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2 Abstract. The development of electric vehicles (EVs) depends on several factors: the EV’s acquisition price, autonomy, the charging 
3 process and the charging infrastructure. This paper is focused on the last factor: the design of an EV fast-charging station. In order to 
4 improve the profitability of the fast-charging stations and to decrease the high energy demanded from the grid, the station includes renewable 
5 generation (wind and photovoltaic) and a storage system. Unlike other papers, this one uses a detailed model of the charging process that 
6 considers the arrival time and state of charge of electric vehicles. First, the Monte Carlo method is used to model the EV demand and the 
7 renewable generation. Later, a genetic algorithm (GA) optimizes the installation and operation of the EV fast-charging station. It finds the 
8 optimal solution that maximizes the profit measured by its net present value (NPV). Several cases are studied to analyse the influence of 
9 renewable energies and storage systems. The obtained results show that a mix of renewable energies and storage systems attains the best 

10 cost efficient solution.

11 Keywords

12 Electric vehicle (EV), fast-charging station, Monte Carlo method, genetic algorithm and renewable energy.

13

14 Acronyms

15 Cbuyh: buy price at electrical market at hour h (€),

16 Cch: cost of a charger (€).

17 Cmt: maintenance cost of storage system at year t (€/year).

18 Cpv: square meter cost of photovoltaic panels (€/m2).

19 Cr&mt: replace and maintenance of storage system at year t (€).

20 Csaleh: sale price at electrical market at hour h (€),

21 Csh: energy price station at hour h (€),

22 Csto: cost of storage system (€/kWh).

23 Cwk: cost of the wind generator k (€).

24 ECstoh: energy charged from storage system at hour h (kWh).

25 EDstoh: energy discharged from storage system at hour h (kWh).

26 Eevh: energy supplied to EV customers at hour h (kWh).

27 Eg2sh: energy consumed from grid at hour h (kWh),

28 EMAXevh: maximum energy demanded by EV customers at hour h (kWh).

29 Ephh: energy supplied by photovoltaic generators at hour h (kWh).

30 Es2gh: energy supplied to grid at hour h (kWh),

31 Esoch: energy level in storage system at hour h (kWh).

32 Esoch-1: energy level in storage system at hour h − 1 (kWh).

33 Estoinst: nominal energy capacity of the installed storage system (kWh).

34 ETHstok: total energy throughput of battery k that is equal to the life cycle by battery capacity (kWh).

35 Ewh: energy supplied by wind generators at hour h (kWh).

mailto:jadona,%20rdufo,%20jmyusta,%20jsartal,%20jlbernal%7d@unizar.es


2

36 h: an hour index.

37 I: initial investment (€).

38 i: interest rate.

39 INFLOWh: cash inflow (income) at hour h (€).

40 n: the number of years considered in the study (year).

41 NCFt: net cash flow at year t (€).

42 NPV: net present value (€).

43 nw: the number of types of wind generators considered in the study.

44 OUTFLOWh: cash outflow (expenses) at hour h (€).

45 Pchinst: rated power of the EV fast-charging supplier (kW).

46 PCstoh: power of charge for storage system at hour h (kW).

47 PDstoh: power of discharge for the storage system at hour h (kW).

48 Pevh: power of the EV fast-charging supplier at hour h (kW).

49 Pg2sh: power consumed from grid at hour h (kW),

50 Pgcmax: power limit in the grid connexion point (kW).

51 Pphh: power supplied for photovoltaic generator at hour h (kW).

52 Pphinst: rated power of the installed photovoltaic generator (kW).

53 Ps2gh: power supplied to grid at hour h (kW),

54 Pstoinst: rated power of the installed storage system (kW).

55 Pwh: power supplied for wind generator at hour h (kW).

56 Pwinst: rated power of the installed wind generator (kW).

57 Qch: number of chargers installed.

58 Qwk: number of wind generators of type k.

59 SOC: state of charge of the battery (p.u.).

60 SOCmin:minimum state of charge of the battery (p.u.).

61 Spvinst: surface installed of photovoltaic panels (m2).

62 t: a year index.

63 tevk : waiting time for each vehicle (min).

64 tevmax: maximum waiting time; 0 (min), in our case.

65 yk: binary decision variable.

66

67

68 1.  Introduction
69 In the next few years, the number of electric vehicles (EVs) is expected to increase exponentially, due to the squandering of 
70 oil and the environmental impact associated with its use. For that reason, there is a tendency to coordinate efforts to reduce 
71 urban pollution and greenhouse gas emissions. At present, one of the most important problems in EV development is the 
72 shortage of charging infrastructure [1]. Drivers can charge their EVs at home, but the charge time is quite long. To promote 
73 the EV development, it is necessary to install fast-charging station in which the EV battery can be charged in around 15 
74 minutes. By contrast, the disadvantage of fast charging is the high power demand and its impact on the grid. In order to address 
75 this, renewable sources and storage systems can be installed in these stations [2]. Review of studies about the appropriate 
76 system design for an EV station’s installation and its operation can found in [3-9].
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77 Several authors have analysed the impact of EV station operation within the electrical network. They present different methods 
78 to level the load curve. Xu et al. [10] showed a coordinate charging strategy to improve the effects of EV charging in the 
79 electrical demand curve as well as the profit of the EV stations. Zhang and Qian [11] presented a methodology to charge EVs 
80 during night time. Cao et al. [12] proposed an intelligent charging method for EV in response to time-of-use price that 
81 alleviates the stress in the network during the peak periods. Fazelpour et al. [13] developed an algorithm with two phases to 
82 integrate smart parking with a plug-in hybrid EV. First, the algorithm optimizes the size and location of renewable energy 
83 installations through the grid. Then, it optimizes the characteristics of EV charging. This reduces the power losses and 
84 improves the voltage profile in the network.

85 Some papers address the problem of locations for these EV stations and even their sizing but with simplifications about their 
86 demand and operation. Sadeghi-Barzani et al. [14] used a mixed integer non-linear optimization approach to locate fast-
87 charging stations in a city; they considered the development and electrification costs, EV energy loss, and electric grid loss as 
88 objectives. In the model, they only defined the number of EVs arriving at the station, but they did not consider the arrival time 
89 or the occupation of the station. Wang et al. [15] presented a multiobjective planning model for EV charging stations to reduce 
90 power losses and voltage deviations in the distribution system. They considered a fixed demand and did not consider the 
91 operation of the charging process. Sungwoo and Kwasinski [16] used a spatial and temporal model of EV charging demand 
92 to locate the EV station. They used a fluid dynamic traffic model and queueing theory. Xiang et al. [17] developed a model 
93 to determine the siting and sizing of charging stations. They considered the interactions with the electrical grid, but they did 
94 not consider other types of energy sources.

95 A few authors have developed models for the design of EV charging stations, in which they used several simplifications in 
96 the design. Vermaak et al. [18] developed a model to calculate the size of a charging station with renewable energy, but the 
97 demand is constant and it has no connection to the grid. They optimized the results with Homer software. Hafez et al. [19] 
98 presented the optimal design of an EV charging station to minimize the lifecycle cost. They considered renewable energy, 
99 connexion to the grid and batteries, but they did not consider the arrival time; the optimization was also done with Homer 

100 software. Fathabadi [20] showed the electronic design of an EV charging station with PV and wind generators, but they did 
101 not determine the size of the EV station. He focused on the design of the converters and control algorithm. He used a daily 
102 curve to model demand, PV and wind generation.

103 In designs of EV charging stations, the demand models used have been very simple, with constant demand [18] and load 
104 profile [19, 20]. These load profiles do not consider when the charging of each vehicle begins and ends; rather, they are only 
105 an average value for each hour. More complex models exist the operation of EV charging stations. Bae and Kwasinski [21] 
106 used a model based on an M/M/s queueing theory, based on the state-transition algorithm used in Shrestha and Hansen [22]. 
107 Zhou and Liu [23] use an M/M/s queue based on a cell-transmission traffic model, and Viswanathan et al. [24] used real-
108 world traffic data.

109 The energy management systems used in the designs of EV charging stations are also very simple. In [18], Vermaak et al. 
110 prioritized the charging of the EV and used a battery pack to store energy form renewable sources when there are no vehicles 
111 in the station. A similar form of management is used by Hafez et al. [19], but they also included a thermal load that feeds 
112 when there is excess renewable energy generation. In [20], Fathabadi developed a MPPT technique to track the maximum 
113 power points of PV and wind systems. Other, more complex methods have been found for operating EV charging stations. 
114 Authors seek to achieve different objectives in the EV charging process, including to maximize profits [25-27], minimize total 
115 energy costs for users [28-32], reduce power losses in the network [31, 33], minimize the generation costs [34, 35], minimize 
116 the peak load [36], avoid congestion in the distribution network [37] or regulate the frequency [38].

117 Most of the previous papers are focussed on the operations or the impact on the grid, while only a few papers address the 
118 design of EV charging stations. Among the papers about design, they do not consider the charging dynamic (the arrival time 
119 and state of charge of each electric vehicle) because they have to adapt the input data into an optimization program such as 
120 Homer that is not built to solve this kind of problem.

121

122 The originality of this paper is as follows:

123 - The study focusses on an EV charging station design problem with characteristics of an EV charging station operation 
124 problem.
125 - EV power demand is represented by an Erlang B queuing model, which until now has only been used in papers that 
126 discuss the optimization of EV operations.
127 - The EV operations include the purchase and sale of energy in the electricity market, which until now has only been 
128 used in papers that discuss the optimization of EV operations.
129 - This design problem includes a wide variety of energy sources: renewable generators, the grid and batteries.
130 - A genetic algorithm was adapted to deal with the complexity of the design problem.
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131 The rest of the paper is organized as follows. The mathematical modelling of the optimization problem to design the EV 
132 station is explained in detail in Section 2. The probabilistic input data are described in Section 3. Then, the genetic algorithm’s 
133 characteristics are shown in Section 4. Finally, three cases are studied and compared to show the changes in the design in 
134 Section 5, and Section 6 concludes the paper.

135 2. Mathematical modelling
136 The EV fast-charging station considered in this work consists of several chargers to fill the batteries of the EVs’ clients as 
137 well as renewable generators and storage units to improve their profitability and reduce their impact in the electrical grid. The 
138 variables to be found in the charging station design problem consists of the optimal number and rated power of the chargers, 
139 the installed power of the renewable generators (wind and photovoltaic), the power and energy of the batteries and the 
140 contracted power in the grid connection point needed to feed the charging station.

141 The objective function (1) that the problem maximizes is the net present value (NPV), which is the difference between the 
142 present values of cash inflows (3) and the present values of cash outflows (4), including the cost of replacing and maintaining 
143 batteries (5) and the initial inversion (6) over a period of time (in this case, 20 years).

144 The optimization problem is also subject to several constraints:

145 - Energy balance in the whole charging station (7). Each hour, the sum of the photovoltaic and wind energy generated, the 
146 energy consumed or purchased from the grid and the energy discharged from the batteries must be equal to the sum of the 
147 energy supplied to the electric vehicles, the energy charged in the batteries and the power sold or supplied to the network.

148 - Stored energy in the batteries at hour h (8). The energy stored in the station’s batteries at hour h must be equal to the energy 
149 stored at hour h − 1, plus the energy charged during hour h, minus the energy discharged during hour h.

150 - Limit of the power supplied by the wind generators (9). The power generated by the wind generators must be less than the 
151 installed wind power.

152 - Limit of the power supplied by the photovoltaic panels (10). The power generated by the photovoltaic generators must be 
153 less than the installed photovoltaic power.

154 - Limit of the discharge and charge power of the storage systems (11) and (12). The charge or discharge power in the station’s 
155 batteries must be equal to or less than the nominal power of the installed converter.

156 - Limit of the discharge and charge energy of the storage systems (13) and (14). The discharge energy in the batteries at hour 
157 h must be equal to or less than the stored energy in the batteries at hour h – 1 and the charge energy in the batteries at hour h 
158 must be equal to or less than the difference between the battery capacity and the stored energy in the batteries at hour h – 1.

159 - Limit of the stored energy in the storage systems (15) and (16). The energy stored in the station’s batteries must be equal to 
160 or less than the battery capacity and equal to or greater than the minimum state of charge allowed in the batteries.

161 - Limit of the supplied and consumed power from the grid at the connection point (17) and (18). The power supplied to or 
162 consumed from the network must be equal to or less than the contracted power at the point of connection to the network.

163 - Limit of the EV-supplied power at every EV fast-charging supplier (19). The power supplied by each charger must be equal 
164 to or less than its rated power.

165 - Limit of the EV-supplied energy at hour h (20). The energy supplied by the EV station must be equal to or less than the 
166 maximum energy demanded by EV consumers. The energy supplied may be lower than the energy demanded when a 
167 generation deficit from renewable sources can not be compensated.

168 - Limit of the waiting time for each EV (21). This restriction defines the maximum time that a consumer will wait his or her 
169 turn. If the waiting time is longer, the consumer will leave the station. In our case, we consider that if the chargers are busy, 
170 the consumer will leave.

171 The model evaluates the charging station’s behaviour for 8760 hours per year. Some parameters of the model, such as the EV 
172 demand and the wind and photovoltaic generation, are represented with their probability distributions. The sequential Monte 
173 Carlo method was used to simulate the operation of the charging station. In section 3, every variable considered in the model 
174 is explained, and the algorithm used is explained in section 4.

175
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176 Maximize:

177 (1)𝑵𝑷𝑽 =  ∑𝒏
𝒕 = 𝟏

𝑵𝑪𝑭𝒕

(𝟏 + 𝒊)𝒕 ‒ 𝑰

178 Subject to:

179 - Net cash flow at each year t,

180 , (2)𝑵𝑪𝑭𝒕 = ∑𝟖𝟕𝟔𝟎
𝒉 = 𝟏(𝑰𝑵𝑭𝑳𝑶𝑾𝒉 ‒ 𝑶𝑼𝑻𝑭𝑳𝑶𝑾𝒉) ‒ 𝑪𝒓&𝒎𝒕

181 , (3)𝑰𝑵𝑭𝑳𝑶𝑾𝒉 = 𝑬𝒆𝒗𝒉·𝑪𝒔𝒉 + 𝑬𝒔𝟐𝒈𝒉·𝑪𝒔𝒂𝒍𝒆𝒉

182 , (4)𝑶𝑼𝑻𝑭𝑳𝑶𝑾𝒉 = 𝑬𝒈𝟐𝒔𝒉·𝑪𝒃𝒖𝒚𝒉

183 ; (5)𝑪𝒓&𝒎𝒕 =
∑𝟖𝟕𝟔𝟎

𝒉 = 𝟏𝑬𝑫𝒔𝒕𝒐𝒉·

𝑬𝑻𝑯𝒔𝒕𝒐 ·𝑪𝒔𝒕𝒐·𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕 + 𝑪𝒎𝒕

184 - Initial inversion,

185 ; (6)𝑰 = 𝑪𝒄𝒉·𝑸𝒄𝒉·𝑷𝒄𝒉𝒊𝒏𝒔𝒕 + ∑𝒏𝒘
𝒌 = 𝟏(𝑪𝒘𝒌·𝑸𝒘𝒌·𝒚𝒌) + 𝑪𝒑𝒗·𝑺𝒑𝒗𝒊𝒏𝒔𝒕 + 𝑪𝒔𝒕𝒐·𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕

186 - Energy balance in the charging station at hour h,

187 ; (7)𝑬𝒑𝒉𝒉 + 𝑬𝒘𝒉 + 𝑬𝒈𝟐𝒔𝒉 + 𝑬𝑫𝒔𝒕𝒐𝒉 = 𝑬𝒆𝒗𝒉 + 𝑬𝒔𝟐𝒈𝒉 + 𝑬𝑪𝒔𝒕𝒐𝒉

188 - Stored energy in the batteries at hour h,

189 ; (8)𝑬𝒔𝒐𝒄𝒉 = 𝑬𝒔𝒐𝒄𝒉 ‒ 𝟏 + 𝑬𝑪𝒔𝒕𝒐𝒉 ‒ 𝑬𝑫𝒔𝒕𝒐𝒉

190 - Limit of the power supplied by the wind generators,

191 ; (9)𝑷𝒘𝒉 ≤ 𝑷𝒘𝒊𝒏𝒔𝒕

192 - Limit of the power supplied by the photovoltaic panels,

193 ; (10)𝑷𝒑𝒉𝒉 ≤ 𝑷𝒑𝒉𝒊𝒏𝒔𝒕

194 - Limit of the discharge and charge power of the storage systems,

195 , (11)𝑷𝑫𝒔𝒕𝒐𝒉 ≤ 𝑷𝒔𝒕𝒐𝒊𝒏𝒔𝒕

196 ; (12)𝑷𝑪𝒔𝒕𝒐𝒉 ≤ 𝑷𝒔𝒕𝒐𝒊𝒏𝒔𝒕

197 - Limit of the discharge and charge energy of the storage systems,

198 , (13)𝑬𝑫𝒔𝒕𝒐𝒉 ≤ 𝑬𝒔𝒐𝒄𝒉 ‒ 𝟏

199 ; (14)𝑬𝑪𝒔𝒕𝒐𝒉 ≤ 𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕 ‒ 𝑬𝒔𝒐𝒄𝒉 ‒ 𝟏

200 - Limit of the stored energy in the storage systems,

201 , (15)𝑬𝒔𝒐𝒄𝒉 ≤ 𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕

202 ; (16)𝑬𝒔𝒐𝒄𝒉 ≥ 𝑺𝑶𝑪𝒎𝒊𝒏·𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕

203 - Limit of the supplied and consumed power from the grid at the connection point,

204 , (17)𝑷𝒔𝟐𝒈𝒉 ≤ 𝑷𝒈𝒄𝒎𝒂𝒙

205 ; (18)𝑷𝒈𝟐𝒔𝒉 ≤ 𝑷𝒈𝒄𝒎𝒂𝒙



6

206 - Limit of the EV-supplied power at every EV fast-charging supplier,

207 ; (19)𝑷𝒆𝒗𝒉 ≤ 𝑷𝒄𝒉𝒊𝒏𝒔𝒕

208 - Limit of the EV-supplied energy at hour h,

209 ; and (20)𝑬𝒆𝒗𝒉 ≤ 𝑬𝑴𝑨𝑿𝒆𝒗𝒉

210 - Limit of the waiting time for each EV,

211 (21)𝒕𝒆𝒗𝒌 ≤ 𝒕𝒆𝒗𝒎𝒂𝒙

212 Where ykw are binary variables.

213

214 3. Input data models

215 A. Electric vehicle demand

216 As introduced before, the first step is to model the EV demand at the charging station. This EV demand depends on the flow 
217 of electrical vehicles that arrive at the charging station and on the capacity and state of charge of their batteries. But we also 
218 consider that the charging station has a finite number of chargers and that when a consumer arrives at the station and no 
219 chargers are free, he or she will leave the charging station. This kind of system can be regarded as an Erlang B queueing 
220 model or M/M/c/c [39].

221 The first step consists of determining when each vehicle will arrive at the charging station. This can be modelled as a 
222 modulated Poisson process [40]. The time (ta) passed between the arrivals of two consecutive vehicles (21) is determined by 
223 an exponential distribution [11]. This distribution is defined by parameter , which is the average arrival time or time between 
224 two arrivals. As this time can change from hour to hour, a different h is considered for each hour h. For this study, the arrival 
225 time selected is shown in Figure 1(a). 

226 (21)𝒕𝒂𝒉(𝒙) = 𝟏 ‒ 𝒆 ‒ 𝝀𝒉𝒙

227 The electrical vehicle arrivals are simulated with the sequential Monte Carlo method, SMC [41]. A list of random numbers is 
228 obtained in the interval [0, 1], and every number gives us the arrival time of the next vehicle to introduce into the x parameter 
229 of the equation (21). Figure 1 gives an example of this sequence.
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234 Figure 1. Simulation of arrival times of EVs over the temporal horizon of 1 day. (a) Average arrival time (min), (b) time 
235 between arrivals (min), (c) time of arrival (min) and (d) number of vehicles per hour.

236

237 In the second step, the energy needed to fill the battery is calculated for every vehicle that arrives. For this, it is necessary to 
238 determine the capacity and state of charge of the EV’s battery. The battery capacity is associated with the vehicle type. It is 
239 supposed that the types of vehicles that can come to the station include motorbikes, cars and vans. The battery selection is 
240 associated with a discrete distribution found in the registration data obtained from the Traffic General Direction of Spain [42] 
241 about these type of vehicles; see Table 1.

242

243 Table 1. Probability of battery capacity.

Battery capacity (kWh) Probability (%) Accumulated probability (%)
Bike 3.6 0.115 0.115

Small private car 16 0.370 0.485
Large private car 25 0.380 0.865

Van 63 0.135 1

244

245 The state of charge (SOC) of the EV battery can be modelled by the lognormal distribution and is defined by the average (µ) 
246 and typical deviation (σ) of the logarithm of the SOC variable [11]. Parameter E represents the initial SOC of an EV battery 
247 and varies from 0 to 1. Fig. 2 shows the lognormal distribution of SOC used, for which the  and  parameters of equation 
248 (22) are 3 and 0.6, respectively:

249 (22)𝑺𝑶𝑪(𝑬;𝝁,𝝈) =  
𝟏

𝑬𝝈 𝟐𝝅·𝒆 ‒ (𝒍𝒏𝑬 ‒ 𝝁)𝟐/𝟐𝝈𝟐



8

250

251 Fig. 2 Lognormal distribution of battery SOC.

252

253 In the simulation process, a random number from the interval [0, 1] is compared with the accumulated probability found in 
254 Table 1 to obtain the type of vehicle that arrives at the charging station and to determine the maximum capacity of its battery. 
255 In the same way, another random number is introduced into parameter E of equation (22) for every EV that arrives to charging 
256 station to obtain its battery SOC.

257 In the third step, once the SOC and the battery capacity have been calculated, the charging time can be obtained for each 
258 vehicle by means of this simplified equation:

259 . (23)𝒕𝒄𝒉𝒂𝒓𝒈𝒆 =
𝑩𝒂𝒕𝒕𝒆𝒓𝒚_𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 ∗ (𝟏 ‒ 𝑺𝑶𝑪)

𝑷𝒄𝒉𝒂𝒓𝒈𝒆𝒓

260 Equation (21) obtains the arrival times, and equation (23) calculates the charging time. With these data, the vehicles are 
261 distributed to the different chargers. The charging simulation of Li-ion batteries has been simplified and modelled as constant 
262 power load [43-45]. At times when all of the chargers are busy, if a new vehicle arrives, it does not wait, and it is lost. As the 
263 charging periods are relatively long, consumers normally do not wait if they see that all of the chargers are busy and will go 
264 to the next charging station [39].

265 Finally, taking into account the fast charging power and the number of chargers supplying power, m, the total demand of the 
266 EV station, is:

267 . (24)𝑷𝒔𝒕𝒂𝒕𝒊𝒐𝒏(𝒕) = ∑𝒎
𝒌 = 𝟏𝑷𝒄𝒉𝒂𝒓𝒈𝒆𝒓,𝒌(𝒕)

268 Figure 3 shows an example of the temporal evolution of demand over one day in an example with three chargers as well as 
269 the total demand at the station. The load profile of a service station is not a smooth demand curve throughout the day, since 
270 the events are discrete.
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272 Figure 3. Demand at each charger and total of the station in a day.

273

274 B. Wind energy generation

275 The wind speed is modelled by a Weibull distribution (25). The parameters needed to calculate it are the scale factor (c) and 
276 the shape factor (k), which depend on the location. 

277 (25)𝒑(𝒗) =
𝒌
𝒄·(𝒗

𝒄)𝒌 ‒ 𝟏
·𝒆

‒ (𝒗
𝒄)𝒌

278 (26)𝒄 = 𝒗𝒎·(𝟎.𝟓𝟔𝟖 +
𝟎.𝟒𝟑𝟑

𝒌 ) ‒ 𝟏/𝒌

279 In the simulation process, it is possible to obtain the hourly evolution of the wind speed from a series of random numbers, 
280 introducing each random number p in the inverse of the Weibull distribution.

281 (27)𝒗 = ‒ 𝒄[𝐥𝐧 (𝟏 ‒ 𝒑)]𝟏/𝒌

282 Once the speed is obtained, the power that turbine can generate with this speed can be obtained from the wind generator power 
283 curve. Wind resources are modelled with the Weibull distribution for an average wind speed (vm = 6 m/s) and a shape factor 
284 (k = 2). The power curve for three turbines, as utilized in this paper, can be seen in Figure 4.
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288 Figure 4(a) Weibull distribution for wind speed and (b) power curve for the wind generator.

289 C. Photovoltaic solar energy.

290 The hourly output power of the photovoltaic panels, Ppvh, can be evaluated by the next equation [13, 46]:

291 , (28)𝑷𝒑𝒗𝒉 = 𝑮𝒊·𝑨·𝜼

292 where Gi is the global solar irradiance at the tilted surface, A is the installed surface and  is the efficiency of the system (17% 
293 in our case) that considers losses due to spectral sensitivity of the PV cells among others effects [47].

294 The data on global solar irradiance on an inclined plane were obtained from PVGIS (Photovoltaic Geographical Information 
295 System) tools [48]. It computes the real-sky global irradiance adding the beam, diffuse and reflected components on an 
296 inclined plane.

297 (29)𝑮𝒊 = 𝑩𝒊 +  𝑫𝒊 + 𝑹𝒊

298 The inputs are latitude, longitude and altitude from the location and the slope angle and orientation of the solar panels. The 
299 output is the estimation of real-sky global irradiance on the solar panels. In Figure 5, it is the hourly global irradiance for 41º 
300 latitude north, 0º longitude and 200 m of altitude; the solar panels are oriented towards the south and have an inclined angle 
301 of 40º.
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303 Figure. 5. Hourly global irradiance on a surface inclined 40º.
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304

305 D. Energy prices.

306 In Spain, EV charging stations must go to the electricity market or make a bilateral contract with a retailer for contracted 
307 power greater than 10 kW.

308 In the electricity market, the hourly price is determined by the point at which the supply and demand curves meet, according 
309 to the marginal pricing model. At this price, one has to add a generation toll and taxes to sell energy to the network. To buy 
310 from the network, one has to add the costs of the technical constraints and system operator management, the payments for 
311 capacity and interruptibility, the costs of the tolls and the losses in the transport of energy through the networks and taxes. In 
312 our case, the variation in the purchase price and sale price of energy as a result of the terms indicated above has been calculated 
313 at 0.0828 and 0.0022 €/kWh, respectively. The sale price of energy to electric vehicles has been estimated by adding 0.04 
314 €/kWh to the purchase price of energy as a benefit.

315 Fig. 6 shows the real purchase and sale prices of energy in the market, the sale price of energy to electric vehicles, and the 
316 annual average values of these curves. The difference between the purchase price of energy from the network (blue line) and 
317 the sale price to the network (red line) is due to the difference between tolls and taxes that must be paid when buying and 
318 selling. The sale price for electric vehicles (yellow line) takes into account the desired benefit and taxes.

319
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321 Figure 6. Hourly prices of energy

322

323

324 4. Optimization Algorithm
325 Genetic algorithms (GAs) [49, 50] are optimization methods widely used to solve real-world problems and are based on 
326 natural selection principles. Pseudocode of the optimization algorithm is shown in Figure 7. Here, the main characteristics of 
327 the proposed algorithm are explained, specifically the fitness function, chromosome structure and crossover and mutation 
328 rates.

329

330
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331

Program EV_station_optimization;
Begin:
Step 1: Generate an initial population (t=0) with nsol feasible solutions 
randomly.
Step 2: Evaluate these nsol solutions of the population (t=0) with the 
Fitness_function program.
For t=1 to max_generations

Step 3: Select the best solutions from population(t) as parents.
Step 4: Apply crossover on parents, creating population(t+1)
Step 5: Apply mutation into population(t+1)
Step 6: Evaluate population(t+1) with the fitness function

EndFor;
End.

332 Figure 7. EV station optimization

333

334 A. Chromosome: Optimization variables

335 A chromosome represents each individual, as shown in Figure 8; this is composed of the variables that the optimization 
336 program can change in the design process. These variables are associated with the charging station’s structure: the number 
337 and power of chargers, number and type of wind generators, surface occupied by photovoltaic panels, storage system capacity 
338 and transfer capacity of the connexion to the grid. All of the variables are real, except for the number of chargers and the 
339 number and type of wind generators, which are integers. In addition, these variables are constrained by the limits presented 
340 in Table 2 for design reasons.

341

Qch Qwkw kw Pchinst Spvinst Estoinst Pgcmax

342 Figure 8. Structure of a chromosome.

343

344 Table 2. Range of optimization variables.

Variable Description Variable 
type Lower limit Upper limit

Qch Number of chargers Integer 1 10
Qwkw Number of wind generators Integer 0 4

kw Type of wind generator Integer 1 3
Pchinst Charger power Real 44 220
Spvinst Surface occupied by 

photovoltaic panels
Real 0 m2 1875 m2

Estoinst Storage system capacity Real 0 kWh 500 kWh
Pgcmax Transfer capacity of the 

connexion to the grid
Real 0 kW 600 kW

345

346 B. Crossover and mutation operators

347 The chromosome has three integer-type genes and four real-type genes. The crossover operator used for the three genes of 
348 integer type creates a random binary vector and selects the genes from the first parent if the vector has a 1 and the genes from 
349 the second parent if the vector has a 0; then, it combines the genes to create the two children. If the binary vector is [1 0 1] 
350 and the parents are Parent1 = [a b c] and Parent2 = [1 2 3], then the children are Child1 = [a 2 c] and Child2 = [1 b 3].

351 The crossover operator used for the four real-type genes creates every gene k of the child from two parents, parent1 and 
352 parent2, using the next function:

353 child(k) = parent1(k) + Ratio * (parent2(k) – parent1(k)), (30)
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354 where Ratio is, in our case, equal to 0.8.

355 The mutation operator is applied to a small number of chromosomes. First, a random number between 0 and 1 is generated, 
356 and if this number is less than a threshold—in our case, 0.001—then a mutation is applied to this chromosome. Then, an 
357 integer random number between 1 and the number pf genes indicates the gene at which the mutation is applied. Finally, for 
358 integer-type genes, that gene is changed by an integer random number generated between the limits of this gene. For real-type 
359 genes, a real random number is generated between the limits of this gene.

360 If gene(k) is integer 

361 then gene(k) = randi([Lower limit, Upper limit]);

362 If gene(k) is real 

363 then gene(k) = Lower limit + (Upper limit – Lower limit) * rand(); (31)

364

365 C. Fitness function: Profitability

366 The fitness function is the same objective function that NPV (1) described in the mathematical model. The initial outlay 
367 corresponds to the cost of installing each energy system element. Incomes are associated with the energy supplied to customers 
368 who recharge their vehicles and with the surplus energy sold to the grid. On the other hand, expenses correspond to the energy 
369 bought from the grid, the maintenance of the EV station and the replacement of batteries.

370 To evaluate this fitness function, the energy management of the EV station during a year must be simulated. This energy 
371 management is simpler than other forms of energy management that can be found in papers on the operation problems of EV 
372 stations. Note that this paper treats the design problem, which is already complex enough. The renewable generation is 
373 prioritized to feeding the EV chargers. If the energy available at the charging station is higher than the demand of the EV 
374 chargers, this energy will be stored. Once the battery’s maximum capacity is reached, this surplus energy will be supplied to 
375 the electrical grid. If the limit of the grid connexion is reached and it is not possible to inject energy into the grid, then the 
376 renewable generation will be reduced. When there is a deficiency of energy to feed the EV chargers, that energy will be 
377 provided by storage systems firstly and, as a last resort, by the grid. The calculations of the batteries’ life and maintenance 
378 have also been included in equation (5).

379 The EV station’s operations were simulated with a sequential Monte Carlo method. The operations were simulated hourly 
380 during a year. First, the algorithm calculates the hourly EV demand from the probability distributions of arrival time, battery 
381 capacity and battery SOC. Second, the energy generated by wind and solar generators is calculated. Third, the energy flows 
382 among the generators, battery, EV chargers and grid are calculated. The problem’s restrictions must be checked when 
383 calculating the energy flows. Finally, the value of the fitness function is calculated, as can be seen in Figure 9.

384 The costs of energy sold to and purchased from the network were calculated based on the cost of hourly energy in the electricity 
385 market plus the corresponding tolls for the use of the electricity grid, and the cost of the energy sold to EVs was the electric 
386 market cost plus a profit, as explained in section 3-d.
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387

Program Fitness_function;
Begin:
For h=1 to 8760 do

Step 1: EV demand calculation
- Generate random numbers.
- Obtain the arrival time of EVs.
- Obtain the kind of EV and battery capacity.
- Obtain the battery’s SOC.

Step 2: Renewable energy calculation
- Generate random numbers.
- Obtain the energy generated by wind generators.
- Obtain the energy generated by solar modules.

Step 3: Energy balance
- Calculate the energy flows among devices that meet 
the devices’ restrictions.

Endfor;
Step 4: Evaluation of the fitness function NPV.

End.

388 Figure 9. Evaluation of the fitness function

389

390 5. Study case

391 A. Description of case

392 This work explains a model to optimize the design of EV charging stations. Data for modelling EV demand and wind and 
393 solar resources can be found in the “Input data models” section, limits for decision variables that optimize the algorithm are 
394 shown in Table 2 and economic data used in the objective function can be found in Table 3. Lithium ion batteries have been 
395 considered in the storage system with a minimum SOC level of 10% or 0.1 p.u.

396

397 Table 3. Economic costs.

Installation cost Buy/sell energy
Wind Generators 650 €/kW Sell energy to EV 0.175 €/kWh
Solar PV panels 100 €/m2 Sell energy to grid 0.055 €/kWh
EV Charger 500 €/kW Buy energy from grid 0.135 €/kWh
Battery (Li-ion) 150 €/kWh Contracted power to grid 0.121 €/kW month

Other parameters
Time of the cash flow 20 years Maintenance 1000 €/year
Discount rate 2.69 % Cycle life 2000 cycles

398

399 The first three cases were defined to study different patterns of feeding the station, the fourth case to study different arrival 
400 patterns of vehicles to the station, the fifth case to compare the performance with other heuristic algorithms and the sixth case 
401 to study the transfer capacity of the connexion to the grid.

402 Case I. The EV station feeds only from the grid. In this case, the EV station is connected to the grid, and all of the energy 
403 needed is purchased from the grid. The energy price has two terms: the contracted power and the energy consumed. This case 
404 is the baseline for the comparisons.

405 Case II. The EV station feed only from renewable energy. In this case, the EV station is isolated from the grid and is only fed 
406 by solar and wind renewable energy. Due to the uncertainty of renewable energy, batteries are installed to guarantee the 
407 service of the EV station. The design has limits for the solar and wind power installed that will depend on the location; in this 
408 case, the limits are in Table 2. 
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409 Case III. The EV station feeds from a mix of renewable energy and the grid. In this case, the EV station has renewable energy 
410 and a connexion to grid. This design is the most flexible because it has the advantages of both worlds: cheap energy from the 
411 renewable energy and safe feeding from the grid. Additionally, it is allowed to sell the excess energy to the grid [51].

412 Case IV. Similar to case III, but now with more detailed data. In this case, a different average arrival time is considered for 
413 every hour (see Figure 10), compared to the previous cases, in which only two periods were considered (see Figure 1(a)). In 
414 addition, it uses the hourly prices of the Spanish electric market and the hourly network access tolls (see Figure 6), rather than 
415 the average prices (see Table 3).

416 Case V. Similar to case IV, but now with a new algorithm: the particle swarm optimization. This case allows the performance 
417 of these algorithms to be compared, in terms of both computational time and accuracy.

418 Case VI and VII. Similar to case IV, but the capacity of power transfer to the grid is limited.

419
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421 Figure 10. Average arrival time (min)

422

423 B. Results

424 The optimal solutions obtained for the design of EV stations are described and examined from economic and technical 
425 perspectives. The characteristics of the designed EV stations are shown in Table 4, and the economic results can be found in 
426 Table 5.

427 Table 4 gives the number of chargers installed (N. chargers), the power of each charger (Charger power), the maximum power 
428 of the connexion between the grid and the EV station (Grid power), the type of wind generator installed (Type Wgen), the 
429 number of wind generators installed (N. Wgen), the surface of solar PV panels installed (Solar surface), the capacity of 
430 batteries installed (Battery) and the computational time in minutes necessary to reach the solution (Computational time (min)) 
431 with a Intel Core i5 and 4 GB of RAM.

432

433 Table 4. Optimal configuration for each case.

Case N. 
chargers

Charger 
power (kW) N. Wgen

Type 
Wgen

Solar surface 
(m2)

Battery 
(kWh)

Grid power 
(kW)

Computational 
time (min)

I 4 44.26 0 0 0 0 128.33 104
II 5 44.25 4 3 1456.38 379.57 0 136
III 5 46.11 4 3 1871.95 329.51 298.36 153
IV 5 46.00 4 3 1873.48 122.27 255.70 218
V 5 46.54 4 3 1874.21 125.32 243.74 82
VI 5 46.39 4 3 1867.00 190.20 200.00 80
VII 5 44.00 4 3 1867.49 111.52 100.00 75

434
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435 Table 5 gives the net present value (NPV), internal rate of return (IRR), profit investment ratio (PIR), investment, the cost of 
436 battery replacements, cost of maintenance, cost of buying energy from the grid, income from selling energy to the grid and 
437 income from selling energy to EV drivers. The PIR index is the ratio between the present value of future cash flows and the 
438 initial investment and can be used to rank the projects.

439

440 Table 5. Economic results for each case.

Case NPV       (€) IRR 
(years)

PIR 
(p.u.)

Investment 
(€)

Battery 
replacement 

(€)

Maintenance 
(€/year)

Cost of 
buying 

energy from 
the grid 
(€/year)

Income 
from selling 

energy to 
the grid 
(€/year)

Income from 
selling 

energy to 
EV owners 

(€/year)
I 166,397.66 5 2.879 88,532.09 0 1000 60,190.72 0 78,025.01
II 787,027.28 4 3.234 352,215.83 43,662.11 1000 0 0 78,248.50
III 990,445.25 4 3.533 390,897.26 37,903.48 1000 4138.58 15,087.07 83,167.25
IV 1,025,950.37 4 3.852 359,692.62 13,696.84 1000 15,521.45 14,752.55 93,522.74
V 1,020,344.70 4 3.821 361,569.00 25,767.62 1000 14,509.18 15,238.30 94,010.32
VI 1,006,539.27 4 3.718 370,218.69 42,232.98 1000 12,087.09 12,975.53 93,067.81
VII 955,624.17 4 3.711 352,477.82 12,492.59 1000 15,101.23 10,098.22 92,388.38

441

442 C. Comparison of cases I, II and III

443 As can be seen in Table 4, the number and power of chargers are similar in the first three cases because they mainly depend 
444 on the demand characteristics. However, the number of chargers is lower in case I, in which the EV station is fed only from 
445 the grid, with a more expensive energy price than that of free renewable energy.

446 The contracted power to the grid, in the grid power column, is greater in case III than in case I, which seems like a contradiction 
447 because case I is fed only from the grid, whereas case III can be fed from both the grid and renewable energy. Nevertheless, 
448 there is no contradiction because the EV station in case I buys energy from the grid and the EV station in case III sells energy 
449 to the grid.

450 The comparison between the installed renewable power in cases II and III shows that in case III, the maximum power of 
451 renewable energy (wind and solar) is installed based on the constraints from the four type 3 wind generators and 1871.95 m2 
452 of solar panels, while 1456.38 m2 is installed in case II, which is less than the 1871.95 m2 allowed. The reason is that in case 
453 II, the installed power is only needed to feed the demand because the energy that is not sold to electric vehicles is wasted, and 
454 the solution in case III installs all renewable energy possible, to sell this energy to the grid and get profits.

455 Finally, the solution for case II needs more storage capacity than the solution of case III because case II only uses uncertain 
456 renewable energy to feed the EV station, while case III can also use the connexion to the grid.

457 The computational time column shows the time necessary to reach the solution. These times are long because the evaluation 
458 of the fitness function requires simulation of the EV charging station’s operations by the Monte Carlo method. Furthermore, 
459 optimizing the design problem of an EV charging station with a genetic algorithm is also complex.

460 From an economic standpoint, the best solution is obtained in case III, with better value in the NPV than that of case II and 
461 the same IRR. In case III, the EV station has a mixed strategy, with renewable energies and connexion to the grid. This strategy 
462 permits income to be obtained from selling energy to EV owners and to the grid.

463 Investment is much greater in cases II and III than in case I, due to the installation costs of renewable generators and batteries; 
464 see Figure 11 and Table 5. However, these cost are compensated quickly by the operational costs and cost of the energy used. 
465 This energy is bought from the grid in case I, with a cost around 60,190.72 €/year, compared to a small cost in case III of 
466 about 4,138.58 €/year and practically free in case II. The rest of the energy used in cases II and III is supplied from renewable 
467 sources.

468 From an environment standpoint and when considering the impact on the grid, case II is better because it uses only renewable 
469 energy and has no impact on the grid. It does not have energy interchanges with the grid.

470
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472 Figure. 11. Components of investment.
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475 Figure. 12. Origin of the monthly energy used in each case.

476 Figure 12 shows the monthly energy used (sold to EV owners and the grid) in each case. The starting point in the optimization 
477 process is the hypothetical demand generated by the EVs at the location of the charging station, which is the same in all three 
478 cases. However, the real demand that each station is capable of satisfying is different, depending on the number of chargers 
479 assigned to it by the optimization of its configuration as well as the availability of energy at each moment according to the 
480 energy supply configuration that the optimization assigned to it. Case I has four chargers, so there will be consumers who will 
481 not stop when all of the chargers are occupied. Case II has five chargers, so it can serve more consumers, but in some cases, 
482 energy deficits can occur due to fluctuations in renewable energy or excess energy being wasted. Case III involves five 
483 chargers, but the optimization program calls for more installed solar renewable generation because the surplus energy can be 
484 sold to the grid.

485
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487 Figure. 13. Comparison in annual equivalent values.

488 Figure 13 permits the three cases to be compared in terms of annual equivalent values. Case I has a large total cost because 
489 the operational costs are high. Case III has the highest revenue because it sells energy to the grid and therefore has the highest 
490 profit.

491 Operation of the EV station every day differs according to the available energy sources, as shown in Figure 14. It shows the 
492 hourly power that each element generates or demands and, in the case of batteries, their energy level. In case I, all of the 
493 energy sold to electrical vehicles is provided from the grid. In case II, all energy is provided from wind and solar sources, but 
494 the batteries are needed to give service to all EVs, and at some hours (around 5 a.m. on this day), the EV station cannot supply 
495 all of the energy demanded by the EVs. In case III, the EV station uses the grid to supply energy to EVs when renewable 
496 sources are not enough.
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499 (a) Case I: EV station feeds only from the grid.
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502 (b) Case II: EV station feeds only from renewable energy. 
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505 (c) Case III: EV station feeds from a mix of renewable energy and the grid.

506 Figure. 14. Daily operation of the EV station.

507

508 D. Comparison between cases III and IV

509 Next, cases III and IV are compared. Case IV is the same as case III but with a more detailed modelling. It has different mean 
510 arrival times for every hour (Fig. 10) and uses hourly energy prices from the Spanish market for one year (Fig. 6).

511 As can be seen when comparing the optimal configurations of both cases in Table 4, these configurations are similar, with the 
512 only notable difference being in the size of the batteries. More vehicles arrive during day hours because the average arrival 
513 times decreased by a few hours; therefore, the renewable energy generated is used to feed the vehicles instead of being stored.

514 From the comparison of the economic results obtained in both cases, it can also be seen that the differences are small. More 
515 income would come from energy being sold to consumers, at 93,522.74 €/year in case IV compared to 83,167.25 €/year in 
516 case III, and less income would come from energy being sold to the network, at 14,752.55 €/year in case IV compared to 
517 15,087.07 €/year in case III. Since the capacity of the batteries in case IV is lower, at 122.27 kWh compared to 329.51 kWh 
518 in case III, the investment and the cost of replacing them are lower but more energy has to be bought from the grid.

519
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520 E. Comparison between cases IV and V

521 The comparison of the GA used in this work with another heuristic algorithm allows us to have an idea of our GA’s 
522 performance. In this case, our GA has been compared with the particle swarm optimization algorithm [50, 52]. The results 
523 obtained in case IV, with the genetic algorithm, and case V, with particle swarm optimization, show that the results are very 
524 similar, but the new algorithm is faster.

525

526 F. Comparison among cases V, VI and VII

527 In these cases, the transfer power between the station and the network has been limited. By limiting the transferred power, its 
528 impact on the network is limited. The energy sold both to the network from renewable energy and to consumers decreases.

529

530 6. Conclusions
531 A GA using technique and economic factors optimized the design of EV fast-charging stations. Probabilistic distributions 
532 modelled the EV demand and renewal generation more realistically. Specifically, the EV demand model was improved when 
533 adding more details (arrival time, EV battery capacity, SOC and the EV distribution during the day).

534 The first three simulated cases confirmed that an EV charging station can be profitable. The main inconvenience is the high 
535 power that EV fast charges demand. The installation of renewable generators can improve a station’s profitability, but it needs 
536 a connexion to the grid or a storage system to balance the intermittence of renewable energy.

537 The comparison among the last three cases confirmed that the utilization of renewable energies and storage systems would 
538 reduce the impact on the electrical grid.

539 The required investment is high; however, the development of technology is trending towards decreases in costs, which is a 
540 particularly interesting aspect in the case of batteries, both for the storage system and for EVs. This fact favours distributed 
541 generation, to achieve more sustainable energy management.

542
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Highlights:

- The study focusses on an EV charging station design problem with characteristics of an 
EV charging station operation problem.

- EV power demand is represented by an Erlang B queuing model, which until now has 
only been used in papers that discuss the optimization of EV operations.

- The EV operations include the purchase and sale of energy in the electricity market, 
which until now has only been used in papers that discuss the optimization of EV operations.

- This design problem includes a wide variety of energy sources: renewable generators, 
the grid and batteries.

- A genetic algorithm was adapted to deal with the complexity of the design problem.
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1

2 Abstract. The development of electric vehicles (EVs) depends on several factors: the EV’s acquisition price, autonomy, the charging 
3 process and the charging infrastructure. This paper is focused on the last factor: the design of an EV fast-charging station. In order to 
4 improve the profitability of the fast-charging stations and to decrease the high energy demanded from the grid, the station includes renewable 
5 generation (wind and photovoltaic) and a storage system. Unlike other papers, this one uses a detailed model of the charging process that 
6 considers the arrival time and state of charge of electric vehicles. First, the Monte Carlo method is used to model the EV demand and the 
7 renewable generation. Later, a genetic algorithm (GA) optimizes the installation and operation of the EV fast-charging station. It finds the 
8 optimal solution that maximizes the profit measured by its net present value (NPV). Several cases are studied to analyse the influence of 
9 renewable energies and storage systems. The obtained results show that a mix of renewable energies and storage systems attains the best 

10 cost efficient solution.

11 Keywords

12 Electric vehicle (EV), fast-charging station, Monte Carlo method, genetic algorithm and renewable energy.

13

14 Acronyms

15 Cbuyh: buy price at electrical market at hour h (€),

16 Cch: cost of a charger (€).

17 Cmt: maintenance cost of storage system at year t (€/year).

18 Cpv: square meter cost of photovoltaic panels (€/m2).

19 Cr&mt: replace and maintenance of storage system at year t (€).

20 Csaleh: sale price at electrical market at hour h (€),

21 Csh: energy price station at hour h (€),

22 Csto: cost of storage system (€/kWh).

23 Cwk: cost of the wind generator k (€).

24 ECstoh: energy charged from storage system at hour h (kWh).

25 EDstoh: energy discharged from storage system at hour h (kWh).

26 Eevh: energy supplied to EV customers at hour h (kWh).

27 Eg2sh: energy consumed from grid at hour h (kWh),

28 EMAXevh: maximum energy demanded by EV customers at hour h (kWh).

29 Ephh: energy supplied by photovoltaic generators at hour h (kWh).

30 Es2gh: energy supplied to grid at hour h (kWh),

31 Esoch: energy level in storage system at hour h (kWh).

32 Esoch-1: energy level in storage system at hour h − 1 (kWh).

33 Estoinst: nominal energy capacity of the installed storage system (kWh).

34 ETHstok: total energy throughput of battery k that is equal to the life cycle by battery capacity (kWh).

35 Ewh: energy supplied by wind generators at hour h (kWh).
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36 h: an hour index.

37 I: initial investment (€).

38 i: interest rate.

39 INFLOWh: cash inflow (income) at hour h (€).

40 n: the number of years considered in the study (year).

41 NCFt: net cash flow at year t (€).

42 NPV: net present value (€).

43 nw: the number of types of wind generators considered in the study.

44 OUTFLOWh: cash outflow (expenses) at hour h (€).

45 Pchinst: rated power of the EV fast-charging supplier (kW).

46 PCstoh: power of charge for storage system at hour h (kW).

47 PDstoh: power of discharge for the storage system at hour h (kW).

48 Pevh: power of the EV fast-charging supplier at hour h (kW).

49 Pg2sh: power consumed from grid at hour h (kW),

50 Pgcmax: power limit in the grid connexion point (kW).

51 Pphh: power supplied for photovoltaic generator at hour h (kW).

52 Pphinst: rated power of the installed photovoltaic generator (kW).

53 Ps2gh: power supplied to grid at hour h (kW),

54 Pstoinst: rated power of the installed storage system (kW).

55 Pwh: power supplied for wind generator at hour h (kW).

56 Pwinst: rated power of the installed wind generator (kW).

57 Qch: number of chargers installed.

58 Qwk: number of wind generators of type k.

59 SOC: state of charge of the battery (p.u.).

60 SOCmin:minimum state of charge of the battery (p.u.).

61 Spvinst: surface installed of photovoltaic panels (m2).

62 t: a year index.

63 tevk : waiting time for each vehicle (min).

64 tevmax: maximum waiting time; 0 (min), in our case.

65 yk: binary decision variable.

66

67

68 1.  Introduction
69 In the next few years, the number of electric vehicles (EVs) is expected to increase exponentially, due to the squandering of 
70 oil and the environmental impact associated with its use. For that reason, there is a tendency to coordinate efforts to reduce 
71 urban pollution and greenhouse gas emissions. At present, one of the most important problems in EV development is the 
72 shortage of charging infrastructure [1]. Drivers can charge their EVs at home, but the charge time is quite long. To promote 
73 the EV development, it is necessary to install fast-charging station in which the EV battery can be charged in around 15 
74 minutes. By contrast, the disadvantage of fast charging is the high power demand and its impact on the grid. In order to address 
75 this, renewable sources and storage systems can be installed in these stations [2]. Review of studies about the appropriate 
76 system design for an EV station’s installation and its operation can found in [3-9].
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77 Several authors have analysed the impact of EV station operation within the electrical network. They present different methods 
78 to level the load curve. Xu et al. [10] showed a coordinate charging strategy to improve the effects of EV charging in the 
79 electrical demand curve as well as the profit of the EV stations. Zhang and Qian [11] presented a methodology to charge EVs 
80 during night time. Cao et al. [12] proposed an intelligent charging method for EV in response to time-of-use price that 
81 alleviates the stress in the network during the peak periods. Fazelpour et al. [13] developed an algorithm with two phases to 
82 integrate smart parking with a plug-in hybrid EV. First, the algorithm optimizes the size and location of renewable energy 
83 installations through the grid. Then, it optimizes the characteristics of EV charging. This reduces the power losses and 
84 improves the voltage profile in the network.

85 Some papers address the problem of locations for these EV stations and even their sizing but with simplifications about their 
86 demand and operation. Sadeghi-Barzani et al. [14] used a mixed integer non-linear optimization approach to locate fast-
87 charging stations in a city; they considered the development and electrification costs, EV energy loss, and electric grid loss as 
88 objectives. In the model, they only defined the number of EVs arriving at the station, but they did not consider the arrival time 
89 or the occupation of the station. Wang et al. [15] presented a multiobjective planning model for EV charging stations to reduce 
90 power losses and voltage deviations in the distribution system. They considered a fixed demand and did not consider the 
91 operation of the charging process. Sungwoo and Kwasinski [16] used a spatial and temporal model of EV charging demand 
92 to locate the EV station. They used a fluid dynamic traffic model and queueing theory. Xiang et al. [17] developed a model 
93 to determine the siting and sizing of charging stations. They considered the interactions with the electrical grid, but they did 
94 not consider other types of energy sources.

95 A few authors have developed models for the design of EV charging stations, in which they used several simplifications in 
96 the design. Vermaak et al. [18] developed a model to calculate the size of a charging station with renewable energy, but the 
97 demand is constant and it has no connection to the grid. They optimized the results with Homer software. Hafez et al. [19] 
98 presented the optimal design of an EV charging station to minimize the lifecycle cost. They considered renewable energy, 
99 connexion to the grid and batteries, but they did not consider the arrival time; the optimization was also done with Homer 

100 software. Fathabadi [20] showed the electronic design of an EV charging station with PV and wind generators, but they did 
101 not determine the size of the EV station. He focused on the design of the converters and control algorithm. He used a daily 
102 curve to model demand, PV and wind generation.

103 In designs of EV charging stations, the demand models used have been very simple, with constant demand [18] and load 
104 profile [19, 20]. These load profiles do not consider when the charging of each vehicle begins and ends; rather, they are only 
105 an average value for each hour. More complex models exist the operation of EV charging stations. Bae and Kwasinski [21] 
106 used a model based on an M/M/s queueing theory, based on the state-transition algorithm used in Shrestha and Hansen [22]. 
107 Zhou and Liu [23] use an M/M/s queue based on a cell-transmission traffic model, and Viswanathan et al. [24] used real-
108 world traffic data.

109 The energy management systems used in the designs of EV charging stations are also very simple. In [18], Vermaak et al. 
110 prioritized the charging of the EV and used a battery pack to store energy form renewable sources when there are no vehicles 
111 in the station. A similar form of management is used by Hafez et al. [19], but they also included a thermal load that feeds 
112 when there is excess renewable energy generation. In [20], Fathabadi developed a MPPT technique to track the maximum 
113 power points of PV and wind systems. Other, more complex methods have been found for operating EV charging stations. 
114 Authors seek to achieve different objectives in the EV charging process, including to maximize profits [25-27], minimize total 
115 energy costs for users [28-32], reduce power losses in the network [31, 33], minimize the generation costs [34, 35], minimize 
116 the peak load [36], avoid congestion in the distribution network [37] or regulate the frequency [38].

117 Most of the previous papers are focussed on the operations or the impact on the grid, while only a few papers address the 
118 design of EV charging stations. Among the papers about design, they do not consider the charging dynamic (the arrival time 
119 and state of charge of each electric vehicle) because they have to adapt the input data into an optimization program such as 
120 Homer that is not built to solve this kind of problem.

121

122 The originality of this paper is as follows:

123 - The study focusses on an EV charging station design problem with characteristics of an EV charging station operation 
124 problem.
125 - EV power demand is represented by an Erlang B queuing model, which until now has only been used in papers that 
126 discuss the optimization of EV operations.
127 - The EV operations include the purchase and sale of energy in the electricity market, which until now has only been 
128 used in papers that discuss the optimization of EV operations.
129 - This design problem includes a wide variety of energy sources: renewable generators, the grid and batteries.
130 - A genetic algorithm was adapted to deal with the complexity of the design problem.
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131 The rest of the paper is organized as follows. The mathematical modelling of the optimization problem to design the EV 
132 station is explained in detail in Section 2. The probabilistic input data are described in Section 3. Then, the genetic algorithm’s 
133 characteristics are shown in Section 4. Finally, three cases are studied and compared to show the changes in the design in 
134 Section 5, and Section 6 concludes the paper.

135 2. Mathematical modelling
136 The EV fast-charging station considered in this work consists of several chargers to fill the batteries of the EVs’ clients as 
137 well as renewable generators and storage units to improve their profitability and reduce their impact in the electrical grid. The 
138 variables to be found in the charging station design problem consists of the optimal number and rated power of the chargers, 
139 the installed power of the renewable generators (wind and photovoltaic), the power and energy of the batteries and the 
140 contracted power in the grid connection point needed to feed the charging station.

141 The objective function (1) that the problem maximizes is the net present value (NPV), which is the difference between the 
142 present values of cash inflows (3) and the present values of cash outflows (4), including the cost of replacing and maintaining 
143 batteries (5) and the initial inversion (6) over a period of time (in this case, 20 years).

144 The optimization problem is also subject to several constraints:

145 - Energy balance in the whole charging station (7). Each hour, the sum of the photovoltaic and wind energy generated, the 
146 energy consumed or purchased from the grid and the energy discharged from the batteries must be equal to the sum of the 
147 energy supplied to the electric vehicles, the energy charged in the batteries and the power sold or supplied to the network.

148 - Stored energy in the batteries at hour h (8). The energy stored in the station’s batteries at hour h must be equal to the energy 
149 stored at hour h − 1, plus the energy charged during hour h, minus the energy discharged during hour h.

150 - Limit of the power supplied by the wind generators (9). The power generated by the wind generators must be less than the 
151 installed wind power.

152 - Limit of the power supplied by the photovoltaic panels (10). The power generated by the photovoltaic generators must be 
153 less than the installed photovoltaic power.

154 - Limit of the discharge and charge power of the storage systems (11) and (12). The charge or discharge power in the station’s 
155 batteries must be equal to or less than the nominal power of the installed converter.

156 - Limit of the discharge and charge energy of the storage systems (13) and (14). The discharge energy in the batteries at hour 
157 h must be equal to or less than the stored energy in the batteries at hour h – 1 and the charge energy in the batteries at hour h 
158 must be equal to or less than the difference between the battery capacity and the stored energy in the batteries at hour h – 1.

159 - Limit of the stored energy in the storage systems (15) and (16). The energy stored in the station’s batteries must be equal to 
160 or less than the battery capacity and equal to or greater than the minimum state of charge allowed in the batteries.

161 - Limit of the supplied and consumed power from the grid at the connection point (17) and (18). The power supplied to or 
162 consumed from the network must be equal to or less than the contracted power at the point of connection to the network.

163 - Limit of the EV-supplied power at every EV fast-charging supplier (19). The power supplied by each charger must be equal 
164 to or less than its rated power.

165 - Limit of the EV-supplied energy at hour h (20). The energy supplied by the EV station must be equal to or less than the 
166 maximum energy demanded by EV consumers. The energy supplied may be lower than the energy demanded when a 
167 generation deficit from renewable sources can not be compensated.

168 - Limit of the waiting time for each EV (21). This restriction defines the maximum time that a consumer will wait his or her 
169 turn. If the waiting time is longer, the consumer will leave the station. In our case, we consider that if the chargers are busy, 
170 the consumer will leave.

171 The model evaluates the charging station’s behaviour for 8760 hours per year. Some parameters of the model, such as the EV 
172 demand and the wind and photovoltaic generation, are represented with their probability distributions. The sequential Monte 
173 Carlo method was used to simulate the operation of the charging station. In section 3, every variable considered in the model 
174 is explained, and the algorithm used is explained in section 4.

175
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176 Maximize:

177 (1)𝑵𝑷𝑽 =  ∑𝒏
𝒕 = 𝟏

𝑵𝑪𝑭𝒕

(𝟏 + 𝒊)𝒕 ‒ 𝑰

178 Subject to:

179 - Net cash flow at each year t,

180 , (2)𝑵𝑪𝑭𝒕 = ∑𝟖𝟕𝟔𝟎
𝒉 = 𝟏(𝑰𝑵𝑭𝑳𝑶𝑾𝒉 ‒ 𝑶𝑼𝑻𝑭𝑳𝑶𝑾𝒉) ‒ 𝑪𝒓&𝒎𝒕

181 , (3)𝑰𝑵𝑭𝑳𝑶𝑾𝒉 = 𝑬𝒆𝒗𝒉·𝑪𝒔𝒉 + 𝑬𝒔𝟐𝒈𝒉·𝑪𝒔𝒂𝒍𝒆𝒉

182 , (4)𝑶𝑼𝑻𝑭𝑳𝑶𝑾𝒉 = 𝑬𝒈𝟐𝒔𝒉·𝑪𝒃𝒖𝒚𝒉

183 ; (5)𝑪𝒓&𝒎𝒕 =
∑𝟖𝟕𝟔𝟎

𝒉 = 𝟏𝑬𝑫𝒔𝒕𝒐𝒉·

𝑬𝑻𝑯𝒔𝒕𝒐 ·𝑪𝒔𝒕𝒐·𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕 + 𝑪𝒎𝒕

184 - Initial inversion,

185 ; (6)𝑰 = 𝑪𝒄𝒉·𝑸𝒄𝒉·𝑷𝒄𝒉𝒊𝒏𝒔𝒕 + ∑𝒏𝒘
𝒌 = 𝟏(𝑪𝒘𝒌·𝑸𝒘𝒌·𝒚𝒌) + 𝑪𝒑𝒗·𝑺𝒑𝒗𝒊𝒏𝒔𝒕 + 𝑪𝒔𝒕𝒐·𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕

186 - Energy balance in the charging station at hour h,

187 ; (7)𝑬𝒑𝒉𝒉 + 𝑬𝒘𝒉 + 𝑬𝒈𝟐𝒔𝒉 + 𝑬𝑫𝒔𝒕𝒐𝒉 = 𝑬𝒆𝒗𝒉 + 𝑬𝒔𝟐𝒈𝒉 + 𝑬𝑪𝒔𝒕𝒐𝒉

188 - Stored energy in the batteries at hour h,

189 ; (8)𝑬𝒔𝒐𝒄𝒉 = 𝑬𝒔𝒐𝒄𝒉 ‒ 𝟏 + 𝑬𝑪𝒔𝒕𝒐𝒉 ‒ 𝑬𝑫𝒔𝒕𝒐𝒉

190 - Limit of the power supplied by the wind generators,

191 ; (9)𝑷𝒘𝒉 ≤ 𝑷𝒘𝒊𝒏𝒔𝒕

192 - Limit of the power supplied by the photovoltaic panels,

193 ; (10)𝑷𝒑𝒉𝒉 ≤ 𝑷𝒑𝒉𝒊𝒏𝒔𝒕

194 - Limit of the discharge and charge power of the storage systems,

195 , (11)𝑷𝑫𝒔𝒕𝒐𝒉 ≤ 𝑷𝒔𝒕𝒐𝒊𝒏𝒔𝒕

196 ; (12)𝑷𝑪𝒔𝒕𝒐𝒉 ≤ 𝑷𝒔𝒕𝒐𝒊𝒏𝒔𝒕

197 - Limit of the discharge and charge energy of the storage systems,

198 , (13)𝑬𝑫𝒔𝒕𝒐𝒉 ≤ 𝑬𝒔𝒐𝒄𝒉 ‒ 𝟏

199 ; (14)𝑬𝑪𝒔𝒕𝒐𝒉 ≤ 𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕 ‒ 𝑬𝒔𝒐𝒄𝒉 ‒ 𝟏

200 - Limit of the stored energy in the storage systems,

201 , (15)𝑬𝒔𝒐𝒄𝒉 ≤ 𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕

202 ; (16)𝑬𝒔𝒐𝒄𝒉 ≥ 𝑺𝑶𝑪𝒎𝒊𝒏·𝑬𝒔𝒕𝒐𝒊𝒏𝒔𝒕

203 - Limit of the supplied and consumed power from the grid at the connection point,

204 , (17)𝑷𝒔𝟐𝒈𝒉 ≤ 𝑷𝒈𝒄𝒎𝒂𝒙

205 ; (18)𝑷𝒈𝟐𝒔𝒉 ≤ 𝑷𝒈𝒄𝒎𝒂𝒙
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206 - Limit of the EV-supplied power at every EV fast-charging supplier,

207 ; (19)𝑷𝒆𝒗𝒉 ≤ 𝑷𝒄𝒉𝒊𝒏𝒔𝒕

208 - Limit of the EV-supplied energy at hour h,

209 ; and (20)𝑬𝒆𝒗𝒉 ≤ 𝑬𝑴𝑨𝑿𝒆𝒗𝒉

210 - Limit of the waiting time for each EV,

211 (21)𝒕𝒆𝒗𝒌 ≤ 𝒕𝒆𝒗𝒎𝒂𝒙

212 Where ykw are binary variables.

213

214 3. Input data models

215 A. Electric vehicle demand

216 As introduced before, the first step is to model the EV demand at the charging station. This EV demand depends on the flow 
217 of electrical vehicles that arrive at the charging station and on the capacity and state of charge of their batteries. But we also 
218 consider that the charging station has a finite number of chargers and that when a consumer arrives at the station and no 
219 chargers are free, he or she will leave the charging station. This kind of system can be regarded as an Erlang B queueing 
220 model or M/M/c/c [39].

221 The first step consists of determining when each vehicle will arrive at the charging station. This can be modelled as a 
222 modulated Poisson process [40]. The time (ta) passed between the arrivals of two consecutive vehicles (21) is determined by 
223 an exponential distribution [11]. This distribution is defined by parameter , which is the average arrival time or time between 
224 two arrivals. As this time can change from hour to hour, a different h is considered for each hour h. For this study, the arrival 
225 time selected is shown in Figure 1(a). 

226 (21)𝒕𝒂𝒉(𝒙) = 𝟏 ‒ 𝒆 ‒ 𝝀𝒉𝒙

227 The electrical vehicle arrivals are simulated with the sequential Monte Carlo method, SMC [41]. A list of random numbers is 
228 obtained in the interval [0, 1], and every number gives us the arrival time of the next vehicle to introduce into the x parameter 
229 of the equation (21). Figure 1 gives an example of this sequence.
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234 Figure 1. Simulation of arrival times of EVs over the temporal horizon of 1 day. (a) Average arrival time (min), (b) time 
235 between arrivals (min), (c) time of arrival (min) and (d) number of vehicles per hour.

236

237 In the second step, the energy needed to fill the battery is calculated for every vehicle that arrives. For this, it is necessary to 
238 determine the capacity and state of charge of the EV’s battery. The battery capacity is associated with the vehicle type. It is 
239 supposed that the types of vehicles that can come to the station include motorbikes, cars and vans. The battery selection is 
240 associated with a discrete distribution found in the registration data obtained from the Traffic General Direction of Spain [42] 
241 about these type of vehicles; see Table 1.

242

243 Table 1. Probability of battery capacity.

Battery capacity (kWh) Probability (%) Accumulated probability (%)
Bike 3.6 0.115 0.115

Small private car 16 0.370 0.485
Large private car 25 0.380 0.865

Van 63 0.135 1

244

245 The state of charge (SOC) of the EV battery can be modelled by the lognormal distribution and is defined by the average (µ) 
246 and typical deviation (σ) of the logarithm of the SOC variable [11]. Parameter E represents the initial SOC of an EV battery 
247 and varies from 0 to 1. Fig. 2 shows the lognormal distribution of SOC used, for which the  and  parameters of equation 
248 (22) are 3 and 0.6, respectively:

249 (22)𝑺𝑶𝑪(𝑬;𝝁,𝝈) =  
𝟏

𝑬𝝈 𝟐𝝅·𝒆 ‒ (𝒍𝒏𝑬 ‒ 𝝁)𝟐/𝟐𝝈𝟐
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250

251 Fig. 2 Lognormal distribution of battery SOC.

252

253 In the simulation process, a random number from the interval [0, 1] is compared with the accumulated probability found in 
254 Table 1 to obtain the type of vehicle that arrives at the charging station and to determine the maximum capacity of its battery. 
255 In the same way, another random number is introduced into parameter E of equation (22) for every EV that arrives to charging 
256 station to obtain its battery SOC.

257 In the third step, once the SOC and the battery capacity have been calculated, the charging time can be obtained for each 
258 vehicle by means of this simplified equation:

259 . (23)𝒕𝒄𝒉𝒂𝒓𝒈𝒆 =
𝑩𝒂𝒕𝒕𝒆𝒓𝒚_𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 ∗ (𝟏 ‒ 𝑺𝑶𝑪)

𝑷𝒄𝒉𝒂𝒓𝒈𝒆𝒓

260 Equation (21) obtains the arrival times, and equation (23) calculates the charging time. With these data, the vehicles are 
261 distributed to the different chargers. The charging simulation of Li-ion batteries has been simplified and modelled as constant 
262 power load [43-45]. At times when all of the chargers are busy, if a new vehicle arrives, it does not wait, and it is lost. As the 
263 charging periods are relatively long, consumers normally do not wait if they see that all of the chargers are busy and will go 
264 to the next charging station [39].

265 Finally, taking into account the fast charging power and the number of chargers supplying power, m, the total demand of the 
266 EV station, is:

267 . (24)𝑷𝒔𝒕𝒂𝒕𝒊𝒐𝒏(𝒕) = ∑𝒎
𝒌 = 𝟏𝑷𝒄𝒉𝒂𝒓𝒈𝒆𝒓,𝒌(𝒕)

268 Figure 3 shows an example of the temporal evolution of demand over one day in an example with three chargers as well as 
269 the total demand at the station. The load profile of a service station is not a smooth demand curve throughout the day, since 
270 the events are discrete.
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272 Figure 3. Demand at each charger and total of the station in a day.

273

274 B. Wind energy generation

275 The wind speed is modelled by a Weibull distribution (25). The parameters needed to calculate it are the scale factor (c) and 
276 the shape factor (k), which depend on the location. 

277 (25)𝒑(𝒗) =
𝒌
𝒄·(𝒗

𝒄)𝒌 ‒ 𝟏
·𝒆

‒ (𝒗
𝒄)𝒌

278 (26)𝒄 = 𝒗𝒎·(𝟎.𝟓𝟔𝟖 +
𝟎.𝟒𝟑𝟑

𝒌 ) ‒ 𝟏/𝒌

279 In the simulation process, it is possible to obtain the hourly evolution of the wind speed from a series of random numbers, 
280 introducing each random number p in the inverse of the Weibull distribution.

281 (27)𝒗 = ‒ 𝒄[𝐥𝐧 (𝟏 ‒ 𝒑)]𝟏/𝒌

282 Once the speed is obtained, the power that turbine can generate with this speed can be obtained from the wind generator power 
283 curve. Wind resources are modelled with the Weibull distribution for an average wind speed (vm = 6 m/s) and a shape factor 
284 (k = 2). The power curve for three turbines, as utilized in this paper, can be seen in Figure 4.
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288 Figure 4(a) Weibull distribution for wind speed and (b) power curve for the wind generator.

289 C. Photovoltaic solar energy.

290 The hourly output power of the photovoltaic panels, Ppvh, can be evaluated by the next equation [13, 46]:

291 , (28)𝑷𝒑𝒗𝒉 = 𝑮𝒊·𝑨·𝜼

292 where Gi is the global solar irradiance at the tilted surface, A is the installed surface and  is the efficiency of the system (17% 
293 in our case) that considers losses due to spectral sensitivity of the PV cells among others effects [47].

294 The data on global solar irradiance on an inclined plane were obtained from PVGIS (Photovoltaic Geographical Information 
295 System) tools [48]. It computes the real-sky global irradiance adding the beam, diffuse and reflected components on an 
296 inclined plane.

297 (29)𝑮𝒊 = 𝑩𝒊 +  𝑫𝒊 + 𝑹𝒊

298 The inputs are latitude, longitude and altitude from the location and the slope angle and orientation of the solar panels. The 
299 output is the estimation of real-sky global irradiance on the solar panels. In Figure 5, it is the hourly global irradiance for 41º 
300 latitude north, 0º longitude and 200 m of altitude; the solar panels are oriented towards the south and have an inclined angle 
301 of 40º.
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303 Figure. 5. Hourly global irradiance on a surface inclined 40º.
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304

305 D. Energy prices.

306 In Spain, EV charging stations must go to the electricity market or make a bilateral contract with a retailer for contracted 
307 power greater than 10 kW.

308 In the electricity market, the hourly price is determined by the point at which the supply and demand curves meet, according 
309 to the marginal pricing model. At this price, one has to add a generation toll and taxes to sell energy to the network. To buy 
310 from the network, one has to add the costs of the technical constraints and system operator management, the payments for 
311 capacity and interruptibility, the costs of the tolls and the losses in the transport of energy through the networks and taxes. In 
312 our case, the variation in the purchase price and sale price of energy as a result of the terms indicated above has been calculated 
313 at 0.0828 and 0.0022 €/kWh, respectively. The sale price of energy to electric vehicles has been estimated by adding 0.04 
314 €/kWh to the purchase price of energy as a benefit.

315 Fig. 6 shows the real purchase and sale prices of energy in the market, the sale price of energy to electric vehicles, and the 
316 annual average values of these curves. The difference between the purchase price of energy from the network (blue line) and 
317 the sale price to the network (red line) is due to the difference between tolls and taxes that must be paid when buying and 
318 selling. The sale price for electric vehicles (yellow line) takes into account the desired benefit and taxes.

319
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321 Figure 6. Hourly prices of energy

322

323

324 4. Optimization Algorithm
325 Genetic algorithms (GAs) [49, 50] are optimization methods widely used to solve real-world problems and are based on 
326 natural selection principles. Pseudocode of the optimization algorithm is shown in Figure 7. Here, the main characteristics of 
327 the proposed algorithm are explained, specifically the fitness function, chromosome structure and crossover and mutation 
328 rates.

329

330



12

331

Program EV_station_optimization;
Begin:
Step 1: Generate an initial population (t=0) with nsol feasible solutions 
randomly.
Step 2: Evaluate these nsol solutions of the population (t=0) with the 
Fitness_function program.
For t=1 to max_generations

Step 3: Select the best solutions from population(t) as parents.
Step 4: Apply crossover on parents, creating population(t+1)
Step 5: Apply mutation into population(t+1)
Step 6: Evaluate population(t+1) with the fitness function

EndFor;
End.

332 Figure 7. EV station optimization

333

334 A. Chromosome: Optimization variables

335 A chromosome represents each individual, as shown in Figure 8; this is composed of the variables that the optimization 
336 program can change in the design process. These variables are associated with the charging station’s structure: the number 
337 and power of chargers, number and type of wind generators, surface occupied by photovoltaic panels, storage system capacity 
338 and transfer capacity of the connexion to the grid. All of the variables are real, except for the number of chargers and the 
339 number and type of wind generators, which are integers. In addition, these variables are constrained by the limits presented 
340 in Table 2 for design reasons.

341

Qch Qwkw kw Pchinst Spvinst Estoinst Pgcmax

342 Figure 8. Structure of a chromosome.

343

344 Table 2. Range of optimization variables.

Variable Description Variable 
type Lower limit Upper limit

Qch Number of chargers Integer 1 10
Qwkw Number of wind generators Integer 0 4

kw Type of wind generator Integer 1 3
Pchinst Charger power Real 44 220
Spvinst Surface occupied by 

photovoltaic panels
Real 0 m2 1875 m2

Estoinst Storage system capacity Real 0 kWh 500 kWh
Pgcmax Transfer capacity of the 

connexion to the grid
Real 0 kW 600 kW

345

346 B. Crossover and mutation operators

347 The chromosome has three integer-type genes and four real-type genes. The crossover operator used for the three genes of 
348 integer type creates a random binary vector and selects the genes from the first parent if the vector has a 1 and the genes from 
349 the second parent if the vector has a 0; then, it combines the genes to create the two children. If the binary vector is [1 0 1] 
350 and the parents are Parent1 = [a b c] and Parent2 = [1 2 3], then the children are Child1 = [a 2 c] and Child2 = [1 b 3].

351 The crossover operator used for the four real-type genes creates every gene k of the child from two parents, parent1 and 
352 parent2, using the next function:

353 child(k) = parent1(k) + Ratio * (parent2(k) – parent1(k)), (30)
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354 where Ratio is, in our case, equal to 0.8.

355 The mutation operator is applied to a small number of chromosomes. First, a random number between 0 and 1 is generated, 
356 and if this number is less than a threshold—in our case, 0.001—then a mutation is applied to this chromosome. Then, an 
357 integer random number between 1 and the number pf genes indicates the gene at which the mutation is applied. Finally, for 
358 integer-type genes, that gene is changed by an integer random number generated between the limits of this gene. For real-type 
359 genes, a real random number is generated between the limits of this gene.

360 If gene(k) is integer 

361 then gene(k) = randi([Lower limit, Upper limit]);

362 If gene(k) is real 

363 then gene(k) = Lower limit + (Upper limit – Lower limit) * rand(); (31)

364

365 C. Fitness function: Profitability

366 The fitness function is the same objective function that NPV (1) described in the mathematical model. The initial outlay 
367 corresponds to the cost of installing each energy system element. Incomes are associated with the energy supplied to customers 
368 who recharge their vehicles and with the surplus energy sold to the grid. On the other hand, expenses correspond to the energy 
369 bought from the grid, the maintenance of the EV station and the replacement of batteries.

370 To evaluate this fitness function, the energy management of the EV station during a year must be simulated. This energy 
371 management is simpler than other forms of energy management that can be found in papers on the operation problems of EV 
372 stations. Note that this paper treats the design problem, which is already complex enough. The renewable generation is 
373 prioritized to feeding the EV chargers. If the energy available at the charging station is higher than the demand of the EV 
374 chargers, this energy will be stored. Once the battery’s maximum capacity is reached, this surplus energy will be supplied to 
375 the electrical grid. If the limit of the grid connexion is reached and it is not possible to inject energy into the grid, then the 
376 renewable generation will be reduced. When there is a deficiency of energy to feed the EV chargers, that energy will be 
377 provided by storage systems firstly and, as a last resort, by the grid. The calculations of the batteries’ life and maintenance 
378 have also been included in equation (5).

379 The EV station’s operations were simulated with a sequential Monte Carlo method. The operations were simulated hourly 
380 during a year. First, the algorithm calculates the hourly EV demand from the probability distributions of arrival time, battery 
381 capacity and battery SOC. Second, the energy generated by wind and solar generators is calculated. Third, the energy flows 
382 among the generators, battery, EV chargers and grid are calculated. The problem’s restrictions must be checked when 
383 calculating the energy flows. Finally, the value of the fitness function is calculated, as can be seen in Figure 9.

384 The costs of energy sold to and purchased from the network were calculated based on the cost of hourly energy in the electricity 
385 market plus the corresponding tolls for the use of the electricity grid, and the cost of the energy sold to EVs was the electric 
386 market cost plus a profit, as explained in section 3-d.
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387

Program Fitness_function;
Begin:
For h=1 to 8760 do

Step 1: EV demand calculation
- Generate random numbers.
- Obtain the arrival time of EVs.
- Obtain the kind of EV and battery capacity.
- Obtain the battery’s SOC.

Step 2: Renewable energy calculation
- Generate random numbers.
- Obtain the energy generated by wind generators.
- Obtain the energy generated by solar modules.

Step 3: Energy balance
- Calculate the energy flows among devices that meet 
the devices’ restrictions.

Endfor;
Step 4: Evaluation of the fitness function NPV.

End.

388 Figure 9. Evaluation of the fitness function

389

390 5. Study case

391 A. Description of case

392 This work explains a model to optimize the design of EV charging stations. Data for modelling EV demand and wind and 
393 solar resources can be found in the “Input data models” section, limits for decision variables that optimize the algorithm are 
394 shown in Table 2 and economic data used in the objective function can be found in Table 3. Lithium ion batteries have been 
395 considered in the storage system with a minimum SOC level of 10% or 0.1 p.u.

396

397 Table 3. Economic costs.

Installation cost Buy/sell energy
Wind Generators 650 €/kW Sell energy to EV 0.175 €/kWh
Solar PV panels 100 €/m2 Sell energy to grid 0.055 €/kWh
EV Charger 500 €/kW Buy energy from grid 0.135 €/kWh
Battery (Li-ion) 150 €/kWh Contracted power to grid 0.121 €/kW month

Other parameters
Time of the cash flow 20 years Maintenance 1000 €/year
Discount rate 2.69 % Cycle life 2000 cycles

398

399 The first three cases were defined to study different patterns of feeding the station, the fourth case to study different arrival 
400 patterns of vehicles to the station, the fifth case to compare the performance with other heuristic algorithms and the sixth case 
401 to study the transfer capacity of the connexion to the grid.

402 Case I. The EV station feeds only from the grid. In this case, the EV station is connected to the grid, and all of the energy 
403 needed is purchased from the grid. The energy price has two terms: the contracted power and the energy consumed. This case 
404 is the baseline for the comparisons.

405 Case II. The EV station feed only from renewable energy. In this case, the EV station is isolated from the grid and is only fed 
406 by solar and wind renewable energy. Due to the uncertainty of renewable energy, batteries are installed to guarantee the 
407 service of the EV station. The design has limits for the solar and wind power installed that will depend on the location; in this 
408 case, the limits are in Table 2. 
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409 Case III. The EV station feeds from a mix of renewable energy and the grid. In this case, the EV station has renewable energy 
410 and a connexion to grid. This design is the most flexible because it has the advantages of both worlds: cheap energy from the 
411 renewable energy and safe feeding from the grid. Additionally, it is allowed to sell the excess energy to the grid [51].

412 Case IV. Similar to case III, but now with more detailed data. In this case, a different average arrival time is considered for 
413 every hour (see Figure 10), compared to the previous cases, in which only two periods were considered (see Figure 1(a)). In 
414 addition, it uses the hourly prices of the Spanish electric market and the hourly network access tolls (see Figure 6), rather than 
415 the average prices (see Table 3).

416 Case V. Similar to case IV, but now with a new algorithm: the particle swarm optimization. This case allows the performance 
417 of these algorithms to be compared, in terms of both computational time and accuracy.

418 Case VI and VII. Similar to case IV, but the capacity of power transfer to the grid is limited.

419
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421 Figure 10. Average arrival time (min)

422

423 B. Results

424 The optimal solutions obtained for the design of EV stations are described and examined from economic and technical 
425 perspectives. The characteristics of the designed EV stations are shown in Table 4, and the economic results can be found in 
426 Table 5.

427 Table 4 gives the number of chargers installed (N. chargers), the power of each charger (Charger power), the maximum power 
428 of the connexion between the grid and the EV station (Grid power), the type of wind generator installed (Type Wgen), the 
429 number of wind generators installed (N. Wgen), the surface of solar PV panels installed (Solar surface), the capacity of 
430 batteries installed (Battery) and the computational time in minutes necessary to reach the solution (Computational time (min)) 
431 with a Intel Core i5 and 4 GB of RAM.

432

433 Table 4. Optimal configuration for each case.

Case N. 
chargers

Charger 
power (kW) N. Wgen

Type 
Wgen

Solar surface 
(m2)

Battery 
(kWh)

Grid power 
(kW)

Computational 
time (min)

I 4 44.26 0 0 0 0 128.33 104
II 5 44.25 4 3 1456.38 379.57 0 136
III 5 46.11 4 3 1871.95 329.51 298.36 153
IV 5 46.00 4 3 1873.48 122.27 255.70 218
V 5 46.54 4 3 1874.21 125.32 243.74 82
VI 5 46.39 4 3 1867.00 190.20 200.00 80
VII 5 44.00 4 3 1867.49 111.52 100.00 75

434
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435 Table 5 gives the net present value (NPV), internal rate of return (IRR), profit investment ratio (PIR), investment, the cost of 
436 battery replacements, cost of maintenance, cost of buying energy from the grid, income from selling energy to the grid and 
437 income from selling energy to EV drivers. The PIR index is the ratio between the present value of future cash flows and the 
438 initial investment and can be used to rank the projects.

439

440 Table 5. Economic results for each case.

Case NPV       (€) IRR 
(years)

PIR 
(p.u.)

Investment 
(€)

Battery 
replacement 

(€)

Maintenance 
(€/year)

Cost of 
buying 

energy from 
the grid 
(€/year)

Income 
from selling 

energy to 
the grid 
(€/year)

Income from 
selling 

energy to 
EV owners 

(€/year)
I 166,397.66 5 2.879 88,532.09 0 1000 60,190.72 0 78,025.01
II 787,027.28 4 3.234 352,215.83 43,662.11 1000 0 0 78,248.50
III 990,445.25 4 3.533 390,897.26 37,903.48 1000 4138.58 15,087.07 83,167.25
IV 1,025,950.37 4 3.852 359,692.62 13,696.84 1000 15,521.45 14,752.55 93,522.74
V 1,020,344.70 4 3.821 361,569.00 25,767.62 1000 14,509.18 15,238.30 94,010.32
VI 1,006,539.27 4 3.718 370,218.69 42,232.98 1000 12,087.09 12,975.53 93,067.81
VII 955,624.17 4 3.711 352,477.82 12,492.59 1000 15,101.23 10,098.22 92,388.38

441

442 C. Comparison of cases I, II and III

443 As can be seen in Table 4, the number and power of chargers are similar in the first three cases because they mainly depend 
444 on the demand characteristics. However, the number of chargers is lower in case I, in which the EV station is fed only from 
445 the grid, with a more expensive energy price than that of free renewable energy.

446 The contracted power to the grid, in the grid power column, is greater in case III than in case I, which seems like a contradiction 
447 because case I is fed only from the grid, whereas case III can be fed from both the grid and renewable energy. Nevertheless, 
448 there is no contradiction because the EV station in case I buys energy from the grid and the EV station in case III sells energy 
449 to the grid.

450 The comparison between the installed renewable power in cases II and III shows that in case III, the maximum power of 
451 renewable energy (wind and solar) is installed based on the constraints from the four type 3 wind generators and 1871.95 m2 
452 of solar panels, while 1456.38 m2 is installed in case II, which is less than the 1871.95 m2 allowed. The reason is that in case 
453 II, the installed power is only needed to feed the demand because the energy that is not sold to electric vehicles is wasted, and 
454 the solution in case III installs all renewable energy possible, to sell this energy to the grid and get profits.

455 Finally, the solution for case II needs more storage capacity than the solution of case III because case II only uses uncertain 
456 renewable energy to feed the EV station, while case III can also use the connexion to the grid.

457 The computational time column shows the time necessary to reach the solution. These times are long because the evaluation 
458 of the fitness function requires simulation of the EV charging station’s operations by the Monte Carlo method. Furthermore, 
459 optimizing the design problem of an EV charging station with a genetic algorithm is also complex.

460 From an economic standpoint, the best solution is obtained in case III, with better value in the NPV than that of case II and 
461 the same IRR. In case III, the EV station has a mixed strategy, with renewable energies and connexion to the grid. This strategy 
462 permits income to be obtained from selling energy to EV owners and to the grid.

463 Investment is much greater in cases II and III than in case I, due to the installation costs of renewable generators and batteries; 
464 see Figure 11 and Table 5. However, these cost are compensated quickly by the operational costs and cost of the energy used. 
465 This energy is bought from the grid in case I, with a cost around 60,190.72 €/year, compared to a small cost in case III of 
466 about 4,138.58 €/year and practically free in case II. The rest of the energy used in cases II and III is supplied from renewable 
467 sources.

468 From an environment standpoint and when considering the impact on the grid, case II is better because it uses only renewable 
469 energy and has no impact on the grid. It does not have energy interchanges with the grid.

470
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472 Figure. 11. Components of investment.
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475 Figure. 12. Origin of the monthly energy used in each case.

476 Figure 12 shows the monthly energy used (sold to EV owners and the grid) in each case. The starting point in the optimization 
477 process is the hypothetical demand generated by the EVs at the location of the charging station, which is the same in all three 
478 cases. However, the real demand that each station is capable of satisfying is different, depending on the number of chargers 
479 assigned to it by the optimization of its configuration as well as the availability of energy at each moment according to the 
480 energy supply configuration that the optimization assigned to it. Case I has four chargers, so there will be consumers who will 
481 not stop when all of the chargers are occupied. Case II has five chargers, so it can serve more consumers, but in some cases, 
482 energy deficits can occur due to fluctuations in renewable energy or excess energy being wasted. Case III involves five 
483 chargers, but the optimization program calls for more installed solar renewable generation because the surplus energy can be 
484 sold to the grid.

485
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487 Figure. 13. Comparison in annual equivalent values.

488 Figure 13 permits the three cases to be compared in terms of annual equivalent values. Case I has a large total cost because 
489 the operational costs are high. Case III has the highest revenue because it sells energy to the grid and therefore has the highest 
490 profit.

491 Operation of the EV station every day differs according to the available energy sources, as shown in Figure 14. It shows the 
492 hourly power that each element generates or demands and, in the case of batteries, their energy level. In case I, all of the 
493 energy sold to electrical vehicles is provided from the grid. In case II, all energy is provided from wind and solar sources, but 
494 the batteries are needed to give service to all EVs, and at some hours (around 5 a.m. on this day), the EV station cannot supply 
495 all of the energy demanded by the EVs. In case III, the EV station uses the grid to supply energy to EVs when renewable 
496 sources are not enough.
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499 (a) Case I: EV station feeds only from the grid.
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502 (b) Case II: EV station feeds only from renewable energy. 
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505 (c) Case III: EV station feeds from a mix of renewable energy and the grid.

506 Figure. 14. Daily operation of the EV station.

507

508 D. Comparison between cases III and IV

509 Next, cases III and IV are compared. Case IV is the same as case III but with a more detailed modelling. It has different mean 
510 arrival times for every hour (Fig. 10) and uses hourly energy prices from the Spanish market for one year (Fig. 6).

511 As can be seen when comparing the optimal configurations of both cases in Table 4, these configurations are similar, with the 
512 only notable difference being in the size of the batteries. More vehicles arrive during day hours because the average arrival 
513 times decreased by a few hours; therefore, the renewable energy generated is used to feed the vehicles instead of being stored.

514 From the comparison of the economic results obtained in both cases, it can also be seen that the differences are small. More 
515 income would come from energy being sold to consumers, at 93,522.74 €/year in case IV compared to 83,167.25 €/year in 
516 case III, and less income would come from energy being sold to the network, at 14,752.55 €/year in case IV compared to 
517 15,087.07 €/year in case III. Since the capacity of the batteries in case IV is lower, at 122.27 kWh compared to 329.51 kWh 
518 in case III, the investment and the cost of replacing them are lower but more energy has to be bought from the grid.

519
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520 E. Comparison between cases IV and V

521 The comparison of the GA used in this work with another heuristic algorithm allows us to have an idea of our GA’s 
522 performance. In this case, our GA has been compared with the particle swarm optimization algorithm [50, 52]. The results 
523 obtained in case IV, with the genetic algorithm, and case V, with particle swarm optimization, show that the results are very 
524 similar, but the new algorithm is faster.

525

526 F. Comparison among cases V, VI and VII

527 In these cases, the transfer power between the station and the network has been limited. By limiting the transferred power, its 
528 impact on the network is limited. The energy sold both to the network from renewable energy and to consumers decreases.

529

530 6. Conclusions
531 A GA using technique and economic factors optimized the design of EV fast-charging stations. Probabilistic distributions 
532 modelled the EV demand and renewal generation more realistically. Specifically, the EV demand model was improved when 
533 adding more details (arrival time, EV battery capacity, SOC and the EV distribution during the day).

534 The first three simulated cases confirmed that an EV charging station can be profitable. The main inconvenience is the high 
535 power that EV fast charges demand. The installation of renewable generators can improve a station’s profitability, but it needs 
536 a connexion to the grid or a storage system to balance the intermittence of renewable energy.

537 The comparison among the last three cases confirmed that the utilization of renewable energies and storage systems would 
538 reduce the impact on the electrical grid.

539 The required investment is high; however, the development of technology is trending towards decreases in costs, which is a 
540 particularly interesting aspect in the case of batteries, both for the storage system and for EVs. This fact favours distributed 
541 generation, to achieve more sustainable energy management.

542
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