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Abstract. The invariant balanced Hermitian geometry of nilmanifolds of dimension 6 is
described. We prove that the (restricted) holonomy group of the associated Bismut connec-
tion reduces to a proper subgroup of SU.3/ if and only if the complex structure is abelian.
As an application we show that if J is abelian, then any invariant balanced J -Hermitian
structure provides solutions of the Strominger system.
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1 Introduction

Given any Hermitian structure .J; F / on a 2n-dimensional manifold M , Bismut
proved in [3] the existence of a unique Hermitian connection with torsion T given
by g.X; T .Y;Z// D JdF.X; Y;Z/ D �dF.JX; J Y; JZ/, g being the associ-
ated metric. This torsion connection will be denoted here by r and the torsion
T will be identified with the 3-form JdF . In relation to the Levi-Civita connec-
tion rg of the Riemannian metric g, the Bismut connection is determined by
r D rg C 1

2T .
Since the connection r is Hermitian, its (restricted) holonomy group Hol.r/

is contained in the unitary group U.n/. We are interested here in the case when
Hol.r/ is reduced to SU.n/, and a Hermitian structure satisfying this condition is
said to be Calabi–Yau with torsion. In dimension 6, these structures are related to
the Strominger system in heterotic string theory [21] and several constructions of
Calabi–Yau with torsion manifolds can be found in [13–16].

Suppose that M is a nilmanifold, i.e. a compact quotient of a simply-connected
nilpotent Lie groupG by a lattice, endowed with an invariant complex structure J ,
i.e. J stems from a complex structure on the Lie algebra g of G. It is proved in [9]
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1026 L. Ugarte and R. Villacampa

that if there is a J -Hermitian metric onM such that the holonomy of the associated
Bismut connection is contained in SU.n/, then there is an invariant J -Hermitian
metric onM which is balanced in the sense of [18]. The latter condition means that
the associated Lee 1-form ✓ vanishes identically or, equivalently, the form F n�1

given by the wedge product of the Kähler form .n � 1/-times is closed. Moreover,
Fino, Parton and Salamon [10] proved that for an invariant Hermitian structure
.J; F / on M , the balanced condition is equivalent to the Calabi–Yau with torsion
condition.

Our goal in this paper is the study of the invariant balanced Hermitian geometry
of 6-dimensional nilmanifolds, the behaviour of the holonomy of the associated
Bismut connection r and the application to finding solutions of the Strominger
system with respect to r in the anomaly cancellation condition.

In greater detail, the paper is structured as follows. Section 2 is devoted to a de-
tailed description of the invariant balanced Hermitian geometry of 6-dimensional
nilmanifolds M . It is proved in [22] that the Lie algebra g underlying M must be
isomorphic to h2, h3, h4, h5, h6 or h

�
19. The latter is the only one for which the

complex structure is of non-nilpotent type and its balanced Hermitian geometry is
studied in [23]. On the other hand, only h5 admits a complex-parallelizable struc-
ture J0 and the pair .h5; J0/ corresponds to the well-known Iwasawa manifold.
We put special attention to the balanced Hermitian geometry associated to abel-
ian complex structures. In the list above, the Lie algebras having abelian complex
structures J are h2, h3, h4 and h5, but it turns out that the J -Hermitian metrics
on h2 or h4 are never balanced (see Proposition 2.8). In contrast, any abelian com-
plex structure on h5 admits balanced Hermitian metrics by Corollary 2.9. The Lie
algebra h3 is special, since there exist, up to isomorphism, two complex structures
but only one of them admits compatible balanced metrics. This Lie algebra corre-
sponds to the product Lie groupH ⇥ R, whereH is the 5-dimensional generalized
Heisenberg group.

The main result in Section 2 is Theorem 2.11, which gives a description of the
invariant balanced geometry on 6-dimensional nilmanifolds in terms of a global
basis of 1-forms πe1; : : : ; e6º adapted to the structure .J; F /, in the sense that the
complex structure J and the fundamental form F express in the canonical way
Je1 D �e2, Je3 D �e4, Je5 D �e6 and F D e12 C e34 C e56.

In Section 3 we study on nilmanifolds the Weak @N@-Lemma recently introduced
by Fu and Yau [12] in relation to deformations of balanced metrics. It is proved
in [12] that given a compact complex n-dimensional manifold M with a balanced
metric, if along a small deformation M� of M the .n � 1; n/-th Weak @N@-Lemma
is satisfied, then there exists a balanced metric on M� for sufficiently small �.
If M is a nilmanifold endowed with an invariant complex structure J , using the
symmetrization process and the results on the Dolbeault cohomology of .M; J /
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1027

obtained by Rollenske in [19], we show when the Weak @N@-Lemma on .M; J / is
reduced to the study of the Weak @N@-Lemma at the Lie algebra level. In particular,
if the complex structure J is abelian, then the .n � 1; n/-th Weak @N@-Lemma is
always satisfied. The general behaviour in dimension 6 with respect to the Weak
@N@-Lemma in the presence of balanced structures is also described. As an appli-
cation, we give an explicit deformation I� of an abelian complex structure I0 on
a nilmanifold associated to h5 having compatible balanced metric such that the
.2; 3/-th Weak @N@-Lemma only holds for � D 0, but I� admits balanced metric for
any �, which shows that the Weak @N@-Lemma is not a necessary condition for the
existence of balanced metric along deformation of the complex structure.

In Section 4, using the description given in Theorem 2.11, we determine the (re-
stricted) holonomy group of the Bismut connection r for any invariant balanced
Hermitian structure .J; F /. We prove in Theorem 4.7 that Hol.r/ D SU.3/ if and
only if J is not abelian. In the abelian case it is rather straightforward to show that
the holonomy reduces to a subgroup of SU.2/ (see Remark 4.5 for details), so the
main effort in proving the result is to verify that Hol.r/ actually equals SU.3/ in
all the remaining cases, for which we study the behaviour of the curvature endo-
morphisms of r and their covariant derivatives of any order. Since the Bismut con-
nection r depends on the pair .J; F /, it is a surprising fact that for 6-dimensional
nilmanifolds the behaviour of Hol.r/ is determined by the complex structure J
and it does not depend on the balanced compatible metric. It is also proved that if
the complex structure is abelian, then Hol.r/ D SU.2/ if and only if the underly-
ing Lie algebra is h5, i.e. the Lie algebra corresponding to the Iwasawa manifold.
In Example 4.9 we present an abelian complex structure J on a compact solv-
manifold of dimension 6 admitting an invariant balanced J -Hermitian metric such
that the holonomy group of its associated Bismut connection equals SU.3/, so
Theorem 4.7 cannot be extended to solvmanifolds.

As an application, in the last section we look for solutions of the Strominger
system [21] in the class of invariant balanced Hermitian 6-dimensional nilmani-
folds, which forces the dilaton function to be constant (see equations (a)–(d) in
Section 5 for details). In the Strominger system, the anomaly cancellation con-
dition can be solved for different choices of metric connection and the physical
validity of the corresponding solutions is studied in [1]. In this context, it is rel-
evant a recent result by Ivanov [17] asserting that a solution of the Strominger
system provides also a solution of the heterotic equations of motion if and only
if the metric connection is an instanton. In [11] Fu and Yau consider the Chern
connection rc and prove the existence of solutions with non-constant dilaton on
a Hermitian non-Kähler manifold given as a T2-bundle over a K3 surface. In the
case of constant dilaton, explicit solutions are given in [8] based on h2; : : : ; h6 and
h

�
19 for different choices of connection, including the Bismut and Chern connec-
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1028 L. Ugarte and R. Villacampa

tions, and in addition solutions of the heterotic equations of motion were found
for h3. A recent solution based on h3 with respect to another metric connection is
obtained by Grantcharov [15]. In [23] it is proved that for any invariant complex
structure J on a nilmanifold N with h

�
19 as underlying Lie algebra, the compact

complex manifold .N; J / admits solutions, with constant dilaton and non-flat in-
stanton, of the Strominger system satisfying the anomaly cancellation condition
with respect to the Chern connection rc .

In Theorems 5.3 and 5.5 we prove that any abelian complex structure provides
solutions of the Strominger system. More concretely, let M be a nilmanifold en-
dowed with an invariant balanced Hermitian structure .J; F /. If J is abelian, then
there is an invariant non-flat SU.3/-instanton solving the Strominger system with
respect to the Bismut connection in the anomaly cancellation condition. Moreover,
any such solution solves in addition the heterotic equations of motion if and only
if h3 is the Lie algebra underlying M . Finally, in Section 5.1 more solutions for
non-abelian complex structures are given. When J is of non-nilpotent type, we
prove the existence of a non-flat instanton solving at the same time the Strominger
systems for the Bismut and the Chern connection (see Proposition 5.7).

2 Invariant complex structures on 6-dimensional nilmanifolds and
compatible balanced metrics

Let M be a nilmanifold of even dimension, i.e. a compact quotient of a simply-
connected nilpotent Lie groupG by a lattice Ä of maximal rank. Any left-invariant
complex structure on G descends to M in a natural way, so a source (possibly
empty) of complex structures on M is given by the endomorphisms J W g �! g of
the Lie algebra g of G such that J 2 D �Id satisfying the “Nijenhuis condition”

ŒJX; J Y ç D J ŒJX; Y çC J ŒX; J Y çC ŒX; Y ç;

for anyX; Y 2 g. We shall refer to any such an endomorphism as a complex struc-
ture on the Lie algebra g.

Associated to a complex structure J , there exists an ascending series πgJ
l

ºl�0

of the Lie algebra defined inductively by

g

J
0 D π0º; g

J
l D πX 2 g j ŒX;gç ✓ g

J
l�1 and ŒJX;gç ✓ g

J
l�1º; l � 1:

For any l � 0, the term g

J
l

is a J -invariant ideal of g which is contained in the
term gl D πX 2 g j ŒX;gç ✓ gl�1º of the usual ascending central series of g. But
whereas πglºl�0 always reaches the whole Lie algebra when g is nilpotent, the
series πgJ

l
ºl�0 can stabilize in a proper J -ideal of g. This motivates the follow-

ing terminology: if g

J
l

D g for some l , then the complex structure J is called
nilpotent [6]; otherwise, we shall say that J is non-nilpotent.
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1029

Well-known particular classes of nilpotent complex structures are the complex-
parallelizable structures, for which ŒJX; Y ç D J ŒX; Y ç, and the abelian struc-
tures, which satisfy the condition ŒJX; J Y ç D ŒX; Y ç. A Lie algebra g has a com-
plex-parallelizable structure if and only if g can be endowed with a complex Lie
algebra structure.

Definition 2.1. A nilpotent (resp. non-nilpotent) complex structure on a nilmani-
foldM is a complex structure onM coming from a nilpotent (resp. non-nilpotent)
complex structure J on the underlying Lie algebra g.

Let us denote by gC the complexification of g and by g

⇤
C its dual. Given an

endomorphism J W g ! g such that J 2 D �Id, we denote by g

1;0 and g

0;1 the
eigenspaces corresponding to the eigenvalues ˙i of J as an endomorphism of g

⇤
C ,

respectively. The decomposition g

⇤
C D g

1;0 ˚ g

0;1 induces a natural bigraduation
on the complexified exterior algebra

⇤̂
g

⇤
C D p̊;q

p̂;q
.g⇤/ D p̊;q

p̂
.g1;0/˝

q̂
.g0;1/:

If d denotes the usual Chevalley–Eilenberg differential of the Lie algebra, we shall
also denote by d its extension to the complexified exterior algebra, i.e.

d W
⇤̂

g

⇤
C �!

⇤̂C1
g

⇤
C:

It is well known that the endomorphism J is a complex structure if and only if
d.g1;0/ ⇢ V2;0

.g⇤/˚V1;1
.g⇤/. In the case of nilpotent Lie algebras g, Salamon

proves in [20] the following equivalent condition for the endomorphism J to be
a complex structure: J is a complex structure on g if and only if g

1;0 has a basis
π!j ºn

j D1 such that d!1 D 0 and

d!j 2 I.!1; : : : ; !j �1/; for j D 2; : : : ; n;

where I.!1; : : : ; !j �1/ is the ideal in
V⇤

g

⇤
C generated by π!1; : : : ; !j �1º. From

now on, we shall simply denote

!jk D !j ^ !k and !j Nk D !j ^ !k :

A complex structure J is nilpotent if and only if there is a basis π!j ºn
j D1

for g

1;0 satisfying d!1 D 0 and

d!j 2
2̂
h!1; : : : ; !j �1; !1; : : : ; !j �1i; for j D 2; : : : ; n:
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1030 L. Ugarte and R. Villacampa

Abelian complex structures satisfy in addition that

d.g1;0/ ⇢
1̂;1
.g⇤/;

and they are characterized by the fact that the complex Lie algebra g

1;0 is abel-
ian. Finally, a nilpotent complex structure is complex-parallelizable if and only if
d.g1;0/ ⇢ V2;0

.g⇤/.
Now, let g be a Lie algebra of dimension 6. A Hermitian structure on g is a

pair .J; g/, where J is a complex structure on g and g is an inner product on
g compatible with J in the usual sense, i.e. g. � ; � / D g.J � ; J � /. The associated
fundamental form F 2 V2

g

⇤ is defined by F.X; Y / D g.X; J Y / and expresses
in terms of any basis π!j º3

j D1, of type .1; 0/ with respect to J , by

2F D i.r2!1 N1Cs2!2 N2Ct2!3 N3/Cu!1 N2� Nu!2 N1Cv !2 N3� Nv !3 N2Cz !1 N3� Nz !3 N1;
(2.1)

for some r; s; t 2 R and u; v; z 2 C. Since we are using the convention

.J˛/.X/ D �˛.JX/
for X 2 g and ˛ 2 g

⇤, the inner product g is given by

g D r2!1!
N1 C s2!2!

N2 C t2!3!
N3

� i

2
.u!1!

N2 � Nu!2!
N1 C v!2!

N3 � Nv!3!
N2 C z!1!

N3 � Nz!3!
N1/:

(2.2)

Here
!j!

Nk D 1

2
.!j ˝ !

Nk C !
Nk ˝ !j /

denotes the symmetric product of !j and ! Nk . Notice that the positive definite-
ness of g implies that the coefficients r2; s2; t2 are non-zero real numbers and
u; v; z 2 C satisfy

r2s2 > juj2; s2t2 > jvj2; r2t2 > jzj2

and
r2s2t2 C 2Re .i Nu Nvz/ > t2juj2 C r2jvj2 C s2jzj2:

Fixed J , since g and F are mutually determined by each other, we shall also
denote the Hermitian structure .J; g/ by the pair .J; F /. Recall that the Hermitian
structure .J; F / is said to be balanced if F 2 is a closed form or, equivalently,
F ^ dF D 0.

Definition 2.2. An invariant balanced Hermitian structure on a nilmanifold M is
a balanced Hermitian structure onM coming from a balanced Hermitian structure
.J; F / on the Lie algebra g underlying M .
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1031

The goal of this section is to explicitly describe the invariant balanced Hermitian
geometry of 6-dimensional nilmanifolds.

Proposition 2.3. Let .J; F / be a balanced Hermitian structure on a 6-dimensional
(non-abelian) nilpotent Lie algebra g.

(i) If J is a complex-parallelizable structure, then g

⇤
C has a basis π!j ; !

Nj º3
j D1

such that
d!1 D d!2 D 0; d!3 D !12; (2.3)

and any J -Hermitian structure is balanced.

(ii) If the complex structure J is nilpotent (but not complex-parallelizable), then
there exists a basis π!j ; !

Nj º3
j D1 for g

⇤
C satisfying

d!1 D 0; d!2 D 0; d!3 D ⇢!12C!1 N1Cb2!1 N2C.xCyi/!2 N2; (2.4)

where ⇢ D 0; 1 and b; x; y 2 R, such that the fundamental form F expresses
as

2F D i.!1 N1 C s2!2 N2 C t2!3 N3/C u!1 N2 � Nu!2 N1; (2.5)

where s2 > juj2 and t2 > 0 satisfy

s2 C x C y i D Nu b2i: (2.6)

(iii) If J is non-nilpotent, then there is a basis π!j ; !
Nj º3

j D1 for g

⇤
C satisfying

d!1 D 0; d!2 D !13 C !1 N3; d!3 D ˙i .!1 N2 � !2 N1/; (2.7)

and the fundamental form F expresses as

2F D i.r2!1 N1 C s2!2 N2 C t2!3 N3/C v!2 N3 � Nv!3 N2; (2.8)

where r2 > 0 and s2t2 > jvj2.

Proof. The assertion (i) is well known and the proof of (iii) is given in [23], so
it remains to prove (ii). By [22], if g has a balanced structure compatible with
a nilpotent complex structure J , then the Lie algebra is 2-step nilpotent. More-
over [22], for any nilpotent (not complex-parallelizable) complex structure J on
a 2-step nilpotent Lie algebra g, there exists a .1; 0/-basis π!0j º3

j D1 such that

d!01 D 0; d!02 D 0; d!03 D ⇢!012 C !01 N1 C B!01 N2 CD!02 N2;

where ⇢ D 0; 1 and B;D 2 C. Suppose B ¤ 0 and let ⇣ be any non-zero solution
of the equation

N⇣ BjBj D ⇣:
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1032 L. Ugarte and R. Villacampa

We can choose ⇣ of modulo 1 and with respect to the basis

π!1 D ⇣!01; !2 D N⇣!02; !3 D !03º

one gets (2.4) with coefficient b2 D jBj > 0.
Now, consider (2.4) expressed in terms of a basis π⌧1; ⌧2; ⌧3º and a general

structure (2.1). The .1; 0/-basis given by
≤
�1 D ⌧1; �2 D ⌧2; �3 D � iz

t2
⌧1 � iv

t2
⌧2 C ⌧3

≥

preserves the complex equations (2.4) and the fundamental form F expresses in
terms of π�1; �2; �3º as

2F D i.r 02�1 N1 C s02 �2 N2 C t 02�3 N3/C u0�1 N2 � Nu0�2 N1;

with new metric coefficients

r 02 D r2 � jzj2
t2
; s02 D s2 � jvj2

t2
; t 02 D t2 and u0 D u � i Nvz

t2
:

Moreover, we get (2.5) after normalizing the coefficient r 02 by considering

π!1 D r 0�1; !2 D r 0�2; !3 D r 02�3º;

which also preserves the equations (2.4).
A direct calculation shows that a Hermitian structure given by (2.4) and (2.5)

satisfies

4F ^ dF D t2.s2 C x C yi � Nub2i/!12 N1 N2 N3 C t2.s2 C x � yi C ub2i/!123 N1 N2:

Therefore, the Hermitian structure .J; F / is balanced if and only if

s2 C x C yi D Nub2i :

This completes the proof of (ii).

The nilpotent Lie algebras g admitting balanced Hermitian structure are classi-
fied in [22]. They are

h2 D .0; 0; 0; 0; 12; 34/; h3 D .0; 0; 0; 0; 0; 12C 34/;

h4 D .0; 0; 0; 0; 12; 14C 23/; h5 D .0; 0; 0; 0; 13C 42; 14C 23/;

h6 D .0; 0; 0; 0; 12; 13/; h

�
19 D .0; 0; 0; 12; 23; 14 � 35/:

The latter is the only one corresponding to the case (iii) in the previous proposition,
i.e. the complex structure is non-nilpotent; moreover, up to isomorphism there
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1033

exist only two complex structures J˙
0 on the Lie algebra h

�
19 (see [23]), which

correspond to the ˙-sign in (2.7), respectively. On the other hand, it is well known
that only h5 admits a complex-parallelizable structure, and we shall denote by
J0 the structure given by (2.3). Notice that the pair .h5; J0/ corresponds to the
Iwasawa manifold.

We shall use the following result, which gives a classification of the Lie algebras
underlying the structure equations (2.4) depending on the values of the quadruplet
.⇢; b2; x; y/.

Lemma 2.4 ([22, Proposition 13]). Let J be a complex structure on a nilpotent Lie
algebra g given by (2.4). Then:

(i) If b2 D ⇢, then the Lie algebra g is isomorphic to:

(i.1) h2 for y ¤ 0,

(i.2) h3 for ⇢ D y D 0 and x ¤ 0,

(i.3) h4 for ⇢ D 1; y D 0 and x ¤ 0,

(i.4) h6 for ⇢ D 1 and x D y D 0,

(ii) If b2 ¤ ⇢, then the Lie algebra g is isomorphic to:

(ii.1) h2 for 4y2 > .⇢ � b4/.4x C ⇢ � b4/,

(ii.2) h4 for 4y2 D .⇢ � b4/.4x C ⇢ � b4/,

(ii.3) h5 for 4y2 < .⇢ � b4/.4x C ⇢ � b4/.

We have omitted the case b2 D ⇢ D x D y D 0, which corresponds to the Lie
algebra h8 D .0; 0; 0; 0; 0; 12/, because it does not admit any balanced Hermitian
structure.

From now on we shall concentrate mainly in the case when the complex struc-
ture is nilpotent, because the non-nilpotent case is studied in detail in [23], al-
though we will return to it in Proposition 4.6. In view of Proposition 2.3 (ii), if we
denote by u1 and u2 the real and imaginary parts of u, i.e. u D u1 C u2i , then the
balanced condition (2.6) reads as x D u2b

2 � s2 and y D u1b
2. Therefore, the

balanced Hermitian structures .J; F /, J nilpotent, are parametrized by ⇢ D 0; 1

and a 5-tuple .b; u1; u2; s
2; t2/ 2 R3 ⇥ RC ⇥ RC satisfying s2 � u2

1 � u2
2 > 0, in

the sense that the complex structure J is given by

d!1 D d!2 D 0; d!3 D ⇢!12 C !1 N1 C b2!1 N2 C .u2b
2 � s2 C u1b

2i/!2 N2;

and the fundamental form F expresses as

2F D i.!1 N1 C s2!2 N2 C t2!3 N3/C .u1 C u2i/!
1 N2 � .u1 � u2i/!

2 N1:
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1034 L. Ugarte and R. Villacampa

We recall that a Hermitian structure .J; F / on g is said to be equivalent to a
Hermitian structure .J 0; F 0/ on g

0 if there is an isomorphism AW g ! g

0 of Lie
algebras such that J 0A D AJ and F D A⇤F 0.

Lemma 2.5. On .h5; J0/ any (balanced) Hermitian structure is equivalent to one
and only one structure in the 1-parameter family

2F D i.!1 N1 C !2 N2 C t2!3 N3/; t ¤ 0:

Proof. Let us consider a generic J0-Hermitian structure

2F D i.r2!1 N1 Cs2!2 N2 C t2!3 N3/Cu!1 N2 � Nu!2 N1 Cv!2 N3 � Nv!3 N2 Cz!1 N3 � Nz!3 N1;

where π!j ; !
Nj º3

j D1 is the basis satisfying (2.3). We define the new .1; 0/-basis

≤
�1 D !1; �2 D !2; �3 D � iz

t2
!1 � iv

t2
!2 C !3

≥

in order to get F expressed as

F D i.r 02�1 N1 C s02�2 N2 C t 02�3 N3/C u0 �1 N2 � u0 �2 N1:

Now, the basis

´
�1 D i

s
r 02s02 � ju0j2

s02 �1; �2 D �u
0i
s0 �

1 C s0�2; �3 D i

q
r 02s02 � ju0j2�3

µ

satisfies (2.3) and the J0-Hermitian form expresses as

2Ft 00 D i.�1 N1 C �2 N2 C t 002�3 N3/:

Finally, it is straightforward to verify that two such Hermitian structures .J0; Ft 00
1
/

and .J0; Ft 00
2
/ are equivalent if and only if .t 001 /

2 D .t 002 /
2.

For general nilpotent structures the situation is rather complicated, however we
have the following partial classification result:

Lemma 2.6. Let J be a nilpotent complex structure given by (2.4) and let Ft and
Ft 0 be two balanced J -Hermitian structures given by (2.5) and (2.6) with u D 0.
Then, .J; Ft / and .J; Ft 0/ are equivalent if and only if t2 D t 02.
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1035

Proof. First of all observe that if we fix the complex structure and u D 0, then
y D 0, s2 D �x and therefore the only free parameter is the metric coefficient t2.
Let us consider two .1; 0/-bases π!j º3

j D1 and π�j º3
j D1 satisfying (2.4) for the

same complex parameters ⇢, b2, x (y D 0) and let Ft and Ft 0 be two balanced
J -Hermitian structures given by

Ft D i

2
.!1 N1 C s2!2 N2 C t2!3 N3/;

Ft 0 D i

2
.�1 N1 C s2�2 N2 C t 02�3 N3/; where s2 D �x:

Suppose that there exists an equivalence AW g ! g between the two Hermitian
structures .J; Ft / and .J; Ft 0/. Since the linear isomorphism A⇤W g

⇤ ! g

⇤ com-
mutes with the Chevalley–Eilenberg differential and the extension of A⇤ to the
complexified exterior algebra preserves the bigraduation induced by J , it follows
that

�j D aj1!
1 C aj 2!

2 C aj 3 !
3; j D 1; 2; 3;

where .ajk/ 2 GL(3;C) satisfying

d�j D aj1d!
1 C aj 2d!

2 C aj 3d!
3; j D 1; 2; 3:

This is equivalent to the conditions

0 D a13 D a23;

⇢a33 D ⇢.a11a22 � a12a21/;

a33 D ja11j2 C b2a11a21 � s2ja21j2;
�s2a33 D ja12j2 C b2a12a22 � s2ja22j2;
b2a33 D a11a12 C b2a11a22 � s2a21a22;

0 D a12a11 C b2a12a21 � s2a22a21:

(2.9)

Moreover, the condition Ft D A⇤Ft 0 implies that the coefficients ajk must satisfy
the following extra equations:

0 D a31 D a32;

1 D ja11j2 C s2 ja21j2;
s2 D ja12j2 C s2 ja22j2;
0 D a11a12 C s2a21a22;

t2 D t 02 ja33j2:

(2.10)
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Combining the last equation in (2.9) with the fourth equation in (2.10) one gets

a12.2a11 C b2a21/ D 0:

We have two possibilities: if a12 D 0, then it follows from (2.10) that a21 D 0 and
ja22j D 1, and thus the fourth equation in (2.9) implies that a33 D 1 and therefore
t 02 D t2; on the other hand, if

2a11 C b2a21 D 0;

then the second equation in (2.10) reads as

1 D
✓
b4

4
C s2

◆
ja21j2

and the third equation in (2.9) expresses as

a33 D �
✓
b4

4
C s2

◆
ja21j2;

which implies ja33j D 1 and again t 02 D t2.

2.1 Abelian complex structures

Abelian complex structures correspond to the coefficient ⇢ D 0 in the general
structure equations (2.4) and they are characterized by the condition

ŒJX; J Y ç D ŒX; Y ç;

which is equivalent to say that d.g1;0/ ⇢ V1;1
.g⇤/. Next we study the balanced

Hermitian geometry associated to abelian complex structures. First we observe
that in the case of abelian structures, Proposition 2.3 (ii) can be improved in the
sense that the coefficient b2 can be reduced to take the value 0 or 1.

Lemma 2.7. Let J be an abelian complex structure on a 6-dimensional 2-step
nilpotent Lie algebra g. Then, there is a .1; 0/-basis π!j º3

j D1 satisfying

d!1 D d!2 D 0; d!3 D !1 N1 C ı!1 N2 C .x C yi/!2 N2; (2.11)

where ı D 0; 1 and x; y 2 R.

Proof. By Proposition 2.3 there is a (1; 0)-basis π!0j º3
j D1 satisfying (2.4) with

⇢ D 0. Suppose b2 ¤ 0. We can normalize the coefficient b2 to be 1 by consider-
ing the new basis π!1 D !01; !2 D b2!02; !3 D !03º.
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In the abelian complex case, given a Hermitian structure (2.5), the balanced
condition (2.6) reads as

s2 C x D ıu2; y D ıu1: (2.12)

Now, we can combine Lemmas 2.4 and 2.7 together with (2.12) to derive the fol-
lowing classification of nilpotent Lie algebras admitting abelian complex struc-
tures with balanced compatible metric.

Proposition 2.8. Let g be a 6-dimensional 2-step nilpotent Lie algebra endowed
with an abelian complex structure J given by (2.11). Suppose that J admits a
balanced J -Hermitian metric. Then g is isomorphic to h3 when ı D 0 or h5 when
ı D 1.

Proof. The proof follows from Lemma 2.4 for the case ⇢ D 0. If ı D 0, then
y D 0 by (2.12) and the Lie algebra is isomorphic to h3. In the case ı D 1, the
possibilities for g are

h2 if 4y2 > 1 � 4x;
h4 if 4y2 D 1 � 4x;
h5 if 4y2 < 1 � 4x:

Since s2 > juj2, from (2.12) we get

1 � 4x D 1 � 4u2 C 4s2

> 1 � 4u2 C 4u2
1 C 4u2

2

D 4u2
1 C .1 � 2u2/

2

� 4u2
1 D 4y2;

that is,
1 � 4x > 4y2

and therefore the Lie algebra is isomorphic to h5.

It is interesting to point out that the Lie algebras h2 and h4 have abelian complex
structures but it turns out that none of them admit compatible balanced metric. In
contrast, for the Lie algebra h5 we have:

Corollary 2.9. Any abelian complex structure on h5 admits balanced Hermitian
metrics.
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Proof. Abelian complex structures J on h5 correspond to ı D 1 and 4y2 < 1�4x.
Let us consider

2F D i.!1 N1 C s2!2 N2 C t2!3 N3/C u!1 N2 � Nu!2 N1

with s2 D 1
2 �x, u D yC i

2 and any non-zero t2. It is easy to check that s2 > juj2
and that (2.12) is satisfied.

The situation is a bit different for the Lie algebra h3. Any complex structure on
h3 is equivalent to eJC or eJ� given by

d!1 D d!2 D 0; d!3 D !1 N1 ˙ !2 N2;

but only eJ� admits compatible balanced metrics [22].
Next we classify, up to equivalence, all the balanced eJ�-Hermitian structures

on h3.

Lemma 2.10. Any balanced structure on .h3;eJ�/ is equivalent to one and only
one structure in the 1-parameter family

F D i

2
.!1 N1 C !2 N2 C t2!3 N3/; t ¤ 0:

Proof. First of all, we can observe that the balanced condition (2.12) reduces to
s2 D 1, so the fundamental form of a generic balanced eJ�-Hermitian structure
has the following expression:

2F D i.!1 N1 C !2 N2 C t2!3 N3/C u!1 N2 � Nu!2 N1; juj2 < 1; t2 > 0:

Let us consider the .1; 0/-basis π�1; �2; �3º given by

�1 D a11!
1 C a12!

2; �2 D a12!
1 C a11!

2; �3 D a33 !
3;

where

a11 D
✓
1C

p
1 � juj2
2

◆1=2

;

a12 D i Nu
2

✓
1C

p
1 � juj2
2

◆�1=2

;

a33 D 1 � juj2 C
p
1 � juj2

1C
p
1 � juj2

:
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With respect to this new basis the complex structure equations satisfy

d�1 D d�2 D 0; d�3 D �1 N1 � �2 N2;

and the fundamental form reduces to

2F D i.�1 N1 C �2 N2 C t 02�3 N3/

for t 02 D t2=ja33j2. Now, Lemma 2.6 implies that two structures of this type cor-
responding to parameters t 01 and t 02 are equivalent if and only if t 021 D t 022 .

2.2 Adapted bases

One of the main difficulties to study the balanced Hermitian geometry for nilpotent
complex structures J is that the condition (2.6) mixes the “metric” coefficients
s; u with the “complex” coefficients b; x; y in a non-trivial way. Next we find an
adapted basis πe1; : : : ; e6º for any balanced Hermitian structure in the sense that
πe1; : : : ; e6º is a basis of (real) 1-forms such that the complex structure J and the
fundamental 2-form F express in the canonical way

Je1 D �e2; Je3 D �e4; Je5 D �e6; F D e12 C e34 C e56: (2.13)

It is well known that such a basis always exists locally, but in the following re-
sult we find an explicit global adapted basis for any invariant balanced Hermitian
structure.

Theorem 2.11. Let .J; F / be an invariant balanced Hermitian structure on a
6-dimensional nilmanifoldM . Then, there is a basis πe1; : : : ; e6º of 1-forms onM
satisfying (2.13) and one of the following equations:

8
ˆ̂<

ˆ̂:

de1 D de2 D de3 D de4 D 0;

de5 D t .e13 � e24/;

de6 D t .e14 C e23/;

(2.14)

where t 2 R⇤,
8
ˆ̂̂
<̂

ˆ̂̂
:̂

de1 D de2 D de3 D de4 D 0;

de5 D t

s
.⇢C b2/e13 � t

s
.⇢ � b2/e24;

de6 D �2t.e12 � e34/C t

s
.⇢ � b2/e14 C t

s
.⇢C b2/e23;

(2.15)
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where ⇢ 2 π0; 1º, b 2 R and s; t 2 R⇤,
8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

de1 D de2 D de3 D de4 D 0;

de5 D sY
⇥
2b2u1juj.e12 � e34/ � b2tu1jujY.e13 C e24/

C 2⇢su1.e
13 � e24/C 2su2..⇢ � b2/e14 C .⇢C b2/e23/

⇤
;

de6 D sY
⇥
2.2s2 � b2u2/juj.e12 � e34/C b2tu2jujY .e13 C e24/

� 2⇢su2 .e
13 � e24/C 2su1..⇢ � b2/e14 C .⇢C b2/e23/

⇤
;

(2.16)

where ⇢ 2 π0; 1º, b 2 R, t 2 R⇤, u 2 C⇤ with s2 > juj2 > 0, and Y D 2
p

s2�juj2
jujt ,

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

de1 D de2 D de5 D 0;

de3 D 2s

r
e15;

de4 D 2s

r
e25;

de6 D ˙ 2

rs
.e13 C e24/;

(2.17)

where r; s 2 R⇤,
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

de1 D de2 D 0;

de3 D s

rtZ


˙ t2

s2
.e13 C e24/˙ t2

s2
.st CZ/.e25 � e16/

C e14 C 1

st CZ
e15

�
;

de4 D s

rtZ


e24 C 1

st CZ
e25

�
;

de5 D �s
rtZ

⇥
.st CZ/e24 C e25

⇤
;

de6 D s

rtZ


˙ t2

s2

1

st CZ
.e13 C e24/˙ t2

s2
.e25 � e16/

C .st CZ/e14 C e15

�
;

(2.18)

where s; t 2 R⇤ such that s2t2 > 1 and where Z D
p
s2t2 � 1.

Furthermore: in case (2.14) the complex structure J is complex-parallelizable,
i.e. M is the Iwasawa manifold; for (2.15) and (2.16) the complex structure is
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nilpotent and the Lie algebra g underlying M is isomorphic to h2, h3, h4, h5

or h6; abelian complex structures correspond to ⇢ D 0 in (2.15) and (2.16), and
in such case g ä h3; h5 and we can take b2 D ı 2 π0; 1º; finally, in the remaining
cases (2.17) and (2.18) the Lie algebra underlyingM is isomorphic to h

�
19 and the

complex structure is non-nilpotent, where the ˙-sign in the equations corresponds
to J D J˙

0 , respectively.

Proof. Since the balanced Hermitian structure on the nilmanifold M is invariant,
there is a balanced Hermitian structure .J; F / on the Lie algebra g underlyingM .
We have several possibilities depending on the nilpotency of the complex struc-
ture J . If J is complex-parallelizable, then by Lemma 2.5 it suffices to consider
the basis πe1; : : : ; e6º given by

e1 C i e2 D !1; e3 C i e4 D !2; e5 C i e6 D t !3:

It is clear that this basis is adapted to .J; F / and the resulting structure equations
are (2.14).

Let us suppose now that J is nilpotent but not complex-parallelizable. We con-
sider two cases in Proposition 2.3 (ii) depending on the vanishing of the metric
coefficient u.

If u D 0, then the real basis πe1; : : : ; e6º given by

e1 C ie2 D !1; e3 C ie4 D s !2; e5 C ie6 D t!3

is a basis adapted to .J; F / and the structure equations become (2.15).
When u 6D 0, starting from the equations (2.4) and the balanced condition (2.6),

we consider the .1; 0/-basis π�1; �2; �3º given by

�1 D u!1 C i

2�2
!2; �2 D iu !1 � 1

2�2
!2; �3 D !3;

where the coefficients �2 and �2 are the roots of the polynomial

P.X/ D s2juj2X2 � s2X C 1

4
;

namely

�2 D s2 C
p
s2 .s2 � juj2/
2 s2juj2 > 0; �2 D 1

juj2 � �2 > 0;

�2 ¤ �2; �2�2 D 1

4s2juj2 :
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Notice that the roots of P.X/ are different, real and strictly positive because
s2 > juj2. In terms of the new basis the complex structure equations are

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

d�1 D d�2 D 0;

d�3 D 1

2s
p
s2 � juj2


⇢

u
�12 C .ib2 Nu � 2s2/.�2�1 N1 � �2�2 N2/

C b2 Nu.�2�1 N2 C �2�2 N1/
�
;

and the fundamental form (2.5) has the simple expression

F D i

2
.�2�1 N1 C �2�2 N2 C t2�3 N3/:

Now the real basis πe1; : : : ; e6º given by

e1 C ie2 D ��1; e3 C ie4 D ��2; e5 C ie6 D t�3

is clearly a basis adapted to .J; F / and a direct calculation shows that with respect
to this basis the structure equations become (2.16).

The result for non-nilpotent J follows directly from [23, Section 3.1]: starting
from Proposition 2.3 (iii) it is proved in [23] that the fundamental form (2.8) can
be reduced to either t D 1; v D 0 or v D 1, and these two cases correspond to
equations (2.17) and (2.18), respectively.

Remark 2.12. When the complex structure is non-nilpotent, the classification of
balanced Hermitian structures up to equivalence is obtained in [23, Theorem 2.10],
namely:

✏ any two balanced Hermitian structures .J D J˙
0 ; Fr;s/, .J 0 D J˙

0 ; Fr 0;s0/ given
by (2.17) are equivalent if and only if J D J 0, r2 D r 02 and s2 D s02,

✏ any two balanced Hermitian structures .J D J˙
0 ; Fr;s;t /, .J 0 D J˙

0 ; Fr 0;s0;t 0/
given by (2.18) are equivalent if and only if J D J 0, r2 D r 02, s2 D s02 and
t2 D t 02,

✏ the structures of family (2.17) are not equivalent to the structures of fam-
ily (2.18).

From Lemma 2.6 it follows that, fixed a nilpotent complex structure J , two
balanced J -Hermitian structures Ft and Ft 0 in the family (2.15) are equivalent if
and only if t2 D t 02.

A similar result holds for the family (2.14) by Lemma 2.5.
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3 Deformation of balanced metrics

In this section we study on nilmanifolds the Weak @N@-Lemma recently introduced
in [12] in relation to deformations of balanced metrics.

More precisely, the following definition is given in [12].

Definition 3.1. A compact complex n-dimensional manifold M satisfies the
.n � 1; n/-th Weak @N@-Lemma if for each real form ' of type .n � 1; n � 1/ such
that N@' is a @-exact form there exists a .n�2; n�1/-form such that N@' D i @N@ .

Fu and Yau prove in [12] that given a compact complex n-dimensional manifold
M with a balanced metric, if along a small deformationM� ofM the .n�1; n/-th
Weak @N@-Lemma is satisfied, then there exists a balanced metric on M� for suffi-
ciently small �.

Next we suppose that M is a nilmanifold endowed with an invariant complex
structure J and show when the Weak @N@-Lemma on .M; J / is reduced to the study
of the Weak @N@-Lemma at the Lie algebra level.

Proposition 3.2. Let M D ÄnG be a 2n-dimensional nilmanifold endowed with
an invariant complex structure J , and let g be the Lie algebra of G. If .g; J /
does not satisfy the .n � 1; n/-th Weak @N@-Lemma, then .M; J / does not satisfy
the .n � 1; n/-th Weak @N@-Lemma.

Proof. The proof is based on the symmetrization process given in [2] (see also
[9, 22]). Let ⌫ D d⌧ be a volume element on M induced by a bi-invariant one on
the Lie groupG such that, after rescaling,M has volume equal to 1. Given any co-
variant k-tensor field T W X.M/ ⇥ � � � ⇥ X.M/ ! C1.M/ on the nilmanifold M ,
we define a covariant k-tensor T⌫ W g ⇥ � � � ⇥ g ! R on g by

T⌫.X1; : : : ; Xk/ D
Z

m2M
Tm.X1jm; : : : ; Xkjm/⌫; for X1; : : : ; Xk 2 g;

where Xj jm is the value at the point m 2 M of the projection on M of the left-
invariant vector field Xj on the Lie group G. It is clear that T⌫ D T for any tensor
field T coming from a left-invariant one. In [2] it is proved that if T D ˛ is a
k-form on M , then .d˛/⌫ D d˛⌫ .

Given an invariant complex structure J on M , we can extend the symmetriza-
tion process to complex forms and it is easy to see that if ˛ is a form of pure
type .p; q/, then ˛⌫ is again of pure type .p; q/. Now, for any .p; q/-form ˛ onM
we have the usual decomposition d˛ D @˛ C N@˛, where @˛ is of type .p C 1; q/

Bereitgestellt von | Universitäts- und Landesbibliothek Münster
Angemeldet

Heruntergeladen am | 25.11.15 15:45



1044 L. Ugarte and R. Villacampa

and N@˛ of type .p; q C 1/. Then, @˛⌫ C N@˛⌫ D d˛⌫ D .d˛/⌫ D .@˛/⌫ C .N@˛/⌫ ,
which implies that

.@˛/⌫ D @˛⌫ ; .N@˛/⌫ D N@˛⌫ :

Suppose that .g; J / does not satisfy the .n � 1; n/-th Weak @N@-Lemma, and let
' be a real element in

Vn�1;n�1
.g⇤/ such that N@' D @⌘ for some ⌘ 2 Vn�2;n

.g⇤/
but N@' 62 @N@.Vn�2;n�1

.g⇤//. Therefore, ' defines a real .n � 1; n � 1/-form on
M such that N@' D @⌘, but there is no .n � 2; n � 1/-form  on the nilmani-
fold M satisfying N@' D i@N@ , because in such case  ⌫ would be an element inVn�2;n�1

.g⇤/ for which N@' D i@N@ ⌫ , contradicting the fact that .g; J / does not
satisfy the .n � 1; n/-th Weak @N@-Lemma.

Let us denote byHp;q.M; J / the Dolbeault cohomology groups of .M; J / and
by Hp;q.g; J / the cohomology groups of the complex .

V⇤;⇤
.g⇤/; N@/ at the Lie

algebra level. Conditions under which the natural inclusion
⇣ ⇤̂;⇤

.g⇤/; N@
⌘
,! .A⇤;⇤.M/; N@/

induces an isomorphism Hp;q.M; J / ä Hp;q.g; J / in cohomology are investi-
gated in [5, 6, 19]. In particular, the isomorphism holds for any abelian complex
structure J .

Remark 3.3. The symmetrization process defines a linear map

Ap;q.M/ !
p̂;q
.g⇤/;

given by ˛ 7! ˛⌫ , which commutes with the differentials N@. If the natural inclusion
.
V⇤;⇤

.g⇤/; N@/ ,! .A⇤;⇤.M/; N@/ induces an isomorphism

Hp;q.M; J / ä Hp;q.g; J /;

then any N@-closed .p; q/-form ˛ on M is cohomologous to the invariant .p; q/-
form ˛⌫ obtained by the symmetrization process.

In the next result we find conditions under which the Weak @N@-Lemma at the
Lie algebra level implies the Weak @N@-Lemma on the nilmanifold.

Proposition 3.4. Let M D ÄnG be a 2n-dimensional nilmanifold endowed with
an invariant complex structure J , and let g be the Lie algebra of G. If .g; J /
satisfies the .n � 1; n/-th Weak @N@-Lemma and Hn�2;n.M; J / ä Hn�2;n.g; J /,
then .M; J / satisfies the .n � 1; n/-th Weak @N@-Lemma.
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Proof. Let ' be a real form of type .n � 1; n � 1/ on M such that N@' D @⌘ for
some .n � 2; n/-form ⌘ on M . Since N@⌘ D 0, the form ⌘ defines a Dolbeault co-
homology class in Hn�2;n.M; J /. From the isomorphism

Hn�2;n.M; J / ä Hn�2;n.g; J /

and Remark 3.3 we get that ⌘ D ⌘⌫ C N@.i / for some .n�2; n�1/-form  onM .
This implies that @⌘ D @⌘⌫ C i@N@. /.

Now, from N@' D @⌘ we get that '⌫ is a real element in
Vn�1;n�1

.g⇤/ such that
N@'⌫ D @⌘⌫ . Since .g; J / satisfies the .n � 1; n/-th Weak @N@-Lemma, there exists
Q 2 Vn�2;n�1

.g⇤/ such that @⌘⌫ D N@'⌫ D i @N@ Q . Therefore,

@⌘ D @⌘⌫ C i@N@. / D i@N@. Q C  /

and the .n � 1; n/-th Weak @N@-Lemma is satisfied for .M; J /.

Notice that the .n � 1; n/-th Weak @N@-Lemma is satisfied for .g; J / if one has
@.
Vn�2;n

.g⇤// ⇢ @N@.Vn�2;n�1
.g⇤//.

Corollary 3.5. Any abelian complex structure satisfies the .n � 1; n/-th Weak
@N@-Lemma.

Proof. It follows directly from the fact that @.
Vn�2;n

.g⇤// D 0 for any abelian
complex structure.

Next we describe the general behaviour in dimension 6 with respect to the Weak
@N@-Lemma in the presence of balanced structures.

Proposition 3.6. LetM be a 6-dimensional nilmanifold endowed with an invariant
balanced Hermitian structure .J; F /. Then, the complex manifold .M; J / satisfies
the .2; 3/-th Weak @N@-Lemma if and only if J is abelian, complex-parallelizable or
of non-nilpotent type.

Proof. The result is known for the Iwasawa manifold, so we suppose next that J
is not complex-parallelizable.

Let g the Lie algebra underlying M and suppose that J is nilpotent. By Propo-
sition 2.3 we consider the reduced equations (2.4) and it is clear that

@
⇣ 1̂;3

.g⇤/
⌘

D h⇢!12 N1 N2 N3i:

A direct calculation shows that

@N@
⇣ 1̂;2

.g⇤/
⌘

D 0:
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1046 L. Ugarte and R. Villacampa

Now, for the real .2; 2/-form ' D !23 N2 N3 we have that N@' D !12 N1 N2 N3, which implies
that the .2; 3/-th Weak @N@-Lemma is not satisfied if ⇢ D 1, i.e. if J is not abelian.
Now, by Proposition 3.2 we get that .M; J / does not satisfy the .2; 3/-th Weak
@N@-Lemma if ⇢ D 1.

Suppose now that J is non-nilpotent and consider reduced equations as in
Proposition 2.3 (iii). It is clear that

@
⇣ 1̂;3

.g⇤/
⌘

D h!13 N1 N2 N3i and N@
⇣ 1̂;2

.g⇤/
⌘

D h!1 N1 N2 N3; !2 N1 N2 N3i;

which implies that

@N@
⇣ 1̂;2

.g⇤/
⌘

D h!13 N1 N2 N3i D @
⇣ 1̂;3

.g⇤/
⌘
:

Therefore, the .2; 3/-th Weak @N@-Lemma is satisfied at the Lie algebra level. Since
the Lie algebra g is isomorphic to h

�
19 and from [19] the natural inclusion

⇣ ⇤̂;⇤
.g⇤/; N@

⌘
,! .A⇤;⇤.M/; N@/

induces an isomorphism in cohomology, the .2; 3/-th Weak @N@-Lemma is satisfied
by Proposition 3.4.

The Iwasawa manifold corresponds to the pair .h5; J0/ and it is well known
that small deformation of the Iwasawa manifold does not admit balanced met-
ric, which implies that such small deformation does not satisfy the .2; 3/-th Weak
@N@-Lemma [12]. In the next example we give, on the nilmanifold M underlying
the Iwasawa manifold, an explicit deformation I� of an abelian complex struc-
ture I0 having balanced metric such that the .2; 3/-th Weak @N@-Lemma only holds
for � D 0 but I� admits balanced metric for any �. This shows that the Weak
@N@-Lemma is not a necessary condition for the existence of balanced metric along
deformation of the complex structure.

Example 3.7. Let us consider h5 with basis e1; : : : ; e6 satisfying

de1 D � � � D de4 D 0; de5 D e13 � e24 and de6 D e14 C e23:

For each � 2 Œ0; 1/, let us consider the almost complex structure I� given by

I�e
1 D �e2; I�e

3 D ��C 1

� � 1 e
4; I�e

5 D �e6:

With respect to the basis of .1; 0/-forms �1 D e1 C i e2, �2 D e3 C �C1
��1

i e4 and
�3 D .�C 1/.e5 C i e6/, the complex structure equations are

d�1 D d�2 D 0; d�3 D ��12 C �1 N2;
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1047

which implies the integrability of I�. Now it is clear that for � D 0 the complex
structure is abelian and satisfies the .2; 3/-th Weak @N@-Lemma by Corollary 3.5.
Moreover, from Corollary 2.9 it follows the existence of the compatible balanced
metric.

When � 6D 0, we consider the basis of .1; 0/-forms !1 D �1, !2 D �.�2��1/

and !3 D �3, with respect to which the complex structure equations for I� are

d!1 D d!2 D 0; d!3 D !12 C !1 N1 C 1

�
!1 N2:

Since these equations are expressed in the form (2.4), we get by (2.6) that I�

admits compatible balanced metric if and only if s2 > juj2 with s2 D Nu
�
i . Tak-

ing u D i
2�

and s2 D 1
2�2 , we have that the condition s2 D 1

2�2 >
1

4�2 D juj2 is
satisfied for any � 2 .0; 1/. In conclusion, for any � 2 .0; 1/ the complex struc-
ture I� admits compatible balanced metrics, but I� does not satisfy the .2; 3/-th
Weak @N@-Lemma by Proposition 3.6 because it is nilpotent, but neither complex-
parallelizable nor abelian.

Notice that

g� D .e1/2 C .e2/2 C
r
1C �

1 � � .e
3/2 C

r
1C �

1 � � .e
4/2

C .1C �/.e5/2 C .1C �/.e6/2:

is a balanced I�-Hermitian metric for each � 2 Œ0; 1/.

4 Holonomy of the Bismut connection

Bismut proved in [3] that any Hermitian structure .J; F / on a 2n-dimensional
manifold M has a unique Hermitian connection with torsion T given by

g.X; T .Y;Z// D JdF.X; Y;Z/ D �dF.JX; J Y; JZ/;

g being the associated metric. This torsion connection is known as the Bismut
connection of .J; F / and will be denoted here by r. From now on, we shall iden-
tify T with the 3-form JdF . In relation to the Levi-Civita connection rg of the
Riemannian metric g, the Bismut connection is determined by r D rg C 1

2T .
According to [10], the holonomy group of the Bismut connection associated

to any invariant balanced J -Hermitian structure on a nilmanifold M is contained
in SU.3/. The aim of this section is to prove that in six dimensions such a holon-
omy group reduces to a proper subgroup of SU.3/ if and only if the complex
structure J is abelian.
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1048 L. Ugarte and R. Villacampa

In order to prove this result, first we will study explicitly the behaviour of the
curvature endomorphisms of r since they, together with their covariant deriva-
tives, generate the Lie algebra hol.r/ of the holonomy group by the well-known
Ambrose–Singer Theorem. This approach is also convenient for the applications
to the study of the Strominger system in Section 5.

The adapted bases found in Theorem 2.11 will play a central role. More con-
cretely, let g be a 6-dimensional Lie algebra. Fixed any basis πe1; : : : ; e6º for the
dual g

⇤, let us consider the structure equations

dek D
X

1i<j 6

ck
ij e

ij ; k D 1; : : : ; 6;

with respect to the basis. Let g D e1 ˝ e1 C � � � C e6 ˝ e6 be the inner product
on g for which the basis πekº6

kD1
is orthonormal, and denote by πe1; : : : ; e6º the

dual basis.
Given any linear connection r, the connection 1-forms � i

j with respect to the
basis above are

� i
j .ek/ D g.rek

ej ; ei /;

i.e. rXej D �1
j .X/ e1 C � � � C �6

j .X/ e6. The curvature 2-forms�i
j of r are then

given in terms of the connection 1-forms � i
j by

�i
j D d� i

j C
X

1k6

� i
k ^ �k

j ; (4.1)

and the curvature endomorphismsR.ep; eq/ of the connection r are given in terms
of the curvature forms �i

j by

g.R.ep; eq/ei ; ej / D ��i
j .ep; eq/: (4.2)

Since dek.ei ; ej / D �ek.Œei ; ej ç/, the Levi-Civita connection 1-forms .�g/ij
of g express in terms of the structure constants ck

ij by

.�g/ij .ek/ D �1
2

�
g.ei ; Œej ; ekç/ � g.ek; Œei ; ej ç/C g.ej ; Œek; ei ç/

�

D 1

2
.ci

jk � ck
ij C c

j
ki
/:

Now, let J be a complex structure compatible with g and denote by F the associ-
ated fundamental 2-form. Since the Bismut connection r is given by

r D rg C 1

2
T ;
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1049

with torsion T D JdF , the Bismut connection 1-forms � i
j are determined by

� i
j .ek/ D .�g/ij .ek/ � 1

2
T .ei ; ej ; ek/

D 1

2
.ci

jk � ck
ij C c

j
ki
/ � 1

2
JdF.ei ; ej ; ek/:

(4.3)

Let us suppose next that g is the Lie algebra underlying a 6-dimensional nilman-
ifoldM endowed with an invariant Hermitian structure .J; F /, and let πe1; : : : ; e6º
be an adapted basis for .J; F /, i.e. satisfying (2.13). We can always consider the
.3; 0/-form ‰ given by

‰ D .e1 C i e2/ ^ .e3 C i e4/ ^ .e5 C i e6/:

Fino, Parton and Salamon prove in [10] that the Hermitian structure .J; F / is
balanced if and only if ‰ is parallel with respect to the Bismut connection r, that
is, Hol.r/ ⇢ SU.3/.

We will compute explicitly the Lie algebra hol.r/ of the holonomy group
Hol.r/ for each invariant balanced Hermitian structure .J; F / on M by using
the previous description obtained in Theorem 2.11. Our main tool is the compu-
tation of the curvature endomorphism R and the covariant derivatives, since they
generate the Lie algebra hol.r/. Since we have an adapted basis πe1; : : : ; e6º and
we know that hol.r/ ⇢ su(3), we will use the following representation:

su.3/ ä h�1; �2; �3; �4; �5; �6; �7; �8i

where
�1 D e12 � e34; �2 D e13 C e24;

�3 D e14 � e23; �4 D e34 � e56;

�5 D e15 C e26; �6 D e16 � e25;

�7 D e35 C e46; �8 D e36 � e45:

(4.4)

Notice that �1; �2; �3 generate the Lie subalgebra su.2/, which will play an im-
portant role in the case of abelian complex structures.

Recall that with respect to an adapted bases πe1; : : : ; e6º, the covariant deriva-
tive rej

� of any 2-form � is given by

.rej
�/.ep; eq/ D

6X

kD1

�
�k

q .ej /�.ek; ep/ � �k
p .ej /�.ek; eq/

�
; (4.5)

for j D 1; : : : ; 6.
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1050 L. Ugarte and R. Villacampa

In order to illustrate the process, we study in the following example the balanced
geometry associated to the complex-parallelizable structure J0, i.e. the standard
complex structure on the Iwasawa manifold.

Example 4.1. The balanced Hermitian geometry associated to the complex-par-
allelizable structure J0 is described by the structure equations (2.14) in Theo-
rem 2.11. Since the basis πe1; : : : ; e6º is adapted to the Hermitian structure, by
equations (2.14) we get that

dF D te136 � te145 � te235 � te246

and thus the torsion T is

T D JdF D �te135 � te146 � te236 C te245:

From (4.3) one has that the non-zero Bismut connection 1-forms � i
j are the fol-

lowing:
�1

5 D �2
6 D �te3; �1

6 D ��2
5 D �te4;

�3
5 D �4

6 D te1; �3
6 D ��4

5 D te2:

A direct calculation using (4.1) and (4.2) gives that the non-zero curvature endo-
morphisms R.ep; eq/ of the Bismut connection r are

R.e1; e2/ D 2t2�4; R.e1; e4/ D �R.e2; e3/ D �t2�3;

R.e1; e3/ D R.e2; e4/ D �t2�2; R.e3; e4/ D 2t2�1 C 2t2�4:

They generate the space h�1; �2; �3; �4i, however, by (4.5) the covariant deriva-
tives rej

�2 for j D 1; 2; 3; 4 are

re1�2 D �t�5; re2�2 D �t�6; re3�2 D �t�7; re4�2 D �t�8;

and therefore hol.r/ D su.3/.

For the remaining families of Theorem 2.11 the situation is more complicated.
We need the following two technical lemmas:

Lemma 4.2. The curvature endomorphisms R.ep; eq/ of the Bismut connection r
for any structure in the family (2.15) are

s2

t2
R.e1; e2/ D �4s2�1 � 2b2s�3 C 2⇢�4;

s2

t2
R.e1; e3/ D �.b4 C ⇢b2 C ⇢/�2;
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s2

t2
R.e1; e4/ D �2.b2 � ⇢/s�1 � .b4 � ⇢b2 C ⇢/�3;

s2

t2
R.e1; e5/ D ⇢b2�5;

s2

t2
R.e1; e6/ D �⇢b2�6 C 2⇢s�8;

s2

t2
R.e2; e3/ D 2.b2 C ⇢/s�1 C .b4 C ⇢b2 C ⇢/�3;

s2

t2
R.e2; e4/ D �.b4 � ⇢b2 C ⇢/�2;

s2

t2
R.e2; e5/ D ⇢b2�6;

s2

t2
R.e2; e6/ D ⇢b2�5 � 2⇢s�7;

s2

t2
R.e3; e4/ D 2.⇢C 2s2/�1 C 2b2s�3 C 2⇢�4;

s2

t2
R.e3; e5/ D ⇢b2�7;

s2

t2
R.e3; e6/ D 2⇢s�6 C ⇢b2�8;

s2

t2
R.e4; e5/ D ⇢b2�8;

s2

t2
R.e4; e6/ D �2⇢s�5 � ⇢b2�7;

s2

t2
R.e5; e6/ D �2b4�1 C 4b2s�3:

In particular, for ⇢ D 0 any R.ep; eq/ is a linear combination of the following
three curvature endomorphisms:

R.e1; e2/ D �4t2�1 � 2ıt2

s
�3;

R.e1; e3/ D �ıt
2

s2
�2;

R.e5; e6/ D �2ıt
2

s2
�1 C 4ıt2

s
�3;

where ı D b2 2 π0; 1º. Moreover, in this case the covariant derivative rej
�i is
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1052 L. Ugarte and R. Villacampa

zero for i D 1; 2; 3 and j D 1; : : : ; 4, and

re5�1 D 2ıt

s
�3; re5�2 D 0; re5�3 D �2ıt

s
�1;

re6�1 D 2ıt

s
�2; re6�2 D �2ıt

s
�1 C 4t�3; re6�3 D �4t�2:

Proof. It follows from equations (2.15) that dF is given in terms of the adapted
basis πe1; : : : ; e6º by

dF D 2t.e125 � e345/C t

s
.⇢C b2/.e136 � e235/ � t

s
.⇢ � b2/.e145 C e246/;

and therefore the torsion is

T D JdF D �2t.e126�e346/� t
s
.⇢�b2/.e135Ce236/� t

s
.⇢Cb2/.e146�e245/:

(4.6)
By (4.3) the non-zero Bismut connection 1-forms � i

j are the following:

�1
2 D ��3

4 D 2te6; �1
6 D ��2

5 D �⇢t
s
e4;

�1
3 D �2

4 D �b
2t

s
e5; �3

5 D �4
6 D ⇢t

s
e1;

�1
4 D ��2

3 D b2t

s
e6 �3

6 D ��4
5 D ⇢t

s
e2;

�1
5 D �2

6 D �⇢t
s
e3:

A direct calculation using equations (2.15), (4.1) and (4.2) gives the endomor-
phisms R.ep; eq/ listed above in terms of the basis (4.4). Finally, for ⇢ D 0 the
covariant derivatives rej

�i are easily computed using (4.5).

Lemma 4.3. For the balanced Hermitian structures in the family (2.16), the cur-
vature endomorphisms R.ep; eq/ of their Bismut connection r are

1

2juj2s2Y 2
R.e1; e2/ D �2.4s4 C b4juj2 � 4b2s2u2/�1

C b2t .b2juj2 � 2s2u2/Y�2

C 4b2s3u1

juj �3 C 4⇢s2�4;
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1

juj2s2Y 2
R.e1; e3/ D 2.b2juj2 � 2s2u2/.b

2t jujY � 2⇢s/
juj �1

� .b4t2juj2Y 2 � 2⇢b2st jujY C 4⇢s2/�2;

1

4juj2s4Y 2
R.e1; e4/ D 2.b2 � ⇢/su1

juj �1 � .b4 � ⇢b2 C ⇢/�3;

1

2s3Y 2
R.e1; e5/ D �⇢b2

⇥
.2su2

2 C tu2
1jujY /�5 C u1u2.2s � t jujY /�6

C 2u1juj.u2�7 C u1�8/
⇤
;

1

2s3Y 2
R.e1; e6/ D �⇢

⇥
b2u1u2.2s � t jujY /�5 C b2.2su2

1 C tu2
2jujY /�6

� 2juj.b2u2 � 2s2/.u2�7 C u1�8/
⇤
;

1

4juj2s4Y 2
R.e2; e3/ D �2.b2 C ⇢/su1

juj �1 C .b4 C ⇢b2 C ⇢/�3;

1

juj2s2Y 2
R.e2; e4/ D 2.b2juj2 � 2s2u2/.b

2t jujY C 2⇢s/

juj �1

� .b4t2juj2Y 2 C 2⇢b2st jujY C 4⇢s2/�2;

1

2s3Y 2
R.e2; e5/ D ⇢b2

⇥
u1u2.2s � t jujY /�5 � .2su2

2 C tu2
1jujY /�6

C 2u1juj.u1�7 � u2�8/
⇤
;

1

2s3Y 2
R.e2; e6/ D ⇢

⇥
b2.2su2

1 C tu2
2jujY /�5 � b2u1u2.2s � t jujY /�6

� 2.b2u2 � 2s2/juj.u1�7 � u2�8/
⇤
;

1

2juj2s2Y 2
R.e3; e4/ D 2.2⇢s2 C 4s4 C b4juj2 � 4b2s2u2/�1

� b2t .b2juj2 � 2s2u2/Y�2 � 4b2s3u1

juj �3 C 4⇢s2�4;

1

2s3Y 2
R.e3; e5/ D �⇢b2

⇥
2u1juj.u2�5 C u1�6/ � .2su2

2 � tu2
1jujY /�7

� u1u2.2s C t jujY /�8

⇤
;

1

2s3Y 2
R.e3; e6/ D ⇢

⇥
2juj.b2u2 � 2s2/.u2�5 C u1�6/

C b2u1u2.2s C t jujY /�7

C b2.2su2
1 � tu2

2jujY /�8

⇤
;
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1

2s3Y 2
R.e4; e5/ D ⇢b2

⇥
2u1juj.u1�5 � u2�6/ � u1u2.2s C t jujY /�7

C .2su2
2 � tu2

1jujY /�8

⇤
;

1

2s3Y 2
R.e4; e6/ D �⇢

⇥
2juj.b2u2 � 2s2/.u1�5 � u2�6/

C b2.2su2
1 � tu2

2jujY /�7

� b2u1u2.2s C t jujY /�8

⇤
;

1

4juj2s3Y 2
R.e5; e6/ D b4t jujY�1 C 2b2.b2juj2 � 2s2u2/

juj �2 C 2b2stu1Y�3:

In particular, for ⇢ D 0 any endomorphism R.ep; eq/ is a linear combination
of the following three curvature endomorphisms:

1

2juj2s2Y 2
R.e1; e2/ D �2.4s4 C ıjuj2 � 4ıs2u2/�1

C ıt.juj2 � 2s2u2/Y�2 C 4ıs3u1

juj �3;

1

juj2s2tY 3
R.e1; e3/ D 2ı.juj2 � 2s2u2/�1 � ıt juj2Y�2;

1

4juj2s3Y 2
R.e5; e6/ D ıt jujY�1 C 2ı.juj2 � 2s2u2/

juj �2 C 2ıstu1Y�3;

where ı D b2 2 π0; 1º. Moreover, in this case the covariant derivative rej
�i is

zero for i D 1; 2; 3 and j D 1; : : : ; 4, and

1

2sY
re5�1 D 2ısu2�2 � ıtu1jujY�3;

1

2sY
re5�2 D �2ısu2�1 � 2ıu1juj�3;

1

2sY
re5�3 D ıtu1jujY�1 C 2ıu1juj�2;

1

2sY
re6�1 D 2ısu1�2 C ıtu2jujY�3;

1

2sY
re6�2 D �2ısu1�1 C 2.ıu2 � 2s2/juj�3;

1

2sY
re6�3 D �ıtu2jujY�1 � 2.ıu2 � 2s2/juj�2:
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Proof. Since the basis πe1; : : : ; e6º is adapted to the structure, from (2.16) we get
that the torsion is

1

sY
T D 1

sY
JdF

D 2b2u1juj.e125 � e345/ � 2juj.�2s2 C b2u2/.e
126 � e346/

� .2⇢s C b2t jujY /.u1e
135 � u2e

136/

� 2s.⇢C b2/.u2e
145 C u1e

146/

� 2s.⇢ � b2/.u2e
235 C u1e

236/

C .2⇢s � b2t jujY /.u1e
245 � u2e

246/:

(4.7)

Using (4.3) one has that the non-zero Bismut connection 1-forms � i
j are the fol-

lowing:

�1
2 D ��3

4 D �2b2su1jujYe5 C 2s.�2s2 C b2u2/jujYe6;

�1
3 D �2

4 D b2st jujY 2.u1e
5 � u2e

6/;

�1
4 D ��2

3 D 2b2s2Y.u2e
5 C u1e

6/;

�1
5 D �2

6 D �2⇢s2Y.u1e
3 C u2e

4/;

�1
6 D ��2

5 D 2⇢s2Y.u2e
3 � u1e

4/;

�3
5 D �4

6 D 2⇢s2Y.u1e
1 C u2e

2/;

�3
6 D ��4

5 D �2⇢s2Y.u2e
1 � u1e

2/:

A long but direct calculation using (2.16), (4.1) and (4.2) gives the endomorphisms
R.ep; eq/ listed above in terms of the basis (4.4). Finally, for ⇢ D 0 the covariant
derivatives rej

�i can be computed directly using (4.5).

In the next proposition we describe the Lie algebra hol.r/ of the holonomy
group of the Bismut connection r when the complex structure J is nilpotent.

Proposition 4.4. Let .J; F / be an invariant balanced Hermitian structure on a
6-dimensional nilmanifold M such that J is nilpotent. Then, the holonomy group
of its associated Bismut connection r is equal to SU.3/ if and only if the complex
structure J is not abelian.

Moreover, if J is abelian then, with respect to the adapted basis satisfying equa-
tions (2.15) or (2.16) in Theorem 2.11 with ⇢ D 0, we have:

(i) If the Lie algebra underlying M is isomorphic to h5, then

hol.r/ ä h�1; �2; �3i:
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1056 L. Ugarte and R. Villacampa

(ii) If the Lie algebra underlying M is isomorphic to h3, then

hol.r/ ä h�1i:

Proof. Let us suppose first that J is abelian, i.e. ⇢ D 0. From Lemmas 4.2 and 4.3
it is easy to see that the curvature endomorphisms R.ep; eq/ and their covariant
derivatives of any order lie in the subspace h�1; �2; �3i. We have two possibili-
ties depending on the Lie algebra underlying M . By Proposition 2.8 the case h3

corresponds to ı D 0 and it is clear from the previous lemmas that only R.e1; e2/

is non-zero and it is proportional to �1, which satisfies r�1 D 0 and therefore
hol.r/ ä h�1i. On the other hand, the case ı D 1 corresponds, by Proposition 2.8,
to abelian complex structures on h5 and it is easy to check from Lemma 4.2 that
R.e1; e2/, R.e1; e3/ and R.e5; e6/ generate h�1; �2; �3i, so it remains to study the
case ⇢ D 0 and ı D 1 in Lemma 4.3. The determinant of the matrix whose entries
are the components of R.e1; e2/, R.e1; e3/ and R.e5; e6/ in the basis π�1; �2; �3º
is equal to

16384 u1.1C 4s2 � 4u2
1 � 4u2/.s

2 � juj2/7=2s12

jujt6

and, since 1C 4s2 � 4u2
1 � 4u2 > .1 � 2u2/

2 because s2 � u2
2 > 0, the vanish-

ing of this determinant depends only on the vanishing of u1. But if u1 D 0, then
a direct calculation shows that R.e1; e3/ and R.e5; e6/ generate �1 and �2, and
therefore �3 because Œ�1; �2ç D 2�3. In conclusion,

hol.r/ ä h�1; �2; �3i

when J is an abelian complex structure on the Lie algebra h5.
From now on, let us suppose that the nilpotent complex structure J is not abel-

ian, i.e. ⇢ D 1, and we have to prove that hol.r/ ä h�1; : : : ; �8i. In Example 4.1
we showed that this holds for the family (2.14). In the case of Lemma 4.2 it is easy
to check that the curvature endomorphisms R.ep; eq/ generate the whole space.

For Lemma 4.3 we will consider several cases depending on the vanishing of
the coefficients u1 and b. Firstly, if u1 6D 0, then the determinant of the matrix
whose entries are the components of the endomorphisms

1

4jujs4Y 2
R.e1; e4/ and

1

4jujs4Y 2
R.e2; e3/

in the basis π�1; �3º is

det

 
2.b2 � 1/su1 �.b4 � b2 C 1/juj

�2.b2 C 1/su1 .b4 C b2 C 1/juj

!
D �4su1juj 6D 0:
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1057

From R.e1; e3/ or R.e2; e4/ we get �2 because the components in �2 of these
endomorphisms cannot vanish simultaneously, and �4 comes from R.e1; e2/.

If u1 D 0, then we get �3 directly from R.e1; e4/ or R.e2; e3/. Again we con-
sider two cases depending on the vanishing of b2u2 � 2s2. If b2 6D 2s2=u2, then
R.e1; e3/ and R.e2; e4/ generate �1 and �2, and one also has �4 from R.e1; e2/.
In the case b2 D 2s2=u2 (which implies b 6D 0) we get �2 from R.e1; e3/ or
R.e2; e4/, �1 from R.e5; e6/ and then �4 from R.e1; e2/.

Finally, let us see that the curvature endomorphisms R.ep; eq/ in Lemma 4.3
also generate h�5; �6; �7; �8i. If b D 0, then from the curvature endomorphisms
R.e1; e6/, R.e2; e6/, R.e3; e6/ and R.e4; e6/ it is easy to check that this is true.
For b 6D 0 we have that the matrix whose entries are the components of

1

2b2s3Y 2
R.e1; e5/;

1

2b2s3Y 2
R.e2; e5/;

1

2b2s3Y 2
R.e3; e5/;

1

2b2s3Y 2
R.e4; e5/

in the basis π�5; �6; �7; �8º is
0

BBB@

�2su2
2 � tu2

1jujY �u1u2.2s � t jujY / �2u1u2juj �2u2
1juj

u1u2.2s � t jujY / �2su2
2 � tu2

1jujY 2u2
1juj �2u1u2juj

�2u1u2juj �2u2
1juj 2su2

2 � tu2
1jujY u1u2.2s C t jujY /

2u2
1juj �2u1u2juj �u1u2.2s C t jujY / 2su2

2 � tu2
1jujY

1

CCCA
;

whose determinant is equal to

juj4
�
4u2

1juj2 C 4s2u2
2 C t2u2

1juj2Y 2
�2
:

Since it is non-zero, �5, �6, �7 and �8 are generated by these curvature endomor-
phisms.

In conclusion, if ⇢ D 1, i.e. J is nilpotent but non-abelian, then

hol.r/ ä h�1; : : : ; �8i

and therefore the holonomy of the Bismut connection is equal to SU.3/.

Remark 4.5. The reduction of the holonomy of the Bismut connection r to a sub-
group of SU.2/ in the abelian complex case can also be derived from the following
fact. For ⇢ D 0 in the families (2.15) and (2.16) we have:

r.e12 C e34/ D 0; r..e1 C ie2/ ^ .e3 C ie4// D 0; re5 D 0; re6 D 0:

Moreover, if in addition ı D 0, then r.e12/ D 0 and r.e34/ D 0.
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1058 L. Ugarte and R. Villacampa

It remains to study the holonomy in the case of complex structures of non-
nilpotent type.

Proposition 4.6. Let .J; F / be an invariant balanced Hermitian structure on a
6-dimensional nilmanifold M such that J is non-nilpotent. Then, the holonomy
group of its associated Bismut connection is equal to SU.3/

Proof. Since J is non-nilpotent, by Theorem 2.11 it is sufficient to study the equa-
tions (2.17) and (2.18). In the first case, we have that the torsion is

T D ˙ 2

rs
e136 C 2s

r
e146 � 2s

r
e236 ˙ 2

rs
e246 (4.8)

and, by a similar calculation as in the preceding lemmas, one has the following
curvature endomorphisms of the Bismut connection:

R.e1; e2/ D �2s
2

r2
�4; R.e1; e3/ D s4 � 4

r2s2
�2 ⌥ 2

r2
�3;

R.e1; e4/ D � s
2

r2
�3; R.e1; e5/ D �3s

2

r2
�5;

R.e1; e6/ D ⌥ 2

r2
�5 � s2

r2
�6; R.e2; e3/ D �R.e1; e4/;

R.e2; e4/ D R.e1; e3/; R.e2; e5/ D 3s2

r2
�6;

R.e2; e6/ D � s
2

r2
�5 ˙ 2

r2
�6; R.e3; e4/ D �2s

2

r2
.�1 C �4/;

R.e3; e5/ D s2

r2
�7; R.e3; e6/ D ˙ 2

r2
�7 � s2

r2
�8;

R.e4; e5/ D � s
2

r2
�8; R.e4; e6/ D � s

2

r2
�7 ⌥ 2

r2
�8;

R.e5; e6/ D R.e1; e2/ �R.e3; e4/:

(4.9)

Thus, hol.r/ ä h�1; : : : ; �8i.
For the family (2.18) the torsion T is given by

.rstZ/T D s2.e134 � e156/⌥ t2.e234 � e256/

� .st CZ/.s2e135 ˙ t2e235/

C 1

st CZ
.s2e146 ˙ t2e246/C 2st.˙t2e136 � s2e236/
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Balanced Hermitian geometry on 6-dimensional nilmanifolds 1059

and one obtains in particular the following curvature endomorphisms of the Bismut
connection:

r2tZ2R.e1; e4/ D ⌥2t�2 C s3

✓
1

st CZ
� 3st

◆
�3 � s3�5 ˙ 2t.st CZ/�6;

r2tZ2R.e1; e5/ D ⌥ 2t

st CZ
�2 � s3�3 � s3

✓
1

st CZ
C st

◆
�5 ˙ 2t�6;

r2Z2

s
R.e2; e3/ D ˙t .st CZ/�2 C s3�3 ˙ t�6;

r2Z2

s
R.e2; e6/ D ˙t�2 � s3�5 ˙ t

st CZ
�6:

The determinant of the 4⇥4 matrix given by the components in �2; �3; �5 and
�6 of the previous endomorphisms is equal to �8s8t4. Since it is non-zero, the
endomorphisms R.e1; e4/; R.e1; e5/; R.e2; e3/ and R.e2; e6/ generate �2; �3; �5

and �6. From the fact that

Œ�2; �3ç D 2�1; Œ�2; �5ç D ��7; Œ�2; �6ç D ��8; Œ�5; �6ç D 2�1 C 2�4

we conclude that again hol.r/ ä h�1; : : : ; �8i.
Therefore, if J is non-nilpotent, then the holonomy of the Bismut connection

always equals SU.3/.

As a consequence of Propositions 4.4 and 4.6 we get:

Theorem 4.7. Let .J; F / be an invariant balanced Hermitian structure on a 6-di-
mensional nilmanifold M , and let r be its associated Bismut connection. Then,
Hol.r/ D SU.3/ if and only if J is not abelian.

Moreover, if the complex structure J is abelian, then the holonomy group of the
Bismut connection reduces to a subgroup of SU.2/, and it is equal to SU.2/ if and
only if the Lie algebra underlying M is isomorphic to the Lie algebra underlying
the Iwasawa manifold.

Remark 4.8. Let us consider h5 endowed with the balanced Hermitian struc-
tures .I�; g�/, � 2 Œ0; 1/, given in Example 3.7 and let r� denote the associ-
ated Bismut connection. Since I� is abelian only for � D 0, by the theorem above
Hol.r0/ D SU.2/ and Hol.r�/ D SU.3/ for any � 6D 0. Notice that h5 is the only
case where such a ‘jumping phenomenon’ of the Bismut holonomy can occur.

The next example shows that Theorem 4.7 does not hold for abelian complex
structures on 6-dimensional compact solvmanifolds.
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Example 4.9. Let g the solvable Lie algebra defined by the equations

de1 D de2 D 0; de3 D �e13 � e24; de4 D �e14 C e23;

de5 D e15 C e26; de6 D e16 � e25;

and let us consider J and F defined by (2.13). It is easy to check that J is an
abelian complex structure and the pair .J; F / is a balanced Hermitian structure.
Since dF D �2e134 C 2e156, the torsion is given by

T D 2e234 � 2e256

and a direct calculation as before shows that R.e1; e2/ D 0 and

R.e1; e3/ D R.e2; e4/ D ��2; R.e3; e4/ D 2�1;

R.e1; e4/ D �R.e2; e3/ D ��3; R.e3; e5/ D R.e4; e6/ D �7;

R.e1; e5/ D R.e2; e6/ D ��5; R.e3; e6/ D �R.e4; e5/ D �8;

R.e1; e6/ D �R.e2; e5/ D ��6; R.e5; e6/ D 2 �1 C 2�4:

This implies that su.3/ ⇢ hol.r/. Moreover, the .3; 0/-form

‰ D .e1 C ie2/ ^ .e3 C i e4/ ^ .e5 C ie6/

is parallel with respect to the Bismut connection, and therefore

hol.r/ D su.3/:

The existence of a lattice of maximal rank Ä of the simply connected solv-
able Lie group G associated to g was proved in [24] (see also [7]). Therefore, the
corresponding compact solvmanifold has an invariant balanced Hermitian struc-
ture .J; F / such that J is abelian and its associated Bismut connection r satisfies
Hol.r/ D SU.3/.

5 Heterotic supersymmetry with constant dilaton

In this section we study the existence of solutions of the Strominger system with
respect to the Bismut connection in the anomaly cancellation condition in the class
of abelian complex structures. We show that any invariant balanced metric com-
patible with an abelian complex structure provides a solution of the Strominger
system.

Since we look for solutions which are invariant, the dilaton function will always
be constant. Recall that a solution of the Strominger system with constant dila-
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ton [21] is given by a compact 6-dimensional manifoldM endowed with a Hermit-
ian SU.3/-structure .J; F;‰/ satisfying the following system of equations [21]:

(a) Gravitino equation: the holonomy of the Bismut connection r is contained
in SU.3/.

(b) Dilatino equation with constant dilaton: the dilaton function � is constant and
therefore the Lee form ✓ D 2d� is zero, i.e. the Hermitian structure is bal-
anced.

(c) Gaugino equation: there is a Donaldson–Uhlenbeck–Yau SU.3/-instanton, i.e.
a connection A with curvature 2-forms .�A/ij 2 su.3/.

(d) Anomaly cancellation condition: dT D 2⇡2˛0.p1.r/ � p1.A//, for ˛0 > 0.

The instanton A must be non-flat, and ˛0 positive because it is related to the
string tension (for physical interpretation of the solutions of the Strominger system
one can see [1, 4, 8, 11] and references therein).

In equation (d), p1 denotes the 4-form representing the first Pontrjagin class of
the connection, which is given in terms of the curvature forms�i

j of the connection
by

p1 D 1

8⇡2
tr� ^� D 1

8⇡2

X

1i<j 6

�i
j ^�i

j :

As we recall in the introduction, the anomaly cancellation condition could be
solved for different metric connections r, and we will consider next r as the
Bismut connection associated to .J; F /.

Let .J; F / be an invariant balanced Hermitian structure on a nilmanifold M ,
πe1; : : : ; e6º the adapted basis given in Theorem 2.11 and let us consider the
.3; 0/-form ‰ defining the SU.3/-structure given by

‰ D .e1 C ie2/ ^ .e3 C ie4/ ^ .e5 C ie6/:

Notice that in the gaugino equation the curvature 2-forms .�A/ij 2 su.3/ if and
only if

.�A/ij .e1; e2/C .�A/ij .e3; e4/C .�A/ij .e5; e6/ D 0;

.�A/ij .Jek; Jel/ D .�A/ij .ek; el/; for all i; j; k; l;
(5.1)

where πe1; : : : ; e6º is the dual basis of πe1; : : : ; e6º. We will consider invariant
instantons, therefore A satisfies (c) if and only if each curvature form is a linear
combination of the 2-forms �1; : : : ; �8 given in (4.4).

In the next proposition we find SU.3/-instantons for any balanced Hermitian
SU.3/-structure .J; F;‰/ with abelian J .
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Proposition 5.1. Let .J; F / be any invariant balanced Hermitian structure on a
6-dimensional nilmanifold M such that J is abelian. With respect to the adapted
basis πe1; : : : ; e6º given in Theorem 2.11, consider the SU(3)-structure

.J; F;‰ D .e1 C ie2/ ^ .e3 C ie4/ ^ .e5 C ie6//:

For each � 2 R, letA� be the SU.3/-connection defined by the connection 1-forms

.�A�/12 D �.�A�/21 D �.�A�/34 D .�A�/43 D �.e5 C e6/; (5.2)

and .�A�/ij D 0 for .i; j / 6D .1; 2/; .2; 1/; .3; 4/; .4; 3/. Then, A� is an SU.3/-in-
stanton such that:

(i) If .J; F / belongs to the family (2.15), then

tr�A� ^�A� D �8t
2

s2
.ı C 2s2/�2e1234:

(ii) If .J; F / belongs to the family (2.16), then

tr�A� ^�A� D �128s
4.s2 � juj2/
t2

.ı C 2ı.u1 � u2/C 2s2/�2e1234:

Proof. Since πe1; : : : ; e6º is an adapted basis for the SU.3/-structure and the con-
nection 1-forms with respect to this basis satisfy �j

i D �� i
j and

�1
3 D �2

4 ; �1
4 D ��2

3 ; �1
5 D �2

6 ;

�1
6 D ��2

5 ; �3
5 D �4

6 ; �3
6 D ��4

5 ; �1
2 C �3

4 C �5
6 D 0;

it follows that the connectionA� preserves F and‰, i.e. it is an SU.3/-connection.
In the case (2.15) for ⇢ D 0, from (4.1) we get that

.�A�/12 D �.�A�/21 D �.�A�/34 D .�A�/43 D �2t��1 C ıt�

s
.�2 � �3/

are the only non-zero curvature forms of the connection A�.
In the case (2.16) with ⇢ D 0, the only non-zero curvature forms are

.�A�/12 D �.�A�/21 D �.�A�/34 D .�A�/43

D 2sjujY.2s2 C ı.u1 � u2//��1 � ıst jujY 2.u1 � u2/��2

� 2ıs2Y.u1 C u2/��3:

Therefore, since the 2-forms .�A�/ij satisfy equations (5.1), the connection A� is
an SU.3/-instanton in both cases.

Finally, since �1 ^ �1 D �2 ^ �2 D �3 ^ �3 D �2 e1234 and �i ^ �j D 0 for
1  i < j  3, it is easy to check that the trace of �A� ^�A� is given by (i)
or (ii).
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In order to compute the trace of� ^� we need to know the curvature forms of
the Bismut connection. However, from (4.2) and Lemma 4.2 we get

Lemma 5.2. The curvature 2-forms �i
j for the Bismut connection in family (2.15)

are

�1
2 D �4t2.e12 � e34/C 2t2

s
.⇢ � b2/e14 C 2t2

s
.⇢C b2/e23

C 2t2

s2
.⇢e34 � b4e56/;

�1
3 D �2

4 D � t
2

s2
.b4 C ⇢b2 C ⇢/e13 � t2

s2
.b4 � ⇢b2 C ⇢/e24;

�1
4 D ��2

3 D �2b
2t2

s
.e12 � e34/ � t2

s2
.b4 � ⇢b2 C ⇢/e14

C t2

s2
.b4 C ⇢b2 C ⇢/e23 C 4b2t2

s
e56;

�1
5 D �2

6 D ⇢b2t2

s2
.e15 C e26/ � 2⇢t2

s
e46;

�1
6 D ��2

5 D �⇢b
2t2

s2
.e16 � e25/C 2⇢t2

s
e36;

�3
4 D 4t2.e12 � e34/ � 2t2

s
.⇢ � b2/e14 � 2t2

s
.⇢C b2/e23

C 2t2

s2
.⇢e12 C b4e56/;

�3
5 D �4

6 D �2⇢t
2

s
e26 C ⇢b2t2

s2
.e35 � e46/;

�3
6 D ��4

5 D 2⇢t2

s
e16 C ⇢b2t2

s2
.e36 C e45/;

�5
6 D ��1

2 ��3
4:

Therefore, tr� ^� D �8t4

s4 .b
8 C ⇢b4 C 4b4s2 C 2⇢s2 C 8s4/e1234.

Theorem 5.3. Let M be a nilmanifold with underlying Lie algebra isomorphic
to h3. For any invariant balanced Hermitian structure .J; F / on M there is an
invariant SU.3/-instanton solving the Strominger system. Moreover, the Bismut
connection associated to .J; F / is of instanton type and therefore such solutions
also solve the heterotic equations of motion.
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Proof. From Proposition 2.8 and Lemma 2.10 any invariant balanced Hermit-
ian structure on M is given, up to equivalence, by equations (2.15) with ⇢ D 0,
b2 D ı D 0 and s2 D 1. It follows from (4.6) that dT D �8t2e1234 and from
Lemma 5.2 we have tr� ^� D �64t4e1234. Consider now the instanton A�

given in Proposition 5.1, which by (i) satisfies tr�A� ^�A� D �16t2�2e1234.
The anomaly cancellation condition reduces to solve

dT D �8t2e1234 D 4˛0t2.�2 � 4t2/e1234 D 2⇡2˛0�p1.r/ � p1.A�/
�

for ˛0 D 2
4t2��2 positive. Therefore, it suffices to choose � such that �2 < 4t2.

Finally, by [17] a solution of the Strominger system is a solution of the het-
erotic equations of motion if and only if the connection r in the anomaly can-
cellation condition is an SU.3/-instanton. But this is clearly satisfied because
by Lemma 5.2 the only non-zero curvature forms for the Bismut connection are
�1

2 D ��3
4 D �4t2�1.

To complete the abelian case, we need to consider equations (2.16) with ⇢ D 0

and b2 D ı D 1. From Lemma 4.3 and relation (4.2) it follows

Lemma 5.4. Let .J; F / be a balanced Hermitian structure in family (2.16) with
⇢ D 0 and b2 D ı D 1. The non-zero curvature 2-forms�i

j of the Bismut connec-
tion are

1

2s2juj2Y 2
�1

2 D � 1

2s2juj2Y 2
�3

4

D �2.4s4 C juj2 � 4s2u2/.e
12 � e34/

C tY.juj2 � 2s2u2/.e
13 C e24/

C 4s3u1

juj .e14 � e23/C 2stY juje56;

1

2s2juj2Y 2
�1

3 D 1

2s2juj2Y 2
�2

4

D tY.juj2 � 2s2u2/.e
12 � e34/ � juj2t2Y 2

2
.e13 C e24/

C 4s

juj.juj2 � 2s2u2/e
56;

1

4s4jujY 2
�1

4 D � 1

4s4jujY 2
�2

3

D 2su1.e
12 � e34/ � juj.e14 � e23/C 2tu1jujYe56:
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Therefore,

tr� ^� D �2048s
8.s2 � juj2/2
t4

.1C 4s2 C 8s4 C 4u2
1

� 4u2 � 16s2u2 C 8u2
2/e

1234:

Recall that any abelian complex structure on h5 admits balanced Hermitian
metrics by Corollary 2.9.

Theorem 5.5. Let J be an abelian complex structure on a nilmanifold M with
underlying Lie algebra isomorphic to h5. Then, for any invariant balanced J -Her-
mitian structure on M there exists an invariant SU.3/-instanton solving the Stro-
minger system.

Proof. By Proposition 2.8 the invariant balanced Hermitian structures on M are
given by equations (2.15) or (2.16) with ⇢ D 0 and b2 D ı D 1. In the first case,
it follows from (4.6) that

dT D �4t
2

s2
.1C 2s2/e1234

and from Lemma 5.2 we have

tr� ^� D �8t
4

s4
.1C 4s2 C 8s4/e1234:

Consider now the instanton A� given in Proposition 5.1, which by (i) satisfies

tr�A� ^�A� D �8t
2

s2
.1C 2s2/�2e1234:

Therefore, we need to solve

dT D �4t
2

s2
.1C 2s2/e1234

D ˛0 2 t
2

s4

�
.1C 2s2/s2�2 � .1C 4s2 C 8s4/t2

�
e1234

D 2⇡2˛0�p1.r/ � p1.A�/
�

for ˛0 positive. It is sufficient to choose � small enough such that

.1C 2s2/s2�2 < .1C 4s2 C 8s4/t2:

Let us consider now the case (2.16) with ⇢ D 0 and b2 D ı D 1. From (4.7) it
follows that

dT D �32s
2.s2 � juj2/
t2

�
s2 C u2

1 C .2s2 � u2/
2 C .s2 � juj2/

�
e1234
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and from Lemma 5.4 we have

tr�^� D �2048s
8.s2 � juj2/2
t4

.1C4s2C8s4C4u2
1�4u2�16s2u2C8u2

2/e
1234:

Notice that Lemma 2.4 (ii.3) implies that for any abelian J on h5 the condi-
tion 4y2 < 1 � 4x must be satisfied, where x D u2 � s2 and y D u1. Therefore,
1C 4s2 � 4u2 > 4u

2
1, which implies that

1C 4s2 C 8s4 C 4u2
1 � 4u2 � 16s2u2 C 8u2

2 > 8u
2
1 C 8.s2 � u2/

2 � 0:

In conclusion, dT and tr� ^� are both a strictly negative multiple of e1234.
Consider now the instanton A� given in Proposition 5.1, which by (ii) satisfies

tr�A� ^�A� D �128s
4.s2 � juj2/
t2

.1C 2s2 C 2.u1 � u2//�
2e1234:

It is clear that we can choose � small enough such that

dT D 2⇡2˛0�p1.r/ � p1.A�/
�
;

for ˛0 positive.

As a consequence of Theorems 5.3 and 5.5 any abelian complex structure pro-
vides solutions of the Strominger system, more concretely:

Corollary 5.6. Let M be a nilmanifold endowed with an invariant balanced
Hermitian structure .J; F /. If J is abelian, then there is an invariant non-flat
SU.3/-instanton solving the Strominger system with respect to the Bismut connec-
tion in the anomaly cancellation condition. Moreover, any such solution solves in
addition the heterotic equations of motion if and only if M is a compact quotient
of H ⇥ R, H being the generalized 5-dimensional Heisenberg group.

5.1 More solutions

As a consequence of the previous study one can also find new solutions of the
Strominger system for complex structures of non-abelian type. For instance, let us
consider the family (2.15) with ⇢ D 1. From (4.6) we have that

dT D �4t
2

s2
.1C b4 C 2s2/e1234;

and by Lemma 5.2 we get

tr� ^� D �8t
4

s4
.b8 C b4 C 4b4s2 C 2s2 C 8s4/e1234:
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Now using the abelian instanton A satisfying tr�A ^�A D �2 e1234 given in [4]
we have

dT D �4t
2

s2
.1C b4 C 2s2/e1234

D ˛0

2 s4

�
s4 � 4t4.b8 C b4 C 4b4s2 C 2s2 C 8s4/

�
e1234

D 2⇡2˛0�p1.r/ � p1.A/
�

with ˛0 > 0 whenever the metric coefficient t satisfies

4t4.b8 C b4 C 4b4s2 C 2s2 C 8s4/ > s4:

According to Lemma 2.4 above, for b2 D 1 the solutions live on a nilmani-
fold with underlying Lie algebra h4 and for .b4 � 1/.b4 � 1C 4s2/ > 0, resp.
.b4 � 1/.b4 � 1C 4s2/ < 0, the solutions live on a nilmanifold corresponding to
the Lie algebra h5, resp. h2. Also one can prove that the balanced Hermitian struc-
tures are not equivalent.

Notice that for s2 D 1 these solutions were found in [8, Theorem 6.1], so the
family above can be thought as a deformation of such particular solutions.

Let N be a nilmanifold with underlying Lie algebra h

�
19, and let us consider

the family of balanced Hermitian structures .J˙
0 ; F / given by (2.17). It follows

from (4.8) that

dT D � 8

r2

✓
1

s2
e1234 C s2 e1256

◆
:

For each ⌧ 2 R, letA⌧ be the SU.3/-connection defined by the connection 1-forms

.�A⌧ /23 D .�A⌧ /25 D .�A⌧ /45 D 1

2
.�A⌧ /56 D �⌧ e6; .�A⌧ /ij D ⌧ e6;

for 1  i < j  6 such that .i; j / ¤ .2; 3/; .2; 5/; .4; 5/; .5; 6/, and �j
i D �� i

j .
By [23, Proposition 4.1] the connection A⌧ is an SU.3/-instanton and

tr�A⌧ ^�A⌧ D �144 ⌧2

r2s2
e1234: (5.3)

In the following result we prove that there is a non-flat instanton solving at the
same time the anomaly cancellation conditions for the Bismut and the Chern con-
nection with respect to the same balanced Hermitian structure. To our knowledge,
this seems to be the first example with this property.
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Proposition 5.7. Let N be a nilmanifold with underlying Lie algebra isomorphic
to h

�
19. For any invariant complex structure J on N there is a balanced Hermit-

ian structure and a non-flat instanton A solving at the same time the Strominger
systems for the Bismut and the Chern connection.

Proof. By [23] any complex structure J on h

�
19 is equivalent to JC

0 or J�
0 , so

it suffices to prove the result for J D J˙
0 . We consider the balanced Hermitian

structures given in family (2.17). It follows from [23, Proposition 4.1] that for any
r 6D 0 and s2 � 1, the instantonA⌧ with ⌧2 D s4�1

9r2s2 solves the Strominger system
with respect to the Chern connection rc in the anomaly cancellation condition.

On the other hand, for the Bismut connection r, it follows from (4.9) that

tr� ^� D 16.s4 � 4/
r4s4

e1234 � 16s4

r4
e1256:

Using (5.3), the equation

dT D 2⇡2˛0�p1.r/ � p1.AQ⌧ /
�

has solution if and only if r 6D 0, s2 
p
2 and Q⌧2 D 2.2�s4/

9r2s2 .
Therefore, if ⌧ D Q⌧ , then the corresponding instantonA is non-flat and provides

a simultaneous solution. Notice that ⌧ D Q⌧ if and only if

s2 D
r
5

3
:
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