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In this article we focus on the study of the collective dynamics of neural networks. The analysis of two
recent models of coupled “next-generation” neural mass models allows us to observe different global mean
dynamics of large neural populations. These models describe the mean dynamics of all-to-all coupled networks
of quadratic integrate-and-fire spiking neurons. In addition, one of these models considers the influence of the
synaptic adaptation mechanism on the macroscopic dynamics. We show how both models are related through a
parameter and we study the evolution of the dynamics when switching from one model to the other by varying
that parameter. Interestingly, we have detected three main dynamical regimes in the coupled models: Rössler-
type (funnel type), bursting-type, and spiking-like (oscillator-type) dynamics. This result opens the question of
which regime is the most suitable for realistic simulations of large neural networks and shows the possibility of
the emergence of chaotic collective dynamics when synaptic adaptation is very weak.

Understanding how the brain works is one of the main goals
of current science. Synchronization in large populations of
neurons has been shown to be directly related to different
brain functions and dysfunctions. Indeed, the ubiquity of os-
cillations in the brain supports the hypothesis that some cog-
nitive functions require rhythmic firing patterns [1]. However,
the dynamical analysis of large neural networks is a complex
task. In recent years, different studies have been carried out to
establish mean-field theories, which provide low-dimensional
systems that give information on the global dynamics of neu-
ral populations [2–6] and are accurate in the thermodynamic
limit (for large numbers of neurons).

In theoretical neuroscience, simple coupled mean-field
models have recently been studied to localize macroscopic co-
herence states (phase-locking) in which global gamma-band
oscillations arise [7–9]. It is interesting to note how macro-
scopic oscillations within different brain regions can show dif-
ferent phase-locks [10]. Different experimental and numerical
results show how two oscillating neural groups communicate
more efficiently when they maintain a phase-locked state: they
can send information consecutively during the most excitable
phase of the postsynaptic rhythm [11]. For example, these
couplings are crucial for current theories of how oscillations
shape the information transfer within and across the cortex,
what is called the communication through coherence hypoth-
esis [11]. Thus, experimental data exist to support the exis-
tence of multiple modes of phase-locking in the brain, but the
main mechanisms that enable phase-locking of macroscopic
rhythms need to be studied. Therefore, in this article we focus
on some basic mathematical models of coupled neural popula-
tions to study the emergent macroscopic phase-locking within
the theoretical framework of weakly coupled oscillators (sim-
ple quadratic integrate-and-fire neural models).

Another question is what type of phase locking can appear
and whether this locking is with or without delay. In fact,
a functionally optimal locking mode does not always have
zero phase delay because the transmission of spikes from one
area of the brain (a network) to another is not instantaneous
and can take up to hundreds of milliseconds [12] depending
on distance. Actually, recent experimental studies [13] have

demonstrated a multiplicity of phase differences and have
suggested that this fact could facilitate information selectiv-
ity [14]. Therefore, studying what synaptic mechanisms and
what mathematical models can generate different coordinated
rhythms is a relevant task and can shed light on the under-
standing of its functional role [15].

Two recent simple mathematical models that consider
synaptic adaptation are the models of Dumont and Gutkin [7]
and Ferrara et al. [9, 16]. In the first, the authors consider
variations in synaptic currents, and it is the model that we will
use since it connects with the well-known Montbrió et al. [17]
mean-field model. The other model uses spike rate adapta-
tion, which is a neural mechanism that considers the reduction
of firing activity due to spike peaks. In recent publications
[9, 18, 19] the authors have studied the effect of spike fre-
quency adaptation on the macroscopic dynamics of coupled
quadratic integrate-and-fire neural populations that integrate
and activate. Interestingly, in [9] it has recently been shown
that the addition of spike frequency adaptation leads to new
collective dynamic regimes that resemble spiking or bursting
dynamics of an isolated neuron [20]. Tonic spiking at the
macroscopic level may correspond to periodic collective os-
cillations (phase-locked periodic state). Note that networks of
identical spiking neurons in the absence of noise with purely
excitatory activity [21] or inhibitory interactions [22] can ex-
hibit this behavior. On the other hand, the bursting dynam-
ics corresponds to a relaxation oscillation that links a spiking
regime to a quiescence state (state of inactivity).

Periodic collective oscillations appear naturally when long
decay times of synaptic conductances are used in inhibitory
quadratic integrate-and-fire networks, and the main mecha-
nism is through a Hopf bifurcation such as in the mean-field
model considered in [18, 23]. The appearance of bursting
behaviors in neural mass models may be an interesting task
due to the option to generate more dynamical behaviors to
the network, and the results of the experiments suggest that
cholinergic drugs may be responsible for a modification of
the frequency of neural oscillations and can cause different
changes [24–28].

Therefore, the main objective of this article is to show how
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collective spiking or bursting regimes appear in neural mass
models, and whether another type of regime is also present.

In this paper we study two mean-field models (MPR and
DG models introduced in [17] and [7], respectively) designed
to describe all-to-all coupled networks of quadratic integrate-
and-fire (QIF) neurons. The MPR model of Montbrió et
al. [17] describes the macroscopic dynamics of a population
of fully coupled QIF neurons using instantaneous synapses,
while the DG model of Dumont and Gutkin [7] takes into ac-
count variations in synaptic currents. These models will be
applied to a system of two coupled networks, one of them
excitatory (with Ne neurons) and the other inhibitory (with Ni
neurons). We have chosen these two models because the MPR
model is a well-known neural mean-field model in the mathe-
matical neuroscience and Kuramoto model communities. The
article [17] was relevant as it was one of the first mean-field
models of QIF neurons that used the Ott-Antonsen ansatz [29]
(widely used in Kuramoto-type models). The choice of the
DG model was due to the fact that we observed that it is a gen-
eralization of the MPR model and introduces synaptic adapt-
ability. The use of simplified mathematical models has al-
ready received attention in computational neuroscience due to
the possibility of performing more detailed analyses [6, 30–
33]. A complete study of all the collective dynamics is an
open task and we intend to focus on this problem as well as
to locate some of the different dynamics in a parameter phase
space.

The MPR mean-field equations for two coupled populations
(one excitatory and the other inhibitory) [17] are

τeṙe =
∆e

πτe
+2reve,

τev̇e = v2
e + η̄e− (τeπre)

2 + τeJeere− τeJeiri + Iext
e ,

τiṙi =
∆i

πτi
+2rivi,

τiv̇i = v2
i + η̄i− (τiπri)

2 + τiJiere− τiJiiri + Iext
i .

(1)

The variables r∗ and v∗ represent, respectively, the firing
rate and the mean voltage of the excitatory (∗ = e) and in-
hibitory population (∗ = i). The model parameters are: J∗
(∗ ∈ {ee,ei, ie, ii}), the synaptic strengths of the connections;
Iext
∗ (∗ ∈ {e, i}), the external inputs; and ∆∗ and η̄∗ (∗ ∈ {e, i}),

the half-width and the mean value (in the Cauchy sense) of a
Lorentzian distribution used to achieve network heterogene-
ity. τe and τi are the membrane time constants and, for this
model, we consider them equal to 1 as in the original equa-
tions of [17].

The MPR mean-field equations (1) are deduced from the
following voltage equations [17] (for the neurons of the exci-
tatory and inhibitory population, respectively):{

v̇e, j = v2
e, j +ηe, j + Jeere− Jeiri + Iext

e ,

v̇i,k = v2
i,k +ηi,k + Jiere− Jiiri + Iext

i ,

where j = 1, ...,Ne and k = 1, ...,Ni. Notice that (ηe, j,ηi,k) are
the Lorentzian distributed constant currents. The following

formula corresponds to the Lorentzian distribution [16] (∆∗
and η̄∗ are the half-width and the mean value of the named
distribution):

L (η∗) =
∆∗

π[(η∗− η̄∗)2 +∆2
∗]
.

More information about these equations (and the ones used to
deduce the following equations (2)) can be found in Appendix.

For the case of the DG model, the mean-field equations
for two coupled populations (one excitatory and the other in-
hibitory) [7] are

τeṙe =
∆e

πτe
+2reve,

τev̇e = v2
e + η̄e− (τeπre)

2 + τeSee− τeSei + Iext
e ,

τSeṠee =−See + Jeere,

τSiṠei =−Sei + Jeiri,

τiṙi =
∆i

πτi
+2rivi,

τiv̇i = v2
i + η̄i− (τiπri)

2 + τiSie− τiSii + Iext
i ,

τSeṠie =−Sie + Jiere,

τSiṠii =−Sii + Jiiri.

(2)

where the same variables and parameters are used as in (1),
along with the variables S∗ (∗ ∈ {ee,ei, ie, ii}) that represent
the synaptic currents between connections, and the parameters
τS∗ (∗ ∈ {e, i}) are the synaptic time constants of the connec-
tions.

Figure 1 shows a comparison between the mean-field model
(1) and the average of a full system simulation of two coupled
populations with 50,000 neurons each (see the Appendix for
more details about the simulation of the complete network).
Panels (A) and (B) show the neurons in the excitatory and in-
hibitory population, respectively, that are active at each time
step. Panels (C) and (D) display how the firing rate and volt-
age of the excitatory population for the mean-field model are
very similar to the average firing rate and voltage calculated
when the entire system of neurons is simulated. All system
variables, and not just the firing rate, are accurately described
by the mean-field model. Panels (E) and (F) show the results
for the inhibitory population. These results support the valid-
ity of mean-field approximations for the description of large
populations of neurons and, in particular, for the systems of
interest in this article.

We have introduced the two mean-field models (MPR (1)
and DG (2)) that we analyze in this article. These models
describe two coupled populations of QIF neurons. The main
difference between both models is that the MPR model (1)
only involves the strength of synaptic connections (between
neurons of the same population or between both populations),
while the DG model (2) also includes the change in synaptic
currents. This fact is relevant, since it takes into account the
possibility of neural synaptic adaptation [19]. Note that, when
τSe = τSi = 0 and τe = τi = 1, both models are identical; then,
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FIG. 1: Results of the mean-field MPR model (1) for two coupled
populations and the complete simulation of said populations, with
parameters Ne = Ni = 50,000; ∆e = ∆i = 1; Jee = Jie = 18; Jei = 6;
Jii = 0; η̄e =−2.526; η̄i =−4; and Iext

e (t) = Iext
i (t) = 0 (which cor-

respond to the first 10ms of the green point parameter values of Fig-
ure 4). The initial conditions for all variables are 0. The threshold
and reset values for the voltage used to illustrate the behavior of the
mean-field network are 100 and −100, respectively. (A) and (B) Ac-
tivation of 50,000 neurons (randomly ordered) from the excitatory
and inhibitory populations, respectively, in the full simulation with
respect to time. (C) and (D) Red: firing rate and voltage of the exci-
tatory population in the mean-field model. Black: average firing rate
and voltage of the excitatory population in the full simulation. (E)
and (F) Red: Firing rate and voltage of the inhibitory population in
the mean-field model. Black: average firing rate and voltage of the
inhibitory population in the full simulation.

the MPR model is a limit case of the DG model. Therefore,
an important question is: how does the dynamics change from
one model to another when τSe and τSi vary?

To compare both models, we will consider τe = τi = 1 and
τSe = τSi . To simplify the notation, from now on we will use
τS := τSe = τSi as the new parameter. Since the case τS = 0 in
(2) corresponds to the MPR model, we now have a single pa-
rameter connecting the two models. Additionally, below, we
will set the following values for the parameters: ∆e = ∆i = 1,
Iext
e = Iext

i = 0, Jee = Jie = 18, Jei = 6, Jii = 0; leaving η̄e and
η̄i as free parameters. In panels (A1) and (A2) of Figure 2,
the projections in the plane (ri,vi) of the attractors for the
MPR model (τS = 0) and the DG model with τS = 1 are repre-
sented, both calculated for η̄e = −2.41 and η̄i = −4.005. As
can be seen, the dynamics of both attractors is very different.
In the case τS = 0 (A1), the attractor appears to be chaotic with
funnel-type dynamics (Rössler-type [34, 35]). In contrast, the
attractor for τS = 1 (A2) is a periodic orbit with small oscilla-
tions on an upper plateau (in the central time series (A3) you
can clearly see this bursting-type dynamics [36]). Figure 2
motivates an in-depth analysis of the dominant dynamics in
each of the two models for a broader range of values of η̄e
and η̄i.

Figures 3 and 4 show a comparison between the MPR
model (1) and the DG model (2) with τS = 1. The panels Fig-
ure 3(A) and Figure 4(A) show their respective biparametric
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FIG. 2: Orbits of the mean-field equations, showing changes in dy-
namics for different values of the synaptic parameter τS. The initial
conditions are (re,ve,ri,vi,See,Sei,Sie,Sii) = (1,−1,1,−1,1,1,1,1).
(A1) Orbit of the MPR model (1), equivalent to the DG model (2) for
τS = 0. (A2) and (A3) Orbit of the DG model (2) for τS = 1.

plates obtained with the spike-counting technique [37] over
the parameter space η̄e ∈ [−2.7,−2.35], η̄i ∈ [−4.5,−3.5]
with the remaining parameters set as above. The colors rep-
resent the number of cuts of orbits with the Poincaré section
∏∗ := {x∈Rn∗ : v̇i = 0∧ v̈i < 0} (∗ ∈ {MPR,DG}, nMPR = 4,
nDG = 8); that is, spikes are identified as relative maxima for
the variable vi over a period (more details in the Appendix).
A maximum value of 8 peaks has been considered to facilitate
the identification of areas with a reduced number of spikes, al-
though the regions marked with the maximum in many cases
have many more spikes than indicated (we will return to this
later). These plates show two outer regions in dark blue (top
left and bottom right) corresponding to 0 spikes, representing
dynamics heading towards a stable equilibrium point. In the
central area, different regions with different numbers of spikes
indicate periodic or chaotic attractors. For both values of τs,
the line η̄i =−4.0 crosses regions with attractors of different
nature; the remaining panels illustrate different aspects of the
dynamics of that uniparametric line.

Let us start by analyzing how the dynamics of the DG
model for τS = 1 varies along the selected parametric line
η̄i = −4.0. Starting from the upper left outer region in panel
Figure 3(A) and moving towards the inner region, the equi-
librium point loses its stability due to a Hopf bifurcation and
a stable limit cycle is created (panel (D1)). As we move fur-
ther inwards, the periodic orbit undergoes a process of spike-
adding after another, which are the result of small loops that
appear in the upper right part of the orbits (see panels (D2)
and (D3)). We can see in panel (C) how at least eleven spikes
are reached in the innermost region (see enlargement in panel
(C1) to be able to observe the eleven spikes). If we con-
tinue further to the lower right region of the parameter space
shown in (A), the process is reversed and occurs more rapidly:
the orbit undergoes successive spike-deletion processes un-
til it becomes a simple cycle that eventually disappears into
new one Hopf bifurcation that makes the equilibrium stable
again. Note that in the case of DG with τS = 1 no chaos is de-
tected, the maximum Lyapunov exponent is always zero (ex-
cept when it converges to an equilibrium point where it is also
negative).

For the MPR model, shown in Figure 4, the first and sec-
ond maximum Lyapunov exponents are presented in the fig-
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FIG. 3: Study of the behavior of the DG model for τS = 1. (A) Biparametric spike-counting (SC) sweeping. The line corresponding to
η̄i = −4.0, which is the one used for the rest of the graphs in this figure, is marked with a dashed white line. (B) Spike-counting sweeping
along the dashed white line. (C) Poincaré section of the same line. (C1) Zoom of (C) to be able to see the eleven spikes. The transient time for
all these panels is 3 ·104 ms and the integration time is 104 ms. (D1), (D2) and (D3) Orbits when η̄i = −4.0 and η̄e is −2.673, −2.526 and
−2.442, respectively.

ure in panel 4(B), in addition to the spike-counting plots. The
first Lyapunov exponent is shown in yellow-orange when it
is positive (i.e., for chaotic behavior), and the second Lya-
punov exponent is shown in grayscale when the first is zero
(i.e., for regular behavior). This image clearly shows the
existence of large chaotic regions in the biparametric space.
Note how both biparametric plots (panels Figure 4(A) and
(B)) provide complementary information and the regions with
the chosen maximum number of spikes correspond approx-
imately to the chaotic regions. In the upper left and lower
right regions, the attractor is again a point of equilibrium; and
when advancing towards the inner zone it becomes unstable
through a Hopf bifurcation that creates a stable cycle (panel
(F1)). From here on, however, the processes that the attrac-
tor experiences are different from the previous case. Follow-
ing the line η̄i = −4.0, we can observe how, at a value of
η̄e close to −2.64, a new spike appears (see panels (C) and
(D)). This new spike corresponds to a small rise that occurs
in the lower left part of the loop. In panel (G1), two peri-
odic orbits are represented. The brown orbit is the attractor
of η̄e = −2.64, and in this case there is only one point of in-
tersection with the Poincaré section. On the other hand, the
black orbit is the attractor when η̄e = −2.63, which already

has two cut-off points. Subsequently, for a value of η̄e close
to -2.62, a period-doubling bifurcation occurs (see brown or-
bit in panel (G2), η̄e = −2.62), so the two cuts that the orbit
had before the bifurcation are now four. By further increas-
ing the value of η̄e, one of the maxima of the variable vi at
the bottom is stretched until it no longer exists (see black or-
bit in panel (G2), η̄e =−2.61), which explains why in panels
(C) and (D) it first goes from two to four spikes (at the pe-
riod doubling bifurcation) and shortly after falls to three. In
panel (G3), the orbit after the next period doubling bifurca-
tion can be seen. Moving to the right on the line produces
an infinite period-doubling cascade that causes the dynamics
to become chaotic. The process is a little more complex than
usual since, throughout this infinite period-doubling cascade,
spike-adding and spike-deletion processes occur from time to
time. The chaotic region ends with a fold bifurcation, where
a new stable periodic orbit is born (which becomes an attrac-
tor), and an unstable one is also created. The above process
is repeated numerous times along the line (as can be seen in
panel (D)). Between the chaotic zones there are other zones of
regular (periodic) behavior, some of them so narrow that they
are not visible on the scale of the figure. Finally, upon exiting
the inner region, the process will be reversed, dominating an
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FIG. 4: Study of the behavior of the MPR model (DG model for τS = 0). (A) and (B) Biparametric spike-counting (SC) and Lyapunov
exponents (LEs), respectively. The line corresponding to η̄i = −4.0, which is the one used for the rest of the graphs in this figure, is marked
with a dashed white line. (C) Spike-counting sweeping along the dashed white line. (D) Poincaré section of the same line. (E) Representation
of the first Lyapunov exponent. The transient time for all these panels is 3 · 104 ms and the integration time is 104 ms. (F1), (F2) and (F3)
Orbits when η̄i = −4.0 and η̄e is −2.673, −2.526 and −2.442, respectively. (G1), (G2) and (G3) Orbits when η̄i = −4.0 and η̄e = −2.64,
−2.63, −2.62, −2.61 and -2.607, respectively.

infinite period-halving cascade. The situation described along
the line (and shown in panels (C)-(G)) is reproduced on the
biparametric region shown in panels (A) and (B). There we
can observe that there are several bands, of complex shape,
where the dominant behavior is chaotic. These chaotic bands
are surrounded by other regions of periodic behavior with an
increasing number of loops as we move from the outside to

the inside.

In conclusion, Figures 3 and 4 show in detail the dynamic
differences of both models already hinted at in Figure 2. On
the one hand, chaos appears in the MPR model, while it does
not appear in the DG model with τS = 1. On the other hand,
the periodic orbits of both models with more than one spike
are very different: the orbits of the MPR model have a funnel-
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FIG. 5: (A) and (B) Biparametric spike-counting (SC) sweeping of
MPR and DG model, respectively. The value of parameter η̄i is set
to −5.

like structure, while in the DG model (with τS = 1) the dynam-
ics are of bursting-type. These differences motivate the study
of the dynamic properties of the DG model when τS changes
from the value 0 (MPR model) to the value 1, with the aim of
showing the transition between the observed dynamic behav-
iors.

Another question that arises is related to whether these dy-
namics are preserved by changing the coupling parameters J∗.
To give a brief analysis we allow to change the value of the
parameter Jee (in the rest of the article Jee is set to 18), and in
Figure 5 we show the spike-counting sweeping in the bipara-
metric plots (η̄e, Jee) for the MPR and DG models. In both
cases we have set the value of the parameter η̄i = −5. We
observe how the richest dynamics is for Jee ∈ [12,18], and,
therefore, for this first analysis it is justified to use the value
Jee = 18 to study all the possible dynamics. It is open to per-
form a more exhaustive analysis to determine the global influ-
ence of all parameters.

Figure 6 presents biparametric plates for η̄e ∈
[−3.26,−1.7], η̄i ∈ [−5.94,−2.7] and for fixed values
of τS ∈ [0,3]. Note that the parametric regions shown on
these plates contain and expand those shown in panels (A)
and (B) of Figure 4. Here we can see how the interior region
seen in the previous ones with periodic or chaotic behavior
is surrounded by the dark blue region that corresponds to
an equilibrium point being the attractor and that is bounded
by a Hopf bifurcation curve. By increasing τS from 0 to
0.05 we can see in the plates how the large chaotic zone
has stretched and the bands are more evident. Furthermore,
the small chaotic area at the bottom left has become much
smaller. However, the regular zones are more similar, with
the only difference that in the case τs = 0.05, the zones left
by the chaotic part are now regular. With τS = 0.075, the
changes described above continue: the chaotic region at the
bottom left has completely disappeared and so have some of
the upper bands, and the remaining chaotic areas are much
thinner. For τS = 0.125, no chaotic region is observed. Only
three periodic regions (with 1, 2 and 3 loops from outside to
inside) and the outer equilibrium region are present. From

here on, chaotic dynamics no longer appear for any value
of the free parameters and the evolution process that we are
going to observe when τS increases is different. In the inner
region, new inner regions with more loops appear as we go
deeper. Thus, for τS = 0.25, the regions with 4 and 5 loops are
visible; for τS = 0.375 orbits with 6 and 7 loops also appear;
and, from τS = 0.5 onwards, there are orbits with 8 or more
loops. Note that now the dark red region marks the maximum
number of loops considered, and periodic orbits with a larger
number of loops (but no chaotic attractor) exist. At the same
time, we can see how the lower left tail becomes shorter and
the upper right corner becomes more pointed. Furthermore,
from τS = 1.0 onwards, the region with periodic orbits with
more than one loop becomes smaller, so with τS = 3.0 a much
smaller region is clearly observed and, although not shown
in the figure, increasing τS even further, this region ends up
disappearing, leaving only two possible behaviors, either
convergence to an equilibrium point or a periodic orbit with a
single loop.

All of the above figures have been made using a
fixed set of initial conditions (re,ve,ri,vi,See,Sei,Sie,Sii) =
(1,−1,1,−1,1,1,1,1). However, different initial conditions
can lead to different results in the case of multistability. To il-
lustrate this situation we show in Figure 7 the spike-counting
plots for the cases τS = 0 and 1 of Figure 6 but now using
random initial conditions and as a result noisy areas give us
an idea of the regions with multistability. In fact, we have de-
tected bistability. Graph (A1) provides an enlargement of a
bistability region and, in the value of the red dot parameters,
we show in graphs (A2) and (A3) the two possible orbits. Case
(A2) is the standard spiking-like (phase-locked) orbit and case
(A3) is an orbit with a long transient that eventually reaches
an equilibrium point. Therefore, bistability is present, but no
new dynamics are observed, so for this study we continue with
our set of initial conditions.

In Figure 8 we combine all the plates in Figure 6 into a sin-
gle three-dimensional image. In addition, we include a plate
with τS = 10 that shows the continuity of the dynamic prop-
erties described up to τS = 3, as well as a plate with constant
η̄e = −2.41, and η̄i and τS as free parameters that intersect
all other plates. Three main types of attractors are detected
in the DG model: a funnel-type (periodic or chaotic) orbit (as
seen in the classical Rössler model), shown in panel (C1); a
bursting-type periodic orbit, in panel (C2); and a simple cy-
cle that generates spiking dynamics, in panel (C3). Panel (B)
schematically shows the distribution of attractors in the space
of three parameters. The spiking dynamics is ubiquitous for
any value of τS. On the other hand, Rössler-type orbits only
appear for values τS close to 0 and bursting-type orbits for
values close to 1. At intermediate values the division is not
so clear. As an example of this, panel (D) shows several time
series of attractors at a point with regular dynamics for differ-
ent values of τS. We can see how the time series are gradually
deformed as the value of τS increases to go from one type of
dynamics to another.

In summary, in this article we have analyzed the influence
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MPR model

Hopf bifurcation

FIG. 6: Spike-counting sweeping (see upper color bar) of a biparametric region when the parameter τS of the DG model (2) varies between 0
(corresponding to the MPR model (1)) to 3. The Hopf bifurcation is marked in pink on the extreme value plots. The transient time for all these
panels is 3 ·104 and the integration time is 104. The initial conditions are (re,ve,ri,vi,See,Sei,Sie,Sii) = (1,−1,1,−1,1,1,1,1).

of the synaptic adaptation mechanism on the macroscopic dy-
namics of coupled neural populations (through coupled next-
generation neural masses [38] that exactly reproduce the dy-
namics of fully coupled networks of quadratic integrate-and-
fire spiking neurons). This low-dimensional mean-field reduc-
tion has allowed the analysis of different types of macroscopic
dynamics.

We have shown that there are three main dynamical regimes
in coupled models: Rössler-type, bursting-type, and spiking-
type (oscillator-type) dynamics. In the publications [9, 18] the
existence of bursting-type and oscillator-type dynamics was
already detected, but we added the case of chaotic dynamics
and also studied the parametric distribution of the different
dynamics. This result opens the question of which regime
is more suitable for realistic simulations of large neural net-
works and the differences between using or not using adap-
tation mechanisms. We highlight that we have detected the
possibility of the appearance of chaotic collective dynamics
when synaptic adaptation is very weak (or not present). This
result may motivate experiments, using cholinergic or simi-
lar drugs to reduce synaptic adaptation, to actually observe
whether this is the case in nature. Furthermore, it is part of
our future research to study in detail all the dynamic mecha-
nisms of creation and destruction of the different dynamics in
the parameter space.
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APPENDIX

Neural population equations

The coupled populations are formed by QIF neurons that
are described by the voltages v j whose evolution is studied
using the following equation in the case of MPR model [17]:

v̇e, j = v2
e, j +ηe, j + Jeere− Jeiri + Iext

e , (A.1)

for the neurons of the excitatory population where j = 1, ...,Ne
and

v̇i, j = v2
i, j +ηi, j + Jiere− Jiiri + Iext

i , (A.2)

for the inhibitory ones where j = 1, ...,Ni. Notice that re and
ri are the firing rates of the excitatory and inhibitory popula-
tions, respectively; (Jee,Jei,Jie,Jii) are the synaptic strengths
of the connections; (ηe, j;ηi, j) are the Lorentzian distributed
constant currents defining the intrinsic resting potential and
firing threshold of the neurons and (Iext

e , Iext
i ) are the external

inputs.
In the case of DG model, the voltages v j of QIF neurons of

both populations are given by the following equations [7]:

τev̇e, j = v2
e, j +ηe, j + τeSee− τeSei + Iext

e ,

τiv̇i, j = v2
i, j +ηi, j + τiSie− τiSii + Iext

i ,
(A.3)
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MPR model
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(A)

(B)

(A1)

(A3)

(A2)

FIG. 7: Study of spike-counting (SC) sweeping using random ini-
tial conditions. (A) and (B) Biparametric spike-counting sweep-
ing of the MPR and DG model, respectively. The random initial
conditions of re and ri belong to [0,1], and ve and vi to [−2,2]
(the initial conditions of the synaptic currents are fixed as 1). (A1)
Zoom of (A) to notice the bistability. The red dot corresponds to
η̄e = −3.114077135603254 and η̄i = −5.7. With these parameter
values and using the initial conditions (1,−1,1,−1) the orbit (A2) is
obtained, and with the initial conditions (0,0,0,−6) the orbit (A3) is
obtained.

where j = 1, ...,Ne in the first equation and j = 1, ...,Ni in
the second one. Moreover, τe and τi are the membrane time
constants (the other parameters have been explained in MPR
model) and the synaptic currents between the connections
(See, Sei, Sie, Sii) are described as follows:

τSe Ṡee = −See + Jeere,
τSe Ṡie = −Sie + Jiere,
τSi Ṡei = −Sei + Jeiri,
τSi Ṡii = −Sii + Jiiri,

(A.4)

where τSe and τSi are the synaptic time constants of the con-
nections (and the other parameters have been explained be-
fore).

We have to take into account that when v∗, j ≥ vth, that is,
when the value of the voltage crosses the threshold vth, then
v∗, j = vr (the value of the voltage returns to the reset value
vr). We consider that vth =−vr→∞ to capture the spike reset
as well as the refractory time of the neuron. In numerical

simulations a finite value for vth, and consequently for vr, is
used. In our simulations vth =−vr = 100.

To achieve the heterogeneity of the network, parameter η∗
(∗ ∈ {e, i}) is distributed randomly using Lorentzian distribu-
tion [16]:

L (η∗) =
∆∗

π[(η∗− η̄∗)2 +∆2
∗]
,

where ∆∗ and η̄∗ are the half-width and the mean value (in the
Cauchy sense) of the named distribution. In the simulations of
the whole network, given the values of ∆∗ and η̄∗, the values
of η∗, j (for each neuron of each population) is computed as
follows [16]:

η∗, j = η̄∗+∆∗ tan
(

π(2 j−N∗−1)
2(N∗+1)

)
, (A.5)

for j = 1, ...,N∗ (∗∈ {e, i}). Notice that neuron j of population
∗ is excitable if η∗, j is negative; and neuron j is firing tonically
and emits a regular train of spikes when η∗, j is positive.

In Table I, the units of the variables and parameters are in-
dicated (symbol - in the units column, means that the param-
eter is dimensionless). Moreover, the initial conditions of the
variables and the values of the parameters used in the figures
(unless otherwise indicated) are shown. Notice that the mod-
els MPR and DG have been obtained using the QIF model
which is not a biological one, it is a theoretical model that re-
produces the main dynamics of the populations behavior. This
model is obtained from the normal form of the Saddle-Node
bifurcation and, therefore, it is dimensionless for v̇e and v̇i.

Units Values
re,ri 1/ms Initial conditions: 1,1
ve,vi mV Initial conditions: -1,-1

See,Sei,Sie,Sii 1/ms Initial conditions: 1,1,1,1
τe,τi ms 1,1

τSe ,τSi ms [0,10], [0,10]
∆e,∆i - 1,1
η̄e, η̄i - [−3.26,−1.7], [−5.94,−2.7]

Iext
e , Iext

i A 0,0
Jee,Jei,Jie,Jii - 18,6,18,0

TABLE I: Units of the variables (and their initial conditions) and pa-
rameters (and their values) used for the MPR and DG models (unless
otherwise indicated)-

Numerical techniques

In the simulations of the whole network, to obtain the plots
of Figure 1 (corresponding to MPR model), we have taken
50,000 neurons for the excitatory population and the same
number for the inhibitory population. Therefore, we have to
solve 100,000 ordinary differential equations given by (A.1)
and (A.2) using a Runge-Kutta integrator of order 5 (with time
step 0.001 and saving every 10 steps). The threshold of the
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FIG. 8: Spike-counting (SC) sweeping when three parameter values are changed, and plot of some orbits for different values of τS. The
transient time used for all these panels is 3 · 104 and the integration time is 104. (A) and (A1) Spike-counting sweeping of the graphs of
Figure 6 (and the corresponding one for τS = 10) and of the biparametric region (η̄i,τS) with η̄e = −2.41. (B) Scheme of the different
dynamics that occur when the parameter τS changes. (C1), (C2) and (C3) Representation of the orbits in the three different zones shown in (B).
The value of the parameter τS is 0, 1 and 3, respectively, and η̄e =−2.41 and η̄i =−3.9 for the three plots . (D) Time series for the attractor
with different values of τS (η̄e =−2.54 and η̄i =−4.0)
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voltage is vth = 100 (as in [17]) and therefore, vr = −100.
The values of the parameters used for the simulations are ∆e =
∆i = 1, η̄e =−2.526, η̄i =−4, Jee = Jie = 18, Jei = 6, Jii = 0
and Ie = Ii = 0. The initial condition for all the variables is set
to 0.

To obtain the plots corresponding to the mean-field equa-
tions (MPR model) in Figure 1, we have used the equations of
(1). Then, we have solved a system of four ordinary differen-
tial equations using a Runge-Kutta integrator of order 5 (time
step 0.0001).

For the simulations of the whole network of DG model the
equations of (A.3) and (A.4) (using (A.5) to obtain the values
of η∗, j) are used. To obtain the time series of DG model the
equations of (2) are integrated.

The spike-counting technique [37] (also called isospike
technique [39]) consists on selecting a Poincaré section or to
impose a suitable condition (like to detect all the relative max-
ima of the orbit, what is the condition used in this article). And
later, after a long transient integration to go to the asymptotic
invariant, we use the selected condition to compute the corre-
sponding points to detect the period and maxima (in our case)
for the periodic case, or to put the maximum number of al-
lowed points that means or chaotic behavior or a very long
periodic orbit. In order to represent the different dynamics a
color is assigned to each number of maxima. To obtain the
spike-counting plots of Figures 3, 4, 5, 6, 7 and 8 we use the
advanced capabilities of the Taylor series numerical integrator
TIDES [40] that allows a continuous output, very suitable for
the location of the maxima points of the orbits.

The Runge-Kutta integrator of order 5 (with time step
0.001) is applied to obtain the time series that we need in the
algorithm in [41] used to compute (an approximation of) the
Lyapunov exponents.

∗ Electronic address: rbarrio@unizar.es; CODY group:
http://cody.unizar.es
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