000131122 001__ 131122
000131122 005__ 20240731103336.0
000131122 0247_ $$2doi$$a10.1021/acs.iecr.3c03956
000131122 0248_ $$2sideral$$a136718
000131122 037__ $$aART-2024-136718
000131122 041__ $$aeng
000131122 100__ $$aZapater, Diego
000131122 245__ $$aEffect of Thermal, Acid, and Alkaline Treatments over SAPO-34 and Its Agglomerated Catalysts: Property Modification and Methanol-to-Olefin Reaction Performance
000131122 260__ $$c2024
000131122 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131122 5203_ $$aSAPO-34 zeolite is one of the most well-studied methanol-to-olefin catalysts, with applications from laboratory to commercial scale. Here, we have studied the impact on the properties and performance of different modifications of a commercial zeolite, including thermal, acid, and alkaline treatments, along with its agglomeration with bentonite and alumina required in the technical catalyst. We prepared three zeolites and agglomerated them, making a total of seven materials, along with our benchmark catalyst. These were characterized and tested in a packed bed reactor. We analyzed the conversion, yield, and deactivation (coke) based on the effective acid site density ρAS* (a parameter correlating acid strength, density, and micropore volume). Thermal treatment increased the effective acid site density of the commercial zeolite by 60%, while only a 10% increase was found in the parent agglomerated catalyst. Acid etching increased the effective acid site density by 80%, while the basic treatment completely amorphized the framework of the zeolite. After agglomeration, the performance of the catalysts (by means of olefin production and deactivation) correlated with effective acid site density. The catalysts based on thermally and acid-treated zeolites performed best, while they had the lowest effective acid site density.
000131122 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/BES-2017-082052$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2016-76533-R
000131122 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131122 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131122 700__ $$0(orcid)0000-0002-7488-6196$$aLasobras, Javier
000131122 700__ $$aZambrano, Naydu
000131122 700__ $$aHita, Idoia
000131122 700__ $$aCastaño, Pedro
000131122 700__ $$aSoler, Jaime
000131122 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, Javier$$uUniversidad de Zaragoza
000131122 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, Miguel$$uUniversidad de Zaragoza
000131122 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000131122 773__ $$g63, 8 (2024), 3586–3599$$pInd. eng. chem. res.$$tIndustrial and Engineering Chemistry Research$$x0888-5885
000131122 8564_ $$s3494786$$uhttps://zaguan.unizar.es/record/131122/files/texto_completo.pdf$$yVersión publicada
000131122 8564_ $$s3038121$$uhttps://zaguan.unizar.es/record/131122/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131122 909CO $$ooai:zaguan.unizar.es:131122$$particulos$$pdriver
000131122 951__ $$a2024-07-31-09:48:17
000131122 980__ $$aARTICLE