000131183 001__ 131183
000131183 005__ 20240206154529.0
000131183 0247_ $$2doi$$a10.2166/hydro.2020.207
000131183 0248_ $$2sideral$$a120635
000131183 037__ $$aART-2020-120635
000131183 041__ $$aeng
000131183 100__ $$0(orcid)0000-0002-1386-5543$$aMurillo, J.$$uUniversidad de Zaragoza
000131183 245__ $$aAdaptation of flux-based solvers to 2D two-layer shallow flows with variable density including numerical treatment of the loss of hyperbolicity and drying/wetting fronts
000131183 260__ $$c2020
000131183 5203_ $$aAn important feature of the two-layer shallow flow model is that the resulting system of equations cannot be expressed in conservation-law form. Here, the HLLS and ARoe solvers, derived initially for systems of conservation laws, are reformulated and applied to the two-layer shallow flows in a great variety of problems. Their resulting extension and combination allows us to overcome the loss of the hyperbolic character, ensuring energy or exactly balanced property, guarantees positivity of the solution, and provides a correct drying/wetting advance front without requiring tuning parameters. As a result, in those cases where the rich description of internal and external waves cannot be provided by the ARoe solver, HLLS is applied. Variable density is considered in each layer as a result of a bulk density driven by the mixture of different constituents. A wide variety of test cases is presented confirming the properties of this combination, including exactly balanced scenarios in subcritical and subcritical-transcritical scenarios, dam-break problems over bed variations and wet/ dry fronts, non-hyperbolic conditions, transcritical exchange flow with loss of hyperbolicity. Despite the complexity of the test cases presented here, accurate and stable simulations are guaranteed, ensuring positivity of the solution without decreasing the time step.
000131183 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000131183 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000131183 590__ $$a2.376$$b2020
000131183 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b68 / 111 = 0.613$$c2020$$dQ3$$eT2
000131183 591__ $$aWATER RESOURCES$$b59 / 97 = 0.608$$c2020$$dQ3$$eT2
000131183 591__ $$aENVIRONMENTAL SCIENCES$$b182 / 273 = 0.667$$c2020$$dQ3$$eT3
000131183 591__ $$aENGINEERING, CIVIL$$b72 / 136 = 0.529$$c2020$$dQ3$$eT2
000131183 592__ $$a0.654$$b2020
000131183 593__ $$aAtmospheric Science$$c2020$$dQ2
000131183 593__ $$aWater Science and Technology$$c2020$$dQ2
000131183 593__ $$aGeotechnical Engineering and Engineering Geology$$c2020$$dQ2
000131183 593__ $$aCivil and Structural Engineering$$c2020$$dQ2
000131183 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131183 700__ $$0(orcid)0000-0003-4673-9073$$aMartinez-Aranda, S.$$uUniversidad de Zaragoza
000131183 700__ $$0(orcid)0000-0002-3465-6898$$aNavas-Montilla, A.$$uUniversidad de Zaragoza
000131183 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000131183 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000131183 773__ $$g22, 5 (2020), 972-1014$$pJ. hydroinform.$$tJOURNAL OF HYDROINFORMATICS$$x1464-7141
000131183 8564_ $$s1940186$$uhttps://zaguan.unizar.es/record/131183/files/texto_completo.pdf$$yVersión publicada
000131183 8564_ $$s2232027$$uhttps://zaguan.unizar.es/record/131183/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131183 909CO $$ooai:zaguan.unizar.es:131183$$particulos$$pdriver
000131183 951__ $$a2024-02-06-14:47:09
000131183 980__ $$aARTICLE