields the final
macroscopic equation:

∂ψ

∂t
= −∇ξ · (uψ) + δt

(

τ − 1

2

)

cs
2∇2

ξψ; (A.12)

that from the comparison with (7), gives the following expression for the
lattice relaxation time:

τ =
α

δtcs2
+

1

2
. (A.13)

Appendix B. Lattice constants

The discrete velocities ci and weights ωi for the D2Q9 lattice are:

ci =











(0, 0) i = 0

(±c, 0), (0,±c) i = 1, 2, 3, 4

(±c,±c) i = 5, 6, 7, 8

ωi =











4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8

and for the D2Q5 lattice:

ci =

{

(0, 0) i = 0

(±c, 0), (0,±c) i = 1, 2, 3, 4
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ωi =

{

1/3 i = 0

1/6 i = 1, 2, 3, 4
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