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Abstract The computation of the fundamental group of the complement of an algebraic plane
curve has been theoretically solved since Zariski-van Kampen, but actual computations are usually
cumbersome. In this work, we describe the notion of Wirtinger presentation of such a group relying
on the real picture of the curve and with the same combinatorial flavor as the classical Wirtinger
presentation; we determine a significant family of curves for which Wirtinger presentation provides
the required fundamental group. The above methods allow us to compute that fundamental group
for an infinite subfamily of hypocycloids, relating them with Artin groups.

Introduction

In [15,16], W. Wirtinger introduced his well-known method to compute the fundamental group of the
complement of a knot. His primary aim was to apply this method to algebraic knots and links [6], i.e.,
links obtained as the transversal intersection of an algebraic curve (in C2) with a small sphere centered
at a singular point. His method also works for any link and it is most useful for such computations.
One of its interesting features is that it provides a simple combinatorial method to compute this group
from the diagram of a knot or link, while keeping track of its geometrical definition. The other practical
method to compute this group comes from Artin braid groups [4,5]; this is the idea behind Zariski-
van Kampen’s method [17,8] in order to give a presentation of the fundamental group of the global
complement of a plane algebraic curve (later formalized as braid monodromy by Moishezon [11]).

In this paper, we are going to adapt Wirtinger’s method to compute the fundamental group of
the complement of some plane algebraic curves. These curves must have a real equation and a rich
algebraic picture. Our goal is to provide (for a relatively small though significant family of curves) a
combinatorial method for the computation of this group. When implemented, Zariski-van Kampen’s
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method tends to rely generically on heavy numerical computations using floating-point arithmetics
(see [10] for a reasonably efficient implementation in Sagemath that assures an exact output), this is
why some theoretical methods applying to infinite families of curves are needed.

The origin of our interest in this method started in [3], where the fundamental group of the
complement of some small-degree complexified hypocycloids was studied. Our techniques were applied
to curves where the real picture gave a lot of information. This is not the case for the whole family of
hypocycloids, but the use of their symmetries allowed us to use similar techniques for their resulting
quotients whenever a rich real picture was obtained.

Following the notation introduced in [3], a hypocycloid is determined by two integers 0 < ℓ < k,
gcd(k, ℓ) = 1 as the real curve traced by a fixed point on a circumference of radius ℓ while rolling
inside a circumference of radius N := k + ℓ. Such real curves admit a real algebraic equation. The
fundamental group of the complement of their complexified version Ck,ℓ is the focus of our interest
here.

Some partial results treated in [3] and all the hypocycloids for N ≤ 11 (using the Sirocco package
by Marco and Rodríguez [10]) lead to the following conjecture describing them as Artin groups. We
must emphasize that there is no hope that the techniques presented in [3] as well as the computational
methods used in small degrees may be generalized to the whole family.

Conjecture 1. For any pair of coprime integers 0 < ℓ < k, N := k + ℓ, the fundamental group for
Ck,ℓ is the Artin group of the N-gon.

In a forthcoming paper the conjecture will be proved for hypocycloids of type (k, k − 2) (k odd),
using quotient singularities.

The paper is organized as follows: in section 1 the original Zariski-van Kampen method is recalled
as way to provide a presentation for the fundamental group of the complement of an affine complex
curve C. This presentation has an extra property proved by A.Libgober in [9] which assures that
the homotopy type of this complement coincides with that of the CW-complex associated with the
given presentation. Section 2 is devoted to introducing the concept of curves of Wirtinger type as a
complexified real curve satisfying certain properties with respect to a projection. Associated with the
real picture of such curves one can define a finite presentation à la Wirtinger. The resulting group
is not necessarily isomorphic to the expected group π1(C2 \ C) as illustrated by a series of examples.
However, under certain additional conditions they are indeed isomorphic. This is stated in the main
Theorem 2.6. The proof of this result is given in section 3, where the Zariski-van Kampen presentation
is transformed into the Wirtinger presentation preserving the homotopy type of the associated CW-
complex in Corollary 4.5. The purpose of section 4 is to state and prove Conjecture 1 for ℓ = k − 1

– see Corollary 4.5. A brief discussion on Artin groups and first properties of hypocycloids completes
the section. Finally, a series of examples in section 5 exhibit how the conditions of Theorem 2.6 can
be relaxed at the cost of understanding the so-called obstruction points. This idea results in a more
sophisticated version of the Wirtinger presentation, whose description goes beyond the scope of this
paper and will be presented somewhere else.

1 The Zariski-van Kampen method

Let C ⊂ C2 be a plane algebraic curve. We assume that for a given coordinate system the equation
of C is given by a polynomial f(x, y) ∈ C[x, y] such that degy f = d and the coefficient of f in yd as



Wirtinger curves, Artin groups, and hypocycloids 3

polynomial in C[x][y] is 1. As we are only interested in the zero locus, we can assume C to be reduced,
i.e., f is a square-free polynomial. In particular D(x) := Discy(f) ∈ C[x] is a non-zero polynomial.

The geometrical characterization for f being monic in y is that C contains neither a vertical line
nor a vertical asymptote. By a vertical asymptote we mean a vertical line that is tangent to the curve
at infinity. Let us consider p : C2 → C be the vertical projection (x, y) 7→ x; the restriction p|C fails
to be a covering only at the points of ∆ := {t ∈ C | D(t) = 0}. As a consequence, if the vertical line
x = t is denoted by Lt,

p| : C2 \

(
C ∪

⋃
t∈∆

Lt

)
→ C \∆

is a locally trivial fibration. Let us denote by r the cardinality of the discriminant ∆. Providing a
suitable section of this fibration (over a big enough closed disk) (e.g. using some horizontal line), the
following theorem holds.

Theorem 1.1. Under the above hypotheses,

π1

(
C2 \

(
C ∪

⋃
t∈∆

Lt

)
; (x0, y0)

)
=

〈
µ1, . . . , µd, α1, . . . , αr

∣∣∣∣∣α−1
j · µi · αj = µ

τj
i

1≤i≤d, 1≤j≤r

〉
.

The loops µj correspond to a geometric basis of the free group Fd := π1(Lx0 \ C; (x0, y0)) (i.e.,
each element is a meridian and the reversed product is homotopic to the boundary of a big disk,
see [11,1]); the loops αi correspond to the lift to the horizontal line y = y0 of a geometric basis of
the free group π1(C \ ∆;x0). By the continuity of roots, these loops, provide braids τj ∈ Bd and
the right action in the statement corresponds to the standard right action of Bd on Fd. We identify
the braid group with the fundamental group of (Cd \ D)/Σd with base point p−1

|C (x0) ⊂ C, where
D = {(x1, ..., xd) ∈ Cd | xi = xj for some i < j} and the quotient is given by the group action of the
permutation group Σd acting on the coordinates σ · (x1, ..., xd) = (xσ(1), ..., xσ(d)) [4,5]. The braid
group is generated by the standard half-twists σ1, . . . , σd−1 and the action on the free group is defined
by

µ
σj

i :=


µi if j ̸= i, i− 1

µi+1 if j = i

µi · µi−1 · µ−1
i if j = i− 1,

µ
σ−1
j

i =


µi if j ̸= i, i− 1

µ−1
i · µi+1 · µi if j = i

µi−1 if j = i− 1.

(1.1)

For the sake of completeness, the action of the inverse of the standard half-twists have been added.
Assume for simplicity that for each t ∈ ∆, p|C fails only at one point (t, y(t)) to be a covering

over t. The main ideas behind the Zariski-van Kampen method are the following ones. On one side,
αj will be null-homotopic in C2 \ C; on the other side, if the braid τj correspond to tj ∈ ∆ (denoting
yj := y(tj)), then τj can be written as η−1

j · δj · ηj , where δj is a positive braid involving only the
mj strings close to (tj , yj) (and whose conjugacy class is determined by the topological type of C at
(tj , yj)). Note that, without loss of generality, one might assume that exactly the first mj strings are
involved in δj .

Corollary 1.2.

π1

(
C2 \ C; (x0, y0)

)
= ⟨µ1, . . . , µd | µδj ·ηj

i = µ
ηj

i , 1 ≤ j ≤ r, 1 ≤ i < mj⟩.

Moreover, in case deg f = degy f = d, a presentation for the fundamental group of the complement
of the Zariski closure of C in P2 is obtained by adding the relation

µd · . . . · µ1 = 1.
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Remark 1.3. The fact that the only needed relations come from 1 ≤ j < mj is due to the fact that
(µmj · . . . · µ1)

δj = µmj · . . . · µ1 and µ
δj
i = µi for mj < i ≤ d. Note that for double points, the

corresponding mj equals 2, and hence only one relation is required. For meridians x1, x2 close to the
singular point of p|C , the following relation is satisfied:

x1 = x2 (m = 0), [x1, x2] = 1 (m = 1), x1 · x2 · x1 = x2 · x1 · x2 (m = 2).

This comes from the action of the local braid σm+1
1 on x1, x2 as described in (1.1).

2 Wirtinger curves

In this section the new concept of Wirtinger curves is defined. For this class of curves, a presentation of
the fundamental group of their complement can be combinatorially obtained from their real picture.
We start first by defining curves of Wirtinger type, which will be those which are candidates to be
Wirtinger curves.

An affine curve C ⊂ C2 is called of Wirtinger type if:

(W1) the ramification points of the vertical projection p(x, y) = x are all real, that is,

R = {P = (t, yt) ∈ C | p−1(t) and C do not intersect transversally at P} ⊂ R2,

in particular, ∆ = p(R) ⊂ R;
(W2) the local branches of C at P ∈ R are all real,
(W3) the vertical fiber L = p−1(x0) of p at some x0 ∈ R intersects the real part of C with maximal

cardinality, that is, #(p|−1
C (x0)∩R2) = degy f – note that this is not necessarily the degree of the

curve,
(W4) it contains no vertical asymptotes and no vertical lines, and simple tangencies at smooth points

are the only vertical lines in the tangent cone of C at any point.
(W5) the only singularities of C are either double – type Am– or ordinary (i.e., smooth branches with

pairwise distinct tangent cones).

Given a curve C of Wirtinger type, we consider its diagram CR = C ∩ R2. Denote by VC the set
of singular points of C, that is, VC = Sing C = R2 ∩ Sing C; they will be referred to as the vertices
of C. The edges of C are the closures of the connected components of CR \ VC . The set of edges will
be denoted as EC . Our purpose is to describe a presentation of a group based on the vertices and
edges of CR. A Wirtinger presentation GC associated with a curve of Wirtinger type C is given by
a generating system parametrized by EC , that is, {xℓ | ℓ ∈ EC}. In addition, to each P ∈ VC the
following relations are associated:

(R1) If P is an ordinary real singular point of multiplicity m as in (2.1), then the edges associated
with P can be sorted out in two groups {x1, . . . , xm} and {y1, . . . , ym} as shown below. Define
x̄k = xkxk−1 · · ·x1 and ȳk = y1y2 · · · yk. Then

y2

x2

y1

x1

ym−1

xm−1

ym

xm

...
...

P

[x̄m, xj ] = 1

yj = x̄−1
j · xj · x̄j = x̄−1

j−1 · xj · x̄j−1
(2.1)

Note that x̄m = ȳm is a consequence and the relations could be written also from left to right.
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(R2) If P is of type Am, then the following relations are added:

P

x1

x2

m = 2k

x1(x2x1)
k = (x2x1)

kx2,

P

y1

y2

x1

x2

m = 4k − 1

P

y2

y1

x1

x2

m = 4k + 1

(x1x2)
m+1

2 = (x2x1)
m+1

2 ,

yi = (x2x1)
−kxi(x2x1)

k, i = 1, 2

(2.2)

Remark 2.1. Note that relations in (2.1) and (2.2) involving only xi’s correspond with the local
braid-monodromy relations described in Remark 1.3.

The remaining relations describe meridians on one side of the singularity in terms of meridians on
the other side as elements of the local fundamental group of the singular point, whenever there are
real branches on both sides of the singular point. For a A4k−1-singularity, the local braid monodromy
is given by σ4k

1 , hence the relation yi = (x2x1)
−kxi(x2x1)

k, i = 1, 2 in (2.2) is nothing but yi = x
σ−2k
1

i

as described in (1.1). For an ordinary singular point of multiplicity m, the local braid monodromy is
given by ∆2

m (where ∆m represents a half-full twist in m strands); the second line of (2.1) is nothing
but yi = x∆m

−1

i .

Remark 2.2. Note that the case m = 1 is in both the family of ordinary points and double points.
One can check that relations (2.1) become

[x2x1, x1] = 1, y1 = x1, y2 = x−1
1 x2x1 = x2.

whereas relations (2.2) become

x1x2 = x2x1, y1 = x1, y2 = x2.

Therefore both sets of relations are trivially equivalent to

[x1, x2] = 1, y1 = x1, y2 = x2.

In certain cases, GC is a presentation of π1(C2 \ C), but not necessarily.

Example 2.3. For any real smooth curve C of Wirtinger type, note that GC is a presentation of the
free group of rank r, where r is the number of connected components of CR, however π1(C2 \ C) = Z.
It applies to C : y2 − x(x2 − 1) = 0 (r = 2).
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Example 2.4. Let C be a strongly real line arrangement (with no vertical lines), that is, a finite
union of lines where each line has a real equation. In particular C = {ℓ1 · . . . · ℓr = 0} where
ℓi ∈ R[x, y], i = 1, . . . , r are pairwise non-proportional linear forms. Note that in this case GC

gives the Salvetti presentation [14] of π1(C2 \ C) and it can be reduced to the Zariski-van Kampen
presentation associated with the vertical projection, with Tietze transformations of type I and IIa.

Example 2.5. Consider the affine tricuspidal quartic whose line at infinity is bitangent (the deltoid).
This curve has a real equation

C := {(x, y) ∈ C2 | 3(x2 + y2)2 + 24x(x2 + y2) + 6(x2 + y2)− 32x3 − 1 = 0}.

Its diagram is a triangle whose vertices are the three cusps. Therefore GC = ⟨x1, x2, x3 : x1x2x1 =

x2x1x2, x2x3x2 = x3x2x3, x3x1x3 = x1x3x1⟩ is the standard presentation of the Artin group of the
triangle, which coincides with π1(C2 \ C) – see [13,3].

The following result offers a wide collection of examples of curves of Wirtinger type whose
Wirtinger presentation is a presentation of the fundamental group π1(C2 \ C). In order to state
the conditions one needs to introduce the simple concept of real branches facing a vertical line. Con-
sider a vertical real line LR and a singular point of the vertical projection P /∈ LR. The vertical line
through P separates the real plane in two half-planes, one of them say H+ containing LR. If H+

contains real branches at P , then these branches at P are said to face LR.

Theorem 2.6. Let C be a curve of Wirtinger type and such that the real part of each irreducible
component is connected. Let L = p−1(x0) be a line satisfying (W3) and let B ⊂ R2 be a closed
topological disk (with piecewise smooth boundary) such that:

(1) B ∪ CR ∪ LR is simply connected.
(2) There is a parallel real plane Hε = R× (R+ ε

√
−1) to R2 with ε ̸= 0 such that

Bε ∩ C = ∅, where Bε = {(x, y + ε
√
−1) ∈ Hε | (x, y) ∈ B} ⊂ Hε. (2.3)

(3) All singularities of the vertical projection face LR.

Then GC is a presentation of π1(C2 \ C).

Remark 2.7. Given a curve of Wirtinger type, the set of points Hε∩C ⊂ Hε projected onto R2 via the
real-part map will be referred to as obstruction points. Before we prove this result, we will describe
strategies to determine the position of the obstruction points based on the real picture CR in order
to check property (2.3) without actual computations. First note that a smooth branch transversal to
the vertical line can be locally parametrized by y = 0 after a real change of coordinates. Therefore a
parallel plane Hε near P = (0, 0) will be locally disjoint to C, since y = v+ε

√
−1 = 0 has no solution

for v ∈ R. Since the ordinary singularities as well as A2k+1 are a product of smooth branches, this
forces the same local property Hε ∩C = ∅ near P . The remaining two cases are either simple vertical
tangencies or A2k. In the simple tangency case y2 = x, note that locally in a ball BP around P ,

(Hε ∩ C)P = {(u, v + ε
√
−1) ∈ BP | u, v ∈ R, (v + ε

√
−1)2 = v2 − ε2 + 2vε

√
−1 = u}

= {(−ε2, ε
√
−1)}.

Analogously, if y2 = −x, then (Hε ∩ C)P = {(ε2, ε
√
−1)}. The position of this obstruction point

relative to the curve is depicted in Figure 1.
Finally, at an irreducible double singularity of type A2k of local equation y2 = x2k+1 one can

check that (Hε ∩ C)P = {(−ε
2

2k+1 , ε
√
−1)}, where ε

2
2k+1 represents the only real 2k + 1 root of ε2.

The position of this obstruction point relative to the curve is also depicted in Figure 1.
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P
⋆

P
⋆P⋆ P ⋆

Fig. 1: Obstruction points at vertical tangencies and A2k-singular points

Remark 2.8. The compactness of B makes condition (2) in Theorem 2.6 of a combinatorial nature
because of the discussion in Remark 2.7.

Example 2.9. It is straightforward to check that the curves C : y2 − xm+1 = 0 are of Wirtinger
type. We apply Theorem 2.6 by choosing B as in Figure 1.

Example 2.10. As a simple application of Theorem 2.6 and Remark 2.7, note that the affine nodal
cubic C = {y2 = x2(x+ 1)} is a curve of Wirtinger type. According to the discussion above, there is
only an obstruction point (see Figure 2a) and the given B and L satisfy the conditions of Theorem 2.6.
Since the diagram CR contains three edges and only one vertex (associated with the nodal point P ),
GC has three generators x1, x2, x3 and only one set of relations as given in (2.1):

x2
2 = x3x1, [x

2
2, x1] = [x2

2, x2] = 1, x3 = x2, x1 = x2,

and hence π1(C2 \ C) = Z.

P
⋆ B

x2 x1

x3

L

(a) Nodal cubic

z3z1

x1y1

z2
x2y2

x3 y3

(b) Parabola and tangent lines

Fig. 2

Example 2.11. Consider the parabola y = x2 together with two parallel lines as in Figure 2b. The
union of these irreducible components is an affine curve C of Wirtinger type. Choosing as B a big
enough rectangle centered at the origin containing all singularities and a vertical line L placed at the
left-most edge of B, one can trivially check they satisfy the hypotheses of Theorem 2.6.
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The following is a complete set of relations obtained from the diagram CR, namely,


(z1y1)

2 = (y1z1)
2

z2 = (y1z1)
−1z1(y1z1)

y2 = z−1
1 y1z1



x3y2 = y3x2

y2 = y3

[y2, x3] = 1

x2 = y−1
2 x3y2 = x3


(z2x2)

2 = (x2z2)
2

z3 = (x2z2)
−1z2(x2z2)

x1 = z−1
2 x2z2

Using the relations x = x2 = x3, y = y2 = y3, x1 = z−1
2 xz2, z1 = yz2y

−1 y1 = z1yz
−1
1 = yz2yz

−1
2 y−1,

z3 = xz2x
−1 the presentation GC can be reduced to

π1(C2 \ C) = ⟨x, y, z2 : xy = yx, (yz2)
2 = (z2y)

2, (xz2)
2 = (z2x)

2⟩

which is the presentation of the Euclidean Artin group (4, 4, 2).

3 Proof of Theorem 2.6

Proof of Theorem 2.6. Let us consider a curve of Wirtinger type C, a topological disk B and a vertical
line L = p−1(t0) satisfying the hypotheses. For simplicity, we assume ε > 0. The strategy of the proof
is to inductively transform a Zariski-van Kampen presentation of π1(C2 \ C;P0) into the Wirtinger
presentation GC .

Before we start, a general method to construct loops is described as follows. Let ℓ ∈ EC , pℓ ∈ EC

a smooth point, and ∆ℓ a disk of radius ε centered at pℓ and transversal to C. Let qℓ be the unique
point in ∆ℓ ∩ Bε. The meridian µℓ is defined taking a path ρℓ in Bε from P0 to qℓ, running ∂∆ℓ

counterclockwise and coming back to P0 via ρ−1
ℓ . A key remark is that this construction defines a

unique meridian µℓ independently of the choice of ρℓ and pℓ by condition (2.3).
We will start with an appropriate Zariski-van Kampen presentation for a suitable base point P0

on L. Let us write L ∩ C = LR ∩ CR = {pℓ1 = (t0, y1), . . . , pℓd = (t0, yd)} where pℓi is a smooth point
in ℓi ∈ EC with y1 > · · · > yd and choose y0 ∈ R, y0 ≥ y1 such that (t0, y0) ∈ B∩LR. This is possible
since LR ∩ B is an interval, LR ∩ CR is a finite set of points, B ∪ LR ∪ CR is simply connected, by
condition (1), and hence LR ∩ CR ⊂ B. The point P0 = (t0, y0 + ε

√
−1) ∈ Bε ∩ L will be taken as a

base point.

q1q2qd−1qd

P0µℓ1p1
µℓ2 p2

. . .µℓd−1pd−1
µℓd pd

Fig. 3: Generators in the fiber

As was mentioned above, the idea of the proof is to transform the Zariski-van Kampen presentation
of π1(C2\C) into the Wirtinger presentation GC . To simplify this procedure one can transform slightly
the Wirtinger presentation by considering an extended diagram where the vertices in ṼC contain VC

and the vertical tangencies of C and considering such points as A0-singular points. The resulting
relation is provided in (2.2) for m = 0, i.e. the two generators coincide. The set of resulting edges
will be denoted by ẼC .
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Let us start from the Zariski-van Kampen presentation G0 of Corollary 1.2 generated by the
meridians µℓ1 , . . . , µℓd as in Figure 3, where ℓj is the edge containing pj . Recall that the relators in G0

correspond to the singular points of the projection p|C , i.e. with the vertices of the modified Wirtinger
presentation G̃C . Let us order the set ṼC = {P1, . . . , Pr} of singular points of the projection p|C by its
distance to LR. Denote by Lj , j = 1, . . . , r (resp. L0) the vertical line containing Pj (resp. LR). An
inductive procedure will be presented to transform G0 into Gr = G̃C using only Tietze transformations
of type I and IIa (without IIb [7], i.e. the homotopy type is preserved). At each step j ∈ {0, . . . , r}, a
presentation will be given whose generators are associated with the edges in ẼC ∩ (L0 ∪ · · · ∪Lj) and
whose relations associated with P1, . . . , Pj coincide with those of G̃C while the ones associated with
Pj+1, . . . , Pr are still those of Zariski-van Kampen presentation.

For j = 0, the result is trivial using G0. Assume Gj is constructed and consider the point Pj+1

and its associated relations. The only new edges in ẼC ∩ Lj+1 might come from adjacent edges to
Pj+1. If Pj+1 is of type A2k and since Pj+1 faces LR (by condition (3)), no new edges arise. Let xℓ′

be any generator associated with an edge ℓ′ adjacent to Pj+1, then xℓ′ = x
ηj

ℓ for some generator xℓ in
G0, see Corollary 1.2. The local braid δj described before Corollary 1.2 is σ2k+1

1 . Hence relation (R2)
produces xℓ′ = x

δj
ℓ′ , which becomes x

ηj

ℓ = x
δjηj

ℓ , that is, the Zariski-van Kampen relation associated
with Pj+1, which is replaced by the Wirtinger relation (R2) in Gj+1.

For the remaining cases (A2k+1 and ordinary), there are new edges in ẼC adjacent to Lj+1 and
the local braids δj are squares, say δj = δ̃2j . As above, the relations involving the Zariski-van Kampen
relation can be analogously replaced in Gj by those in (R1) and (R2) involving only the old edges
(denoted by x’s). As above let x be any generator associated with an edge adjacent to Pj+1 and
facing LR and let y be the corresponding new edge on the same irreducible component. We will
further transform Gj by adding a new generator y and a relation y = xδ̃j (see Remark 2.1). This
process is continued until Gr = G̃C is obtained.

Remark 3.1. As a consequence of the beginning of the proof, a homomorphism h : GC → π1(C2 \ C)
can be defined as follows. Given xℓ the generator of GC corresponding to ℓ ∈ EC as in § 2, then
h(xℓ) := µℓ. The rest of the proof shows that h is in fact an isomorphism.

Corollary 3.2. The Wirtinger presentation of a curve of Wirtinger type satisfying the conditions of
Theorem 2.6 has the homotopy type of its associated CW-complex.

Proof. Since Tietze transformations of type III are used in the proof of Theorem 2.6, this corollary is
a consequence of the proof of the main result in [9], where the transversality with the line at infinity
is not needed in his own proof. Incidentally, despite all the strong genericity conditions stated in his
result, only the non-existence of vertical asymptotes is actually required.

The conditions of Theorem 2.6 are sufficient, but not necessary. The following examples illustrate
that the conditions in the statement of this theorem are not only technical.

Example 3.3. Let C be the curve defined by f(x, y) = y3 − y2 + 10x2y + x3. A sketch of its real
picture is in Figure 4a. Note that condition (3) in Theorem 2.6 is not fulfilled. It is straightforward
to see that GC = ⟨x1, x2 | x1 · x2 · x1 = x2 · x1 · x2⟩ while π1(C2 \ C) ∼= Z and hence π1(C2 \ C) and
GC are not isomorphic.

Example 3.4. Let C be the cardioid curve C defined by f(x, y) = (y2 + x2 − 2x)2 − 4(x2 + y2),
see Figure 4b. It is not possible to find a simply connected region B satisfying the hypotheses of
Theorem 2.6 (because of the obstruction point close to the cusp). It is straightforward to see that
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GC ∼= Z. The projective curve is the tricuspidal quartic curve (with two cusps at infinity), which has
a non-abelian fundamental group (as proved in [17]).

⋆

⋆⋆

⋆

x2

x1

(a) Cuspidal cubic generic at infinity

⋆

⋆

⋆

⋆

x2

x1

(b) Cardioid

Fig. 4

4 Artin groups and Hypocycloids

In this section Artin groups and basic properties of hypocycloids will be recalled in order to state and
prove the main Theorem on the fundamental group of hypocycloid Ck,k−1 curves. There are many
conventions to define Artin groups, but for our purpose the Dynkin-diagram convention will be more
suitable.

Definition 4.1. Let Γ be a graph, the Artin group associated to Γ = (V,E) is defined as group GΓ

generated by the vertices v ∈ V of Γ with the following relations:

v · w · v = w · v · w if {v, w} ∈ E, and [v, w] = 1 otherwise. (4.1)

Example 4.2. Let GN := GÃN
be the Artin group of an N -gon (an affine Dynkin diagram ÃN ).

According to (4.1) a presentation of GN can be written as

⟨xj , j ∈ ZN | xi · xi+1 · xi = xi+1 · xi · xi+1, xi · xj = xj · xi for |i− j| ̸= 1⟩ ,

where the subindices are considered in ZN and |i− j| ̸= 1 means i− j ̸≡ ±1 mod N .
Consider Z/2 = ⟨t | t2 = 1⟩ acting on GN as xt

j := x−j . In the special case N = 2k − 1, it is
straightforward to check that the semidirect product GN ⋊ Z/2 admits a presentation generated by
t, x0, . . . , xk−1 and whose relations are:

(SD1) t2 = 1;
(SD2) xj ·xj+1 ·xj=xj+1 ·xj ·xj+1 for 0 ≤ j < k − 1;
(SD3) (xk−1 ·t)3=(t·xk−1)

3;
(SD4) [x0, xj ] = 1 for 1 < j ≤ k − 1;
(SD5) [xi, xj ] = 1 for 0 < i, j ≤ k − 1 and j − i > 1;
(SD6) [xi, t · xj · t] = 1 for 0 < i ≤ j ≤ k − 1 and (i, j) ̸= (k − 1, k − 1).



Wirtinger curves, Artin groups, and hypocycloids 11

Let us recall some of the main properties of the hypocycloids. We follow the notation of [3] –
see [12] for details too. A hypocycloid is a real curve associated with each pair k, ℓ ∈ Z such that
0 < ℓ < k and gcd(k, ℓ) = 1. Consider N = k + ℓ and any pair of positive integers r, R such
that r

R = ℓ
N (or k

N ), the hypocycloid is the real curve obtained as the trace of a fixed point on a
circumference of radius r when rolling inside a circumference of radius R. This real curve admits an
algebraic equation and thus one can consider its complexification Ck,ℓ as the complex curve in C2

defined by this algebraic equation.
The complex curve Ck,ℓ is rational and has degree 2k and its projective closure contains two points

at infinity – the so-called concyclic points. As a summary of its algebraic properties:

(C1) Ck,ℓ has N ordinary cuspidal singular points.
(C2) Ck,ℓ has N(k − 2) ordinary double points. In its classical presentation, N(ℓ− 1) of them are real

points with real tangent lines while the other N(k − ℓ− 1) are complex.
(C3) The two points at infinity of C̄k,ℓ have local equations topologically equivalent to uk−ℓ + vk = 0

(tangent to the line at infinity with contact order k).

These properties are classical and imply that the curve is rational, see e.g. [3] for a modern
description, precise formulæ, and parametrizations.

Let us consider equations such that a point in the real axis has a vertical tangency. Note that
p|Ck,ℓ

: Ck,ℓ → C is a proper 2k-fold branched covering, extending to p̄| : C̄k,ℓ → P1 ≡ C∪ {∞}, where
C̄k,ℓ is the normalization of its projective closure. Since the curve is rational, p̄| has 2(2k−1) points of
ramification, counted with multiplicity. Two of them lie at ∞, each one with multiplicity k−1. Since no
tangent line to the cuspidal points is vertical, each one of the N cusps contributes with multiplicity 1.
The remaining multiplicity accounts for the amount simple tangencies of the projection, namely,

2(2k − 1)− 2(k − 1)− (k + ℓ) = k − ℓ.

Whenever N (and hence k − ℓ) is even only two of them are real, while in the odd case exactly one
is real, leaving k− ℓ− 1 of them in pairs of complex conjugated tangencies. Thus, in the special case
ℓ = k− 1 there must be only one vertical non-transversal line, which has to be real, N lines through
the cusps, and the vertical lines passing through the nodes (all of them real). Since the horizontal
axis is a symmetry axis, it intersects the curve – tangentially – at a cusp, at the k − 2 nodes, and
at the point of vertical tangency. Hence the nodes are in k − 2 + N−1

2 (k − 2) = (k − 2)k vertical
lines. Despite the fact that the real picture of Ck,k−1 contains all the topological information of its
embedding in C2, Theorem 2.6 cannot be applied directly since it does not satisfy (3). However its
quotient by the horizontal reflection will.

Fig. 5: Curves Ck,k−1 for k = 2, 3, 4.
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The equation f(x, y) = 0 of Ck,k−1 satisfies f(x, y) = g(x, y2) for some g ∈ C[x, y]. The curve
Dk,k−1 defined by h(x, y) := yg(x, y) will do the trick.

Lemma 4.3. The curve Dk,k−1 satisfies the hypotheses of Theorem 2.6.

Proof. Note that the projection change the local type of branches intersecting the horizontal line,
namely, it converts nodes into tangencies, branches with vertical tangencies into transversal branches
with respect to the vertical line, and cusps into inflection points, see Figure 6. A topological disk B

can be chosen as in Figure 6. The line L is close to the node in the horizontal axis. Since there is no
vertical tangency and all the cusps are facing outwards, the result follows.

Let us label the edges of the non-linear component D of the curve Dk,k−1. Its real part DR is the
image of a map R → R2, starting from the negative x-half plane (to the image of the transversal
intersection to the horizontal line) to the part after the inflection point.

In order to label the edges we follow some conventions. First, we do not change the labels when
passing through a node. We start with the label x0 for the edge transversal to the horizontal line.
We continue as follows:

1. If xj ends in a tangency in the horizontal line then the next edge is x−j .
2. If xεj , j ≥ 0, ε = ±1 (assume ε = (−1)k for j = 0), then the next edge is xε(j+1)

With these conventions, the inflection edge is xk−1. This procedure is illustrated in Figure 6 for k = 4.
Actually, we are not interested in the group π1(C2 \ Dk,k−1) = GDk,k−1 but in its quotient Gk

obtained by killing the square of a meridian of the horizontal line. This is an orbifold fundamental
group. If we consider the double cover we obtain that π1(C2 \Ck,k−1) is the kernel of the epimorphism
Gk → Z/2 which sends the meridians of the line to 1 and the meridians of the other component to 0.

Proposition 4.4. The group Gk is isomorphic to the semidirect product GN ⋊Z/2, where GN is the
Artin group of the N-gon.

Proof. Note that the group Gk is generated by x2−k, . . . , xk−1 (the edges of the quotient of the
hypocycloid) and t, which is the generator in the horizontal line corresponding to the edges adjacent
to the normal crossing of the hypocycloid (x0). Note that all the tacnodes to the left of t correspond
to (−1)k-labels, while the tacnodes located to the right of t correspond to (−1)k+1-labels.

Let xj , j ̸= 0, k − 1, be an edge of a tacnode in the side closer to t. Then, x−j = t′ · xj · t′, and
t′ is obtained conjugating t by a product of xi’s, where all the indices i are of the same parity as j

(and distinct form k − 1). As a consequence, x−j = t · xj · t and we can check that we obtain the
presentation of GN ⋊ Z/2 generated by t, x0, . . . , xk−1 with relations (SD1)-(SD6).

Corollary 4.5. The fundamental group of the complement of hypocycloids Ck,k−1 is the Artin group of
the polygon in N = 2k−1 vertices. In particular, GCk,k−1 is a Wirtinger presentation of π1(C2\Ck,k−1).

5 Extending the method

There are several ways to improve this method to compute fundamental groups of complements of
groups. The list of allowed singularities can be enlarged. Besides ordinary singular points (without
vertical tangencies), any singular point where all the branches are real and smooth is allowed (as
far as no branch has vertical tangency). As in (R1), we will add the local relations induced by
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x0
x1

x−1

x−2

x2
x3

t

Fig. 6: Quotient curve of C4,3.

Corollary 1.2 and one relation for each branch in order to express the generators of one side in terms
of the generators of the other side.

There are other allowed singular points besides ordinary and double points. Namely singular
points whose local irreducible components are all double (A2m), real and must be on the same side
with respect to the vertical line (and transversal to it). In fact, in this case, we can admit smooth (real)
branches with vertical tangency, such that the intersection number with the vertical line is 2 (for each
branch); note that we may allow larger intersection multiplicities between these smooth branches. If
we want these curves to match with Theorem 2.6, they must satisfy the facing condition (3).

Finally, even vertical lines can be admitted as far as the following condition is fulfilled.

1. The global intersection number of the vertical line and CR equals to degy C.
2. If one branch in L is smooth and transversal to the vertical line, then all branches are.
3. If one branch in L has intersection number 2 with L, the same arises for the other branches and

all of them are in the same side. Moreover, they must satisfy condition (3) in order to apply
Theorem 2.6.

For the cases where Theorem 2.6(3) cannot be avoided there are several ways to provide a com-
binatorial (and correct) presentation of π1(C2 \ C). One of them uses the the real part of the pairs of
complex conjugate branches, but their computation may be involved, see [2].

If we use the ideas of the proof of Theorem 2.6, we can still recover a combinatorial description
of the fundamental group. In order to do this, if B ∩ C ̸= ∅, the construction of the loops associated
to each edge of CR must be done taking into account this intersection points. Moreover, the relations
must involved the right loops.

Remark 5.1. Let us describe the loops associated with one of these intersection points, namely
one close to a a point of type A2m. Let us assume that in local coordinates it has local equation
y2 + αx2m+1 = 0, α2 = 1. Following the computations in Remark 2.7, its intersection with Hε is
(αη,

√
−1ε) where η = ε

2
2m+1 . Let us check if the intersection is transversal and which is the inter-

section number if the curve is naturally oriented as a complex curve and if Hε has counterclockwise
orientation.

An R-basis of the tangent plane for Hε is given by {(1, 0), (0,
√
−1)}. A C-basis for the complex

tangent line to the curve is given by {(2
√
−1ε),−(2m + 1)αη2m}. The natural orientation of this

plane is given by completing the basis with {(−2ε,−(2m + 1)αη2m
√
−1)}. If η̃ = (2m + 1)η2m the
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R2

x1

x2

x = −η

A2m

x = 0 x = η x = −η

R
−ε ε

x = −ηe
√

−1πt

Braid:σm
1

x = η

√
−1R

−
√
−1ε

√
−1ε

Hε

x = −η x = 0 x = η

√
−1ε

Fig. 7: Meridian at Bε

orientation is given by the sign of

det


1 0 0 −2ε

0 0 2ε 0

0 1 −αη̃ 0

0 0 0 −αη̃

 = −det

(
2ε 0

0 −αη̃

)
= 2εαη̃α,

which is the sign of α. Hence, if the cusp if left-sided, the sign is positive, while right sided is negative.
What happens with the meridians of the intersections with Bε? In the situation of Figure 7, the local
loop in Bε is y1 := x

(σ−m
1 )

1 ; this is related to the half-tour around the singularity from x = −η to
x = η (counterclockwise from −η to η and hence clockwise the other way around). If the A2m-point
is on the other side the loop is y−1

1 .

Instead of describing a general procedure to compute this group, let us apply it to a couple of
examples.

Example 5.2. Let us consider the curve of Example 3.4. We consider L to the right of the cusp in
Figure 4b and we take the generators x1, x2 as in Figure 3. The relation x1 · x2 · x1 = x2 · x1 · x2

holds. The bitangent vertical line provides no actual new relation, but the right-hand side vertical
tangency does. If we approach to it following the loop x1, in order to apply the local relation, we
have to consider the loop z ·x2 ·z−1, where z is a counterclockwise loop around the obstruction point.
Following the discussion in Remark 5.1, z = y−1

1 and y1 = x
(σ−1

1 )
1 = x−1

1 · x2 · x1. Hence

x1 = x−1
1 · x−1

2 · x1 · x2 · x−1
1 · x2 · x1 =⇒ x2 · x1 · x−1

2 = x1 · x2 · x−1
1

Applying the two relations we obtain:

π1(C2 \ C) = ⟨x1, x2 | x1 · x2 · x1 = x2 · x1 · x2, [x
2
1, x2] = 1⟩ ∼= Z ⋊ Z/3.

Example 5.3. Let us consider the union of two concentric circumferences. This curve is of Wirtinger
type, see Figure 8 for the vertical tangencies and note that they are tangent at the concyclic points.
It is clear that GC = Z ∗ Z. The curve does not satisfy the hypotheses of Theorem 2.6. If we choose
the generators as in the proof of Theorem 2.6, the tangencies of the inner curve, provide the equality
x2 = x3.

We denote by z1, z2 the counterclockwise loops around the inner ⋆-points. From Figure 8, we
deduce that x1 = z1 · x4 · z−1

1 = z−1
2 · x4 · z2. Using Remark 5.1, we have z1 = x−1

2 and z2 = x2.
Hence, only the relation x1 = x−1

2 ·x4 · z2 remains. As a consequence, GC is isomorphic to π1(C2 \ C).
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⋆⋆ ⋆⋆

x4

x3

x2

x1

z1 z2

Fig. 8

Remark 5.4. Using the extended Wirtinger method one can prove that the CW-complex associated
with the Artin group GN of the N -gon has the homotopy type of C2 \ Ck,k−1. By simple Euler-
characteristic calculations, the case ℓ = k − 1 is the only one where this can be expected.
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