000131192 001__ 131192
000131192 005__ 20240206154529.0
000131192 0247_ $$2doi$$a10.1021/acsami.0c18777
000131192 0248_ $$2sideral$$a124347
000131192 037__ $$aART-2021-124347
000131192 041__ $$aeng
000131192 100__ $$0(orcid)0000-0002-2642-5635$$aBegué, Adrián
000131192 245__ $$aStrain-Mediated Giant Magnetoelectric Coupling in a Crystalline Multiferroic Heterostructure
000131192 260__ $$c2021
000131192 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131192 5203_ $$aMultiferroic heterostructures based on the strain-mediated mechanism present ultralow heat dissipation and large magnetoelectric coupling coefficient, two conditions that require endless improvement for the design of fast nonvolatile random access memories with reduced power consumption. This work shows that a structure consisting of a [Pb(Mg1/3Nb2/3)O3]0.7-[PbTiO3]0.3 (001) substrate on which a crystalline FeGa(001)/MgO(001) bilayer is deposited exhibits a giant magnetoelectric coupling coefficient of order 15 × 10-6 s m-1 at room temperature. That result is a 2-fold increment over the previous highest value. The spatial orientation of the magnetization vector in the epitaxial FeGa film is switched 90° with the application of electric field. The symmetry of the magnetic anisotropy is studied by the angular dependence of the remanent magnetization, demonstrating that poling the sample generates a switchable uniaxial magnetoelastic anisotropy in the film that overcomes the native low 4-fold magnetocrystalline anisotropy energy. Magnetic force microscopy shows that the switch of the easy axis activates the displacement of domain walls and the domain structures remain stable after that point. This result highlights the interest in single-crystalline structures including materials with large magnetoelastic coupling and small magnetocrystalline anisotropy for low-energy-consuming spintronic applications.
000131192 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E10-17D$$9info:eu-repo/grantAgreement/ES/MICINN/MAT2015-66726-R$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2016-076482
000131192 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131192 590__ $$a10.383$$b2021
000131192 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b23 / 108 = 0.213$$c2021$$dQ1$$eT1
000131192 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b49 / 344 = 0.142$$c2021$$dQ1$$eT1
000131192 592__ $$a2.143$$b2021
000131192 593__ $$aMedicine (miscellaneous)$$c2021$$dQ1
000131192 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000131192 594__ $$a14.4$$b2021
000131192 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131192 700__ $$0(orcid)0000-0003-1930-1455$$aCiria, Miguel
000131192 773__ $$g13, 5 (2021), 6778-6784$$pACS appl. mater. interfaces$$tACS applied materials & interfaces$$x1944-8244
000131192 8564_ $$s2407526$$uhttps://zaguan.unizar.es/record/131192/files/texto_completo.pdf$$yVersión publicada
000131192 8564_ $$s3178471$$uhttps://zaguan.unizar.es/record/131192/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131192 909CO $$ooai:zaguan.unizar.es:131192$$particulos$$pdriver
000131192 951__ $$a2024-02-06-14:48:16
000131192 980__ $$aARTICLE