
Design of Flower Constellations
Using Necklaces

DANIEL CASANOVA
University of Zaragoza, Spain
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This paper introduces a new approach in the design of optimal
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I. INTRODUCTION

Constellations of satellites have been used for a variety
of space missions (e.g., global navigation systems,
communications, Earth observation, reconnaissance, etc.),
and the improvement and design of new constellations are
a current topic aimed to reduce the cost of missions as
much as possible.

Symmetry plays a key role in satellite constellation
design. However, the concept of symmetry can be seen
from different perspectives. One of these is associated
with global coverage, wherein symmetry has spatial
meaning associated with the uniform distribution of
satellites. When the satellites all belong to the same
relative trajectory, as in regional or persistent observation
missions, then symmetry has a temporal meaning, in that
the time interval between the passage of two subsequent
satellites must be constant. Spatial and time symmetries
can be merged into symmetry in phasing space—the
(�, M)-space—where spatial and time distributions are
interconnected. This paper describes a study on how to
find symmetries in (�, M)-space for solutions that are
characterized by time and spatial regularities.

General theories in the design of satellite
constellations include the classic Walker constellations
[1] and the more recent Flower Constellations (FCs) [2].
The philosophic difference between Walker constellations
and the original FCs is the reference frame selected for
building symmetric distributions of satellites. Whereas
Walker chose the inertial reference frame, a generic
rotating reference frame was selected in the theory
of FCs.

The original theory of FCs, first presented in [2] and
then expanded in detail in [3, 4], was substantially
improved with the two-dimensional lattice theory
(2D-LFC) [5], making the theory independent of any
reference frame (inertial or rotating) and making the
theory work with minimal parameterization. More
recently, the three-dimensional (3D) lattice theory [6]
extended the 2D-LFC theory to account for the J2 effect
due to the Earth’s oblateness.

The evolution of the Flower Constellation theories is
interesting for many reasons: first, the deep connection
with the mathematical tools and properties of number
theory (Chinese remainder theorem, theory of lattices,
Hermite normal form, etc.); second, the level of
description using minimal parameterization, a property
useful for ensuring inclusion of all possible symmetric
solutions; and third, the important practical reason for
including the J2 effect; that is, to allow constellation
designers to use any inclination when selecting elliptical
orbits [6]. From a mathematical point of view, the theory
appears to have reached the final level of maturity,
whereas from a practical point of view, the following
question arises: Since most of these Lattice constellations
involve an impractically high number of satellites to
obtain full symmetry, is it possible to select a subset of
them and still obtain a symmetric phasing distribution?
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This paper provides a positive answer to this question
and gives a method to compute all these symmetric
subsets.

The location of all the satellites of a FC corresponds to
a lattice in (�, M)-space that can be regarded as a 3D torus
(both axes, M and �, are modulo 2π) [7, 8]. Throughout
this paper, symmetry is invariant from rigid translations in
(�, M)-space.

In this (�, M)-space, the initial orbit plane is made
with Nso admissible locations (available for the 2D-LFC
satellites), and these locations can be seen as a necklace of
Nso empty pearls. An actual number of satellites (Nrso,
actual pearls) less than the number of empty pearls can be
distributed in the empty pearls necklace. The purpose is to
find the proper necklaces and associated suitable shifting
parameters (to duplicate and shift the initial necklace in
the following orbit planes) to obtain the same initial
necklace when we reach the last orbit plane.

By solving the above problem, we are able to design
optimal satellite constellations made of few satellites,
while keeping the design parameter space as big as the
computer can tolerate. To solve this problem, basic
number theory knowledge is required. Due to the
mathematical complexity, to best explain the proposed
methodology, a final flowchart is provided to clarify how
the algorithms should be used to generate the necklaces
and the associated shifting parameters during the design
process.

II. FLOWER CONSTELLATION BACKGROUND

A. The Evolution of the Theory of Flower Constellations

A Flower Constellation, as defined in [2–4], is a set of
Ns satellites following the same (closed) trajectory with
respect to a rotating reference frame (e.g., fixed to the
Earth). This condition implies that:

1) The orbital period Tp of each satellite is a rational
multiple of the rotating frame period Td. That is, NpTp

= NdTd for some positive (coprime) integers Nd and Np.
2) The orbital parameters a, e, i and ω are the same for

all satellites.
3) The mean anomaly Mi and the right ascension of

the ascending node �i of each satellite satisfy

Np �i ≡ −Nd Mi mod (2π).

Item 1 guarantees that the trajectory in the rotating
frame is closed. Items 2 and 3 are necessary and sufficient
conditions to have all the satellites on the same trajectory
(a complete proof of this fact is given in [7, 8]).

Usually, when designing a Flower Constellation, the
compatibility (or resonant) parameters Nd and Np are
decided first, which immediately determines the orbital
period Tp and, therefore, the semimajor axis a. Then, the
orbital parameters e, i, and ω are selected, and finally, the
angles �i and Mi, starting from �1 = M1 = 0, are
computed by the recursive sequence

�i+1 ≡ �i + 2π
Fn

Fd

and

Mi+1 ≡ Mi − 2π
NpFn + FdFh(i)

FdNd

,

where Fn and Fd are two coprime positive integers and
Fh(i) is any sequence of numbers chosen in the set {1,
2, . . . , Nd}. It is easy to show that this procedure always
produces pairs (�i, Mi) consistent with the equation Np�i

≡ –NdMi mod(2π). For simplicity, the parameter Fh will
be considered constant. Currently a FC is specified by six
integer parameters (Nd, Np, Fd, Fn, Fh, Ns), as well as the
continuous parameters e, i, ω. This is the approach
followed so far in all the papers on Flower Constellations,
as well as in the simulation and visualization software
FCVAT [9].

It has been shown in [7, Thm 1], that the number of
satellites in a Flower Constellation designed under this
procedure cannot exceed NdFd/G satellites, where
G = gcd(Nd, NpFn + FdFh). A constellation with the
maximum number of satellites allowed by this theorem is
called either a secondary path (as in [4]) or a Harmonic
Flower Constellation (HFC) (as in [7]). The location of
HFC satellites in (�, M)-space is determined [7, Thm 2]
by three invariants: the number of inertial orbits Fd, the
number of satellites per orbit Nso = Nd/G, and the
configuration number Nc ∈ [1, Fd) given by the formula

Nc = En

Np Fn + Fd Fh

G
mod (Fd ), (1)

where En and Ed are any integers such that EnFn + EdFd

= 1. The numbers Fd, Nso, and Nc are always coprime.

B. 2D Lattice Flower Constellations

The 2D-LFC [5] can be described by five integer
parameters and three continuous parameters. The integer
parameters can be broken into two sets, the first describing
the phasing of the satellites and the second describing the
orbital period (or semimajor axis). The first set is {No, Nso,
Nc} where No is the number of orbital planes, Nso is the
number of satellites per orbit, and Nc is a phasing
parameter. The second set is {Np, Nd}, which satisfies the
compatibility equation

Np Tp = Nd Td, (2)

where Tp is the Keplerian orbital period and Td is the
period of the rotating reference frame (e.g., the sidereal
period of Earth’s rotation). This definition enforces the
repeating space-track requirement.

The phasing parameters define the right ascension of
the ascending node (�) and initial mean anomaly (M) as

�ij = 2π

No

(i − 1) and Mij = 2π

Nso

(j − 1) − Nc�ij

Nso

.

(3)
These equations can be rewritten in matrix notation as[

No 0

Nc Nso

] {
�ij

Mij

}
= 2π

{
i − 1

j − 1

}
, (4)
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Fig. 1. (�, M)-space of 2D-LFC with Nc = 0.

Fig. 2. (�, M)-space of 2D-LFC with Nc = 2.

where i = 1, . . . , No; j = 1, . . . , Nso; and Nc ∈ [1, No].
Satellite (i, j) is the jth satellite on the ith orbital plane.
The remaining parameters required to define the
constellation are continuous parameters that are the same
for all orbits in the constellation: the inclination angle,
eccentricity, and argument of periapsis. Note that since the
2D-LFC separates the satellite phasing from the orbit size,
nonrepeating space tracks can be used without affecting
the uniformity of the satellite distribution.

Since all satellites of a 2D-LFC have the same orbital
parameters a, e, i, and ω, the constellation is then
completely defined when the satellite phasing, provided
by the (�, M)-space, is given. Fig. 1 shows the distribution
of satellites in the LFC with Nso = 6, No = 8, and Nc = 0,
obtained by solving (4). To show how the value of Nc

influences the distribution of satellites, Fig. 2 shows the
distribution of satellites in the 2D-LFC with Nso = 6,
No = 8, and Nc = 2, obtained by solving (4).

Each point in (�, M)-space identifies one satellite of
the constellation. Usually, the mission budget limits the
number of constellation satellites to an upper assigned
value, say Ns max. The number of satellites in the
constellation, which can be computed as the determinant
of the 2 × 2 matrix of (4), satisfies Ns = NoNso ≤ Ns max.
On the other hand, No defines the number of orbital
planes, a number that is proportional to the number of

distinct launches needed to deploy the entire constellation,
which is also strongly constrained by the mission budget.
The remaining parameter, the configuration number Nc,
remains the only (integer) variable to play with. Because
of the limited possible values for Nc (they are actually No

values, only), there are not many different potential
configurations. This is a strong limitation in the design
process. To overcome this limitation, the following idea is
proposed and analyzed in this article.

Instead of directly searching for a 2D-LFC made with
a given number of satellites, we introduce a fictitious
satellite constellation with a much larger number of
satellites, and then we extract our constellation as a subset
of the larger one. Because we would like to preserve all
the nice properties of LFCs, we are automatically led to
the following problem: find all the subsets of Nrs real
satellites, selected from the fictitious constellation made
of Ns � Nrs total satellites, such that the satellite
distribution in (�, M)-space is symmetric in both M and
� axes. Here, symmetry should be understood in the
following sense: the satellites in each orbit have the same
exact pattern of mean anomalies, and orbit planes are
uniformly distributed in space.

Finding all these subsets will be a high-payoff effort
because the benefits of the necklace theory applied to
2D-LFC will be outstanding: new optimal solutions will
be found with an assigned minimum number of satellites
in a solution space whose dimension is only limited by the
available computational capability.

III. THE NECKLACE PROBLEM

Consider a set of Nrso satellites that can be arranged in
Nso available locations (with Nso ≥ Nrso) in a given orbit.
This set of satellites forms a “necklace” that is rotating
along the orbit and comes back to the original setup in an
orbital period. If the satellite locations are defined in terms
of mean anomaly, then the satellite necklace structure
moves rigidly in the mean anomaly space. The question
we answer here is: How many and which are all these
necklaces?

A. The Necklace Theory

In general, the necklace problem is a combinatorial
problem that answers the following question: How many
different arrangements of n pearls in a circular loop are
there, assuming that each pearl comes in one of k different
colors? Two arrangements that differ only by a rotation of
the loop are consider to be identical. The mathematical
solution to this problem (see [10]) is a simple application
of Burnside’s counting theorem and is summarized by the
following formula:

Nk(n) = 1

n

∑
d|n

ϕ(d)kn/d,

where the sum is taken over all the divisors d of n, and
ϕ(d) is called Euler’s totient function of d, an arithmetic
function that counts the number of positive integers less
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Fig. 3. Unlabeled necklaces with three pearls and two colors.

than or equal to d that are coprime to d. For example a
simple computation shows that ϕ(1) = ϕ(2) = 1, ϕ(3) =
ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6, and so on. In our
physical example k = 2, and these two “colors” represent
the presence and the absence of a satellite in the various
admissible locations. Therefore, the total number of
satellite necklaces is

N2(n) = 1

n

∑
d|n

ϕ(d) 2n/d . (5)

Mathematically, a necklace will be represented as a subset
G ⊆ {1, . . . , n}. Since we only consider unlabeled
necklaces, the two subsets G and G ′ that differ by an
additive constant are considered identical:

G = G ′ ⇔ ∃ s : G ≡ G ′ + s mod (n).

The set of all possible unlabeled necklaces with n pearls
and two colors will be identified by K(n). Fig. 3 shows all
possible unlabeled necklaces using three pearls of two
colors, that is, the elements of K(3). Notice that in Fig. 3,
the configurations {1, 2}, {2, 3}, and {1, 3} are all
represented with the set {1, 2} because it is possible to
obtain {1, 3} and {2, 3} from {1, 2} by performing a
suitable rotation. Similarly, the configurations {1}, {2},
and {3} are all equivalent to {1}. Therefore K(3) contains
only four elements: ∅, {1}, {1, 2}, and {1, 2, 3}.

Algorithm 1 (provided in the Appendix in
pseudocode), computes all possible necklaces involving a
total of Nso pearls, of which Nrso are black and Nso – Nrso

are white. To obtain all possible necklaces with Nso pearls,
it is necessary to call the algorithm with Nrso = 0, . . . , Nso.

B. Symmetries of the Necklaces

Let G be a necklace such that G ∈ K(n). We say that G
has a symmetry of length r if G and G + r coincide
modulo n.

As an example, consider the necklace G = {1, 3, 5, 7}
∈ K(8). What symmetries does it have?

• r = 2 is a symmetry, since G + 2 = {3, 5, 7, 9} is
equivalent to G modulo 8.

Fig. 4. Shifting determines location of satellites in constellation.

• r = 4 and r = 6 are also symmetries, since {5, 7, 9,
11} and {7, 9, 11, 13} reduce to {1, 3, 5, 7} modulo 8

• r = 1 is not a symmetry, since {2, 4, 6, 8} and {1, 3,
5, 7} do not coincide modulo 8.

From the example, it is easy to see that if r is a
symmetry of a necklace, then any multiple of r is also a
symmetry. This remark motivates our following definition:
for each necklace G ∈ K(n), the symmetry number of G,
denoted Sym(G), is the shortest of the symmetries of G.
Note that Sym(G) always divides n.

Sym(G) = min{1 ≤ r ≤ n : G + r ≡ G mod (n)} (6)

Algorithm 2 (provided in the Appendix) can be used to
find all the symmetries and the symmetry number of a
given necklace.

IV. NECKLACES AND 2D LATTICE FLOWER
CONSTELLATIONS

To generate the necklaces, the following idea is
adopted: consider a standard 2D-LFC (with parameters
Nso, No, and Nc), and instead of placing all satellites in
admissible locations, as provided by (3), a subset
(necklace) of admissible locations G ⊆ {1, 2, . . . , Nso} is
selected for actual satellites in the first orbital plane. This
configuration is then duplicated for each subsequent
orbital plane using a constant shifting parameter (an
integer k ∈ {0, . . . , Nso – 1}). The subset G can be any
necklace. Once G and the shifting parameters are given,
the constellation is automatically determined. Fig. 4 shows
the various positions of a satellite in the second orbital
plane with respect the first one in the first orbital plane as a
function of the shifting parameter k.

To perform a correct and unique shifting between
subsequent orbital planes, two problems must be taken
into consideration:

1) Consistency Problem: Because of the modular
nature of the � parameter, the shifting has to be chosen in
such a way that the group of satellites (necklace) in the
orbit with � = 0 coincides with the group of satellites
(necklace) in the orbit with � = 2π . This problem is
discussed in detail in the next subsection.
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Fig. 5. Amount �M in (�, M)-space.

2) Minimality Problem: Sometimes, for the same G,
two values of the shifting parameter generate the same
distribution of satellites in (�, M)-space. This is solved by
simply taking 0 ≤ k ≤ Sym(G) – 1.

Satellite constellations obtained from the above
procedure are called necklace Flower Constellations
(NFCs).

A. �M Shifting Between Subsequent Orbital Planes

According to (4), the first satellite (j = 1) in the first
orbit (i = 1) is chosen (without loss of generality) as M11

= 0 and �11 = 0. Taking into account (3), the mean
anomaly of our satellite in the next orbit will be:

M21 = − 2πNc

NoNso

. (7)

Then, the amount �M, called �M-shifting, between
subsequent orbits will be:

�M = − 2πNc

NoNso

+ k
2π

Nso

. (8)

This means that the mean anomalies of the satellites in the
second orbit can be obtained by adding �M to the mean
anomalies of the satellites of the first orbit. Similarly, the
mean anomalies on the third orbit are the mean anomalies
on the second plus �M, and so on.

After an orbital period, the mean anomaly of the
satellite will increase by

No�M = No

(
− 2πNc

NoNso

+ k
2π

Nso

)
= 2π

Nso

(kNo − Nc).

(9)
Fig. 5 shows the meaning of the value �M in a (�,
M)-space of a NFC G = {1, 3, 5, 7} with Nso = 8, No = 6,
and Nc = 2.

B. Admissible Pair (G, k)

If G is a necklace such that G ∈ K(Nso) and is paired
with a shifting parameter k ∈ {0, . . . , Nso – 1}, then the
pair (G, k) is called admissible if the distribution of
satellites in the initial orbit is invariant by the adding

Fig. 6. NFC generated by admissible pair.

Fig. 7. Different values of k can generate same configuration.

No�M to the mean anomaly of each satellite:

2π

Nso

G + 2π

Nso

(kNo − Nc) ≡ 2π

Nso

G mod (2π) (10)

The logic behind this equation is the following: the term
2π
Nso

G represents the mean anomalies of the satellites in the
first orbital plane, the second term represents the shifting
in mean anomaly that will affect all satellites because of
shifting between the first and the last orbit. Finally, the
right-hand side represents the mean anomalies of the
satellites in the last plus one orbit that must coincide with
the initial mean anomalies up to some integer multiple of
2π . Multiplying (10) by Nso

2π
and using the definition of

symmetry number, the condition translates to

Sym(G)|kNo − Nc, (11)

reading Sym(G) divides (kNo – Nc). Equation (11)
represents the solution to the consistency problem; that is,
it provides the values of the shifting parameters (k) that are
all admissible to create NFCs. Again, these values of k are
such that the initial necklace in orbital plane � = 0 is the
same when shifted No times by the mean anomaly
variation given in (8).

Figs. 6 and 7 show two examples of 2D-LFCs
generated by an admissible pair (G, k). In both cases, the
design parameters were Nso = 9, No = 6, and Nc = 3. The
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Fig. 8. NFC with k = 0.

Fig. 9. NFC with k = 1.

necklace in Fig. 6 is G = {1, 4, 6} with symmetry number
Sym(G) = 9 and shifting parameter k = 2. The
consistency condition is satisfied since 9 | 2·6 – 3, so the
pair ({1, 4, 6}, 2) is admissible. This can be seen in Fig. 6
as follows: shifting the three satellites of the last orbit (the
one with � = 320◦) with �M = 60◦ as given by (8) for k
= 2 reproduces exactly the configuration in the first orbit
(the one with � = 20◦). In Fig. 7, the necklace is G = {1,
4, 7}, which has symmetry number Sym(G) = 3 and
shifting parameter k = 2. Again, the consistency condition
is satisfied: 3 | 2·6 – 3.

As we mentioned before, the minimality problem is
solved by restricting the range of values of k to the interval
[0, Sym(G) – 1]. It is clear that (G, k) and (G, k′) will
generate the same constellation if, and only if, k – k′ is an
integer multiple of Sym(G). This is impossible for two
values in the proposed interval. Fig. 7 shows an example
of this situation: in this 2D-LFC (Nso = 9, No = 6, and Nc

= 3), the necklace G = {1, 4, 7}, which has Sym(G) = 3,
generates the same configuration for k = 2, k = 5, and
k = 8.

The above leads to the main result: each NFC
corresponds with one (and only one) pair (G, k) with G ∈
K(Nso), 0 ≤ k ≤ Sym(G) – 1, and Sym(G) | kNo – Nc.

Figs. 8–10 show the only three possible NFCs
(according to our main result) induced by the necklace

Fig. 10. NFC with k = 2.

G = {1, 4, 7, 10} ∈ K(12), which has symmetry number
Sym(G) = 3. The underlying 2D-LFC has parameters
Nso = 12, No = 9, and Nc = 3, so the three possible values
of k ∈ {0, 1, 2} are admissible.

C. The Diophantine Equation for the Shifting Parameter

The admissibility condition for a pair (G, k), motivates
us to study the Diophantine equation d | ak – b (11), where
a, b, and d are given (positive) integers, and the unknown k
takes integer values in the range [0, d – 1]. All the
solutions can be obtained by trial and error (since there are
finitely many possibilities for k), but we would like a more
efficient procedure.

The number of solutions of this Diophantine equation,
denoted by Y(d, a, b), is exactly

Y (d, a, b) =
{

0 if gcd(d, a) � b

gcd(d, a) otherwise.
(12)

Equation (12) can be proved as follows. Independent of
the value of k, the product ak is always divisible by gcd(d,
a), so when gcd(d, a) � b, reading gcd(d, a) does not divide
b, it is impossible to have gcd(d, a) | ak – b; therefore, we
will never have d | ak – b. In the case where gcd(d, a) | b,
we can divide a, b, and d by gcd(d, a) and reduce the
problem to the equation d′ | a′k – b′, where a′ = a/gcd(d,
a), b′ = b/gcd(d, a), and d′ = d/gcd(d, a). This problem
has only one solution in the interval [0, d′ – 1], since a′

and d′ have no common factor and, therefore, has d/d′ =
gcd(d, a) solutions in [0, d – 1].

An efficient algorithm computing all the solutions of
equation d | ak – b is given in the Appendix (see
Algorithm 3).

V. THE TOTAL NUMBER OF NECKLACE FLOWER
CONSTELLATIONS

To implement the necklace theory in an optimization
process successfully, it is important to have an algorithm
providing all the necklaces that can be obtained from a
2D-LFC with parameters Nso, No, and Nc. However, before
listing all these necklaces, it is important to know how
many they are. The total number of necklaces, here
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denoted by W(Nso, No, Nc), is exactly the number of
admissible pairs; that is,

W (Nso, No, Nc)

= #{(G, k) : G ∈ K(Nso), 0 ≤ k ≤ Sym(G) − 1, kNo

≡ Nc mod (Sym(G))}. (13)

Let X(d) be the number of necklaces with symmetry
number d; then (13) can be rewritten as

W (Nso, No, Nc) =
∑
d|Nso

X(d)Y (d, No, Nc). (14)

It should be natural to adopt the notation X(d, Nso) rather
than X(d), since we are considering necklaces in K(Nso).
However, the number of necklaces with symmetry number
d in K(Nso) has a one-to-one correspondence with the
number of necklaces in K(d) with symmetry number d.
This shows that X(d, Nso) does not depend on Nso, as long
as d | Nso. For practical purposes we can define X(d) =
X(d, d), that is, the number of necklaces in K(d) with
symmetry number d. A simple corollary of this discussion
is the formula ∑

d|n
X(d) = N2(n), (15)

where N2(n) is given in (5). Equation (15) is derived from
the fact that X(d) = X(d, n) for any d | n, and that any
necklace in K(n) has a symmetry number that divides n.

A simple way to compute W(Nso, No, Nc) is explained
as follows. Consider two positive integers n and m. Denote
(n : m∞) the integer obtained by removing from n all the
prime factors corresponding to the primes that appear in
m. For instance, (120 : 70∞) = 3, since 120 = 23·3·5 and
the primes 2 and 5 appear in 70 = 2·5·7. Using this
definition and assuming gcd(Nso, No, Nc) = 1, then

W (Nso, No, Nc) = N2(Nso : N∞
o ) (16)

regardless of the value of Nc. Equation (16) can be proven
as follows. First, (14) is used to compute the value of
W(Nso, No, Nc). In (14) the sum ranges over all divisors d
of Nso. However, if the divisor d has a common factor with
No, then it cannot have any common factor with Nc by our
assumption gcd(Nso, No, Nc) = 1; therefore, Y(d, No, Nc)
= 0 according to (12). This means that it is enough to
consider divisors of (Nso : N∞

o ). For any of these divisors,
we have Y(d, No, Nc) = 1, since gcd(d, No) = 1. All
together this means that

W (Nso, No, Nc) =
∑

d|(Nso:N∞
o )

X(d),

which is equal to N2(Nso : N∞
o ) by (15), thus proving (16).

From (16) two particular cases of independent interest
are derived. In case 1,

If gcd(Nso, No) = 1 then W (Nso, No, Nc) = N2(Nso).

(17)

In fact, when Nso and No have no common factors, then
(Nso : N∞

o ) = Nso because there are no primes to remove

from Nso. Equation (17) then immediately follows from
(16). In case 2,

If Nso|No and gcd(Nc, Nso) = 1,

then W (Nso, No, Nc) = 2. (18)

In fact, the assumption Nso | No, implies that all the primes
in Nso appear in No; consequently, (Nso : N∞

o ) = 1. Using
(16), we obtain W(Nso, No, Nc) = N2(1) = 2.

Equation (16) is particularly useful with HFCs that are
2D-LFCs with the additional constraint gcd(Nso, No, Nc) =
1 (see [5]). For the general case of W(Nso, No, Nc) �= 1, the
following two results constitute positive steps toward the
general solution.

First, a formula for X(d) is provided. For any positive
integer d, we have

X(d) = 1

d

∑
e|d

μ(e) 2d/e, (19)

where μ is the multiplicative Möbius function. The
Möbius function is defined as follows: μ(n) is zero when
the factorization of n contains a prime number to a power
greater than 1, and is equal to (– 1)r when n is the product
of r different primes.

The proof of (19) can be done by inverting (15) using
the Möbius inversion formula [11, Thm 2.9]

X(d) =
∑
e|d

μ

(
d

e

)
N2(e) =

∑
e|d

∑
f |e

μ

(
d

e

)
ϕ(f )

e
2e/f .

Setting r = e/f and changing the order of summation, we
obtain

X(d) =
∑
r|d

2r

r

∑
f |(d/r)

μ

(
d

rf

)
ϕ(f )

f
.

Finally, the theorem of multiplicative arithmetic functions
[11, Thm 2.14, Thm 2.15] shows that the second sum
reduces to μ(d/r)/(d/r); therefore,

X(d) =
∑
r|d

2r

r

μ(d/r)

d/r
= 1

d

∑
r|d

μ

(
d

r

)
2r ,

thus proving (19).
For the cases not included in (16) or in any of its

corollaries, the following formula for W(Nso, No, Nc) is
provided:

If Nso|No and Nc = 0 then W (Nso, No, Nc) = 2Nso .

(20)

To derive (20) the following observation should be noted:
for any divisor d of Nso, we have Y(d, No, 0) = d, since d
also divides No. Therefore, using (14) and (19), we can
write

W (Nso, No, Nc) =
∑
d|Nso

X(d) d =
∑
d|Nso

∑
e|d

μ(e)2d/e.
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Fig. 11. Program flowchart.

Fig. 12. 2D-LFC with Nc = 0.

Now, by setting d = ek and changing the order of
summation, the previous equation reduces to

W (Nso, No, Nc) =
∑
k|Nso

∑
e|(Nso/k)

μ(e) 2k.

Note that the sum �e | r μ(e) is equal to 1 when r = 1 and
equal to 0 in the other cases. In particular, the sum above
(the one depending on e) will vanish unless k = Nso, but
this shows W(Nso, No, Nc) = 2Nso as claimed.

To summarize, the design of a NFC is as follows:
given the number of admissible locations per orbit Nso and
the real number of satellites per orbit Nrso, is possible
determine all the different configurations to distribute the
satellites in the first orbit of our constellation using the
Necklace Theory and Algorithm 1. After that, an initial
necklace is selected, and it is possible to compute its
symmetry number using Algorithm 2. Finally, Algorithm
3 is used with parameters A = No, B = Nc, and C =
Sym(G) to compute the values of the shifting k that give
different NFCs.

The flowchart given in Fig. 11 summarizes the design
procedure described above. This flowchart can be read as
follows. For input, we have the mission parameters No and

Fig. 13. 2D-LFC with Nc = 1.

Fig. 14. 2D-LFC with Nc = 2.

Nrso indicating the number of orbit planes and the number
of satellites per orbit plane and an arbitrary number of
potential locations (per orbit plane) to locate our satellites
Nso ≥ Nrso. Now, by choosing a value for the configuration
number Nc in the interval [1, No], we can compute all
possible necklaces of the Nrso satellites in the Nso potential
locations using Algorithm 1. Now, by selecting one of
these necklaces, say Gk , we can compute Sym(Gk) using
Algorithm 2 and all the Sym(Gk) possible values of the
shifting parameter k ∈ [0, Sym(G)−1] using Algorithm 3,
where the algorithm parameters are A = No, B = Nc, and
C = Sym(Gk). At this point, using the selected necklace
and shifting parameter, we compute the phasing of all the
Nrs = NrsoNo satellites in (�, M)-space as shown in Fig. 4.
The location of the satellites in the first orbit is given by
the necklace G, and the location of the satellites in
subsequent orbits is controlled by the shifting parameter
k. Finally, we optimize the common orbital parameters
(a, e, i, and ω) to minimize the mission cost function.

Note that the formulas we obtained for the total
number of NFCs can be used in practice to select values of
Nc (given Nso and No) that produce the largest number of
different patterns. This is useful, because the more
configurations there are, the more design possibilities we
have.

A 27-satellite constellation is designed to illustrate a
practical example of usage. The number of orbital planes
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Fig. 15. NFC with Nc = 0 and k = 0.

Fig. 16. NFC with Nc = 0 and k = 4.

is three, No = 3. By using the 2D-LFC theory, the
remaining parameters must be Nso = 9 and Nc ∈ {0, 1, 2}.
Consequently, we have three unique design possibilities
illustrated in Figs. 12–14.

However, by using the NFC theory, more designs are
possible. Consider a NFC with parameters No = 3, Nso =
12, Nrso = 9, and Nc ∈ {0, 1, 2}. First, as the theory states,
the first orbit of the constellation is given by a necklace. In
particular, there are 19 different necklaces to associate
with the first orbit. These are:

G1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, G2 = {1, 2, 3, 4, 5, 6, 7, 8, 10},
G3 = {1, 2, 3, 4, 5, 6, 7, 9, 10}, G4 = {1, 2, 3, 4, 5, 6, 8, 9, 10},
G5 = {1, 2, 3, 4, 5, 7, 8, 9, 10}, G6 = {1, 2, 3, 4, 6, 7, 8, 9, 10},
G7 = {1, 2, 3, 5, 6, 7, 8, 9, 10}, G8 = {1, 2, 4, 5, 6, 7, 8, 9, 10},
G9 = {1, 3, 4, 5, 6, 7, 8, 9, 10}, G10 = {1, 2, 3, 4, 5, 6, 7, 9, 11},
G11 = {1, 2, 3, 4, 5, 6, 8, 9, 11}, G12 = {1, 2, 3, 4, 5, 7, 8, 9, 11},
G13 = {1, 2, 3, 4, 6, 7, 8, 9, 11}, G14 = {1, 2, 3, 5, 6, 7, 8, 9, 11},
G15 = {1, 2, 4, 5, 6, 7, 8, 9, 11}, G16 = {1, 2, 3, 4, 5, 7, 8, 10, 11},
G17 = {1, 2, 3, 4, 6, 7, 8, 10, 11}, G18 = {1, 2, 3, 5, 6, 7, 8, 10, 11},
G19 = {1, 2, 3, 5, 6, 7, 9, 10, 11}.

Fig. 17. NFC with Nc = 0 and k = 8.

Fig. 18. NFC with Nc = 0 and k = 0.

Only two particular cases are analyzed. The necklace G4

has symmetry number Sym(G4) = 12. When Nc = 0 the
consistency condition—see (11)—implies that the shifting
parameter must be k ∈ {0, 4, 8}, whereas for the other
values for Nc ∈ {1, 2}, no values for the shifting parameter
satisfy the consistency condition. By using necklace G4 we
have three new designs for the constellation illustrated in
Figs. 15–17.

The necklace G19 has symmetry number Sym(G19)
= 4. When Nc = 0 the consistency condition—see (11)
—implies that the shifting parameter must be k = 0. When
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Fig. 19. NFC with Nc = 1 and k = 3.

Fig. 20. NFC with Nc = 2 and k = 2.

Nc = 1 the shifting parameter must be k = 3; finally, when
Nc = 2 the shifting parameter must be k = 2. Then, with
the necklace G19, three different designs are possible for
the constellation illustrated in Figs. 18–20.

Only two necklaces have been analyzed. Note that the
more necklaces that can be associated with the first orbit,
the more design possibilities there are.

VI. CONCLUSIONS

The cost of the missions is one of the most important
factors for which to account when building a
constellations of satellites. The theory of necklaces allows
us to reduce the number of satellites in a Flower
Constellation without losing its symmetric character.
Throughout the paper we have shown what parameters are
needed to define one of these objects (basically, a pair
(G, k) consisting of a necklace and a positive integer) and
which constraints have to be imposed on these parameters
(a simple Diophantine equation). We have also provided
algorithms in pseudocode, ready to be implemented, that
enumerate all the possible necklace constellations that can
be extracted from a 2D Lattice Flower Constellation.
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APPENDIX: PSEUDOCODE OF THE PROPOSED
ALGORITHMS

Algorithm 1: Necklaces of Nso admissible locations and Nrso satellites
per orbit.

Input: Number of admissible locations (Nso) and number of
satellites per orbit (Nrso).
Output: Matrix with necklaces of Nso pearls, of which Nrso are
black.

1 �a = zeros(1, Nso); �b = [];
2 Initial call; neckrec(1,1,0,Nso,Nrso)
3 neckrec(t,p,ones,Nso,Nrso)
4 if ones < = Nrso then
5 if t > Nso then
6 if mod(Nso, p) = 0 then
7 if sum(�a) = Nrso then
8 �b(size(�b, 1) + 1, :) = �a(2 : end)
9 end

10 end
11 else
12 �a(t + 1) = �a(t − p + 1)
13 if �a(t + 1) > 0 then
14 neckrec(t + 1,p,ones + 1,Nso,Nrso

15 end
16 else
17 neckrec(t + 1,p,ones,Nso,Nrso)
18 end
19 for j ← �a(t + 1 − p) + 1 to 1 do
20 �a(t + 1) = j

21 neckrec(t + 1,t,ones + 1,Nso,Nrso)
22 end
23 end
24 end
25 end

Algorithm 2: Symmetries and the symmetry number of a given necklace.
Input: Matrix of necklaces M and number of admissible locations
Nso.
Output: A matrix S indicating the symmetries and a vector N
indicating the number of vectors for each necklace.

1 [row, Nrso] = size(M)
2 [nod, d] = divisors(Nso)
3 N = zeros(row, 1)
4 S = –ones(row,nod)
5 for i ← 1 to row do
6 counter = 0
7 for j ← 1 to nod do
8 sym = true;
9 A = 1 : d( j )

10 for k ← 1 to Nso
d(j ) − 1 do

11 B = A + k∗d( j )
12 if isequal(M(i, A), M(i, B)) = 0 then
13 sym = false;
14 break;
15 end
16 end
17 if sym = true then
18 counter = counter + 1
19 S(i, counter) = d( j )
20 end
21 end
22 N(i) = counter
23 end
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Algorithm 3: Solutions of the Diophantine equation kA ≡ B mod(C)
Input: C, A, B.
Output: A vector w with possible values of k such that C | kA – B.

1 [d, x1, k1] = gcd(–C, A)
2 w = –ones(1, C + 1);
3 counter = 0;
4 if mod(B, d) = 0 then
5 for i = – C : C do
6 k = (k1∗B/d) + (i – 1)∗(C/d);
7 if (k > = 0 and k < C) then
8 counter = counter + 1
9 w(counter) = k;

10 end
11 end
12 end
13 w(counter + 1) = – 1;
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