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Abstract The computationof the fundamental groupof the complement of an algebraic plane
curve has been theoretically solved since Zariski–van Kampen, but actual computations are
usually cumbersome. In this work, we describe the notion of Wirtinger presentation of such
a group relying on the real picture of the curve and with the same combinatorial flavor as
the classical Wirtinger presentation; we determine a significant family of curves for which
Wirtinger presentation provides the required fundamental group. The above methods allow
us to compute that fundamental group for an infinite subfamily of hypocycloids, relating
them with Artin groups.
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1 Introduction

In [15,16], Wirtinger introduced his well-known method to compute the fundamental group
of the complement of a knot. His primary aim was to apply this method to algebraic knots
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and links [6], i.e., links obtained as the transversal intersection of an algebraic curve (in C
2)

with a small sphere centered at a singular point. His method also works for any link and it is
most useful for such computations. One of its interesting features is that it provides a simple
combinatorialmethod to compute this group from the diagramof a knot or link, while keeping
track of its geometrical definition. The other practical method to compute this group comes
from Artin braid groups [4,5]; this is the idea behind Zariski–van Kampen’s method [8,17]
in order to give a presentation of the fundamental group of the global complement of a plane
algebraic curve (later formalized as braid monodromy by Moishezon [11]).

In this paper, we are going to adaptWirtinger’s method to compute the fundamental group
of the complement of some plane algebraic curves. These curves must have a real equation
and a rich algebraic picture. Our goal is to provide (for a relatively small though signif-
icant family of curves) a combinatorial method for the computation of this group. When
implemented, Zariski–van Kampen’s method tends to rely generically on heavy numerical
computations using floating-point arithmetics (see [10] for a reasonably efficient implemen-
tation in Sagemath that assures an exact output), this is why some theoretical methods
applying to infinite families of curves are needed.

The origin of our interest in this method started in [3], where the fundamental group of the
complement of some small-degree complexified hypocycloids was studied. Our techniques
were applied to curves where the real picture gave a lot of information. This is not the case for
the whole family of hypocycloids, but the use of their symmetries allowed us to use similar
techniques for their resulting quotients whenever a rich real picture was obtained.

Following the notation introduced in [3], a hypocycloid is determined by two integers
0 < � < k, gcd(k, �) = 1 as the real curve traced by a fixed point on a circumference of
radius � while rolling inside a circumference of radius N := k + �. Such real curves admit
a real algebraic equation. The fundamental group of the complement of their complexified
version Ck,� is the focus of our interest here.

Somepartial results treated in [3] and all the hypocycloids for N ≤ 11 (using theSirocco
package by Marco and Rodríguez [10]) lead to the following conjecture describing them as
Artin groups. We must emphasize that there is no hope that the techniques presented in [3]
as well as the computational methods used in small degrees may be generalized to the whole
family.

Conjecture 1 For any pair of coprime integers 0 < � < k, N := k + �, the fundamental
group for Ck,� is the Artin group of the N-gon.

In a forthcoming paper the conjecture will be proved for hypocycloids of type (k, k − 2)
(k odd), using quotient singularities.

The paper is organized as follows: in Sect. 2 the original Zariski–van Kampen method is
recalled as way to provide a presentation for the fundamental group of the complement of
an affine complex curve C. This presentation has an extra property proved by A.Libgober
in [9] which assures that the homotopy type of this complement coincides with that of the
CW-complex associated with the given presentation. Section 3 is devoted to introducing the
concept of curves of Wirtinger type as a complexified real curve satisfying certain properties
with respect to a projection. Associated with the real picture of such curves one can define
a finite presentation à la Wirtinger. The resulting group is not necessarily isomorphic to
the expected group π1(C

2\C) as illustrated by a series of examples. However, under certain
additional conditions they are indeed isomorphic. This is stated in the main Theorem 3.6.
The proof of this result is given in Sect. 4, where the Zariski–van Kampen presentation is
transformed into the Wirtinger presentation preserving the homotopy type of the associated
CW-complex in Corollary 5.5. The purpose of Sect. 5 is to state and prove Conjecture 1 for
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� = k − 1—see Corollary 5.5. A brief discussion on Artin groups and first properties of
hypocycloids completes the section. Finally, a series of examples in Sect. 6 exhibit how the
conditions ofTheorem3.6 canbe relaxed at the cost of understanding the so-called obstruction
points. This idea results in a more sophisticated version of the Wirtinger presentation, whose
description goes beyond the scope of this paper and will be presented somewhere else.

2 The Zariski–van Kampen method

Let C ⊂ C
2 be a plane algebraic curve. We assume that for a given coordinate system the

equation of C is given by a polynomial f (x, y) ∈ C[x, y] such that degy f = d and the
coefficient of f in yd as polynomial in C[x][y] is 1. As we are only interested in the zero
locus, we can assume C to be reduced, i.e., f is a square-free polynomial. In particular
D(x) := Discy( f ) ∈ C[x] is a non-zero polynomial.

The geometrical characterization for f beingmonic in y is that C contains neither a vertical
line nor a vertical asymptote. By a vertical asymptote we mean a vertical line that is tangent
to the curve at infinity. Let us consider p : C

2 → C be the vertical projection (x, y) �→ x ;
the restriction p|C fails to be a covering only at the points of Δ := {t ∈ C | D(t) = 0}. As a
consequence, if the vertical line x = t is denoted by Lt ,

p| : C
2\

(
C ∪

⋃
t∈Δ

Lt

)
→ C\Δ

is a locally trivial fibration. Let us denote by r the cardinality of the discriminantΔ. Providing
a suitable section of this fibration (over a big enough closed disk) (e.g. using some horizontal
line), the following theorem holds.

Theorem 2.1 Under the above hypotheses,

π1

(
C
2\

(
C ∪

⋃
t∈Δ

Lt

)
; (x0, y0)

)
=

〈
μ1, . . . , μd , α1, . . . , αr

∣∣∣∣∣∣α−1
j · μi · α j = μ

τ j
i

1≤i≤d, 1≤ j≤r

〉
.

The loopsμ j correspond to a geometric basis of the free groupFd := π1(Lx0\C; (x0, y0))
(i.e., each element is a meridian and the reversed product is homotopic to the boundary of
a big disk, see [1,11]); the loops αi correspond to the lift to the horizontal line y = y0 of
a geometric basis of the free group π1(C\Δ; x0). By the continuity of roots, these loops,
provide braids τ j ∈ Bd and the right action in the statement corresponds to the standard right
action of Bd on Fd . We identify the braid group with the fundamental group of (Cd\D)/Σd

with base point p−1
|C (x0) ⊂ C, where D = {(x1, . . . , xd) ∈ C

d | xi = x j for some i < j}
and the quotient is given by the group action of the permutation group Σd acting on the
coordinates σ · (x1, . . . , xd) = (xσ(1), . . . , xσ(d)) [4,5]. The braid group is generated by the
standard half-twists σ1, . . . , σd−1 and the action on the free group is defined by

μ
σ j
i :=

⎧⎪⎨
⎪⎩

μi if j �= i, i − 1

μi+1 if j = i

μi · μi−1 · μ−1
i if j = i − 1,

μ
σ−1

j
i =

⎧⎪⎨
⎪⎩

μi if j �= i, i − 1

μ−1
i · μi+1 · μi if j = i

μi−1 if j = i − 1.

(2.1)

For the sake of completeness, the action of the inverse of the standard half-twists have been
added.
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Assume for simplicity that for each t ∈ Δ, p|C fails only at one point (t, y(t)) to be a
covering over t . The main ideas behind the Zariski–van Kampen method are the following
ones. On one side, α j will be null-homotopic in C

2\C; on the other side, if the braid τ j

correspond to t j ∈ Δ (denoting y j := y(t j )), then τ j can be written as η−1
j · δ j ·η j , where δ j

is a positive braid involving only the m j strings close to (t j , y j ) (and whose conjugacy class
is determined by the topological type of C at (t j , y j )). Note that, without loss of generality,
one might assume that exactly the first m j strings are involved in δ j .

Corollary 2.2

π1
(
C
2\C; (x0, y0)

) =
〈
μ1, . . . , μd | μ

δ j ·η j
i = μ

η j
i , 1 ≤ j ≤ r, 1 ≤ i < m j

〉
.

Moreover, in case deg f = degy f = d, a presentation for the fundamental group of the

complement of the Zariski closure of C in P
2 is obtained by adding the relation

μd · . . . · μ1 = 1.

Remark 2.3 The fact that the only needed relations come from 1 ≤ j < m j is due to the

fact that (μm j · . . . · μ1)
δ j = μm j · . . . · μ1 and μ

δ j
i = μi for m j < i ≤ d . Note that for

double points, the corresponding m j equals 2, and hence only one relation is required. For
meridians x1, x2 close to the singular point of p|C , the following relation is satisfied:

x1 = x2 (m = 0), [x1, x2] = 1 (m = 1), x1 · x2 · x1 = x2 · x1 · x2 (m = 2).

This comes from the action of the local braid σ m+1
1 on x1, x2 as described in (2.1).

3 Wirtinger curves

In this section the new concept of Wirtinger curves is defined. For this class of curves, a
presentation of the fundamental group of their complement can be combinatorially obtained
from their real picture. We start first by defining curves of Wirtinger type, which will be those
which are candidates to be Wirtinger curves.

An affine curve C ⊂ C
2 is called of Wirtinger type if:

(W1) the ramification points of the vertical projection p(x, y) = x are all real, that is,

R = {P = (t, yt ) ∈ C | p−1(t) and C do not intersect transversally at P} ⊂ R
2,

in particular, Δ = p(R) ⊂ R;
(W2) the local branches of C at P ∈ R are all real,
(W3) the vertical fiber L = p−1(x0) of p at some x0 ∈ R intersects the real part of C

with maximal cardinality, that is, #(p|−1
C (x0) ∩ R

2) = degy f —note that this is not
necessarily the degree of the curve,

(W4) it contains no vertical asymptotes and no vertical lines, and simple tangencies at
smooth points are the only vertical lines in the tangent cone of C at any point.

(W5) the only singularities of C are either double—type Am—or ordinary (i.e., smooth
branches with pairwise distinct tangent cones).

Given a curve C of Wirtinger type, we consider its diagram CR = C ∩ R
2. Denote by VC

the set of singular points of C, that is, VC = Sing C = R
2 ∩Sing C; they will be referred to as

the vertices of C. The edges of C are the closures of the connected components of CR\VC . The
set of edges will be denoted as EC . Our purpose is to describe a presentation of a group based
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on the vertices and edges of CR. A Wirtinger presentation GC associated with a curve of
Wirtinger type C is given by a generating system parametrized by EC , that is, {x� | � ∈ EC}.
In addition, to each P ∈ VC the following relations are associated:

(R1) If P is an ordinary real singular point of multiplicity m as in (3.1), then the edges
associated with P can be sorted out in two groups {x1, . . . , xm} and {y1, . . . , ym} as
shown below. Define x̄k = xk xk−1 · · · x1 and ȳk = y1y2 · · · yk . Then

y2

x2

y1

x1
ym−1

xm−1

ym

xm

...
...

P
{

[x̄m, x j ] = 1

y j = x̄−1
j · x j · x̄ j = x̄−1

j−1 · x j · x̄ j−1
(3.1)

Note that x̄m = ȳm is a consequence and the relations could be written also from left
to right.

(R2) If P is of type Am , then the following relations are added:

P

x1

x2

m = 2k
x1(x2x1)k = (x2x1)k x2,

P

y1

y2

x1

x2

m = 4k − 1

P

y2

y1

x1

x2

m = 4k + 1

{
(x1x2)

m+1
2 = (x2x1)

m+1
2 ,

yi = (x2x1)−k xi (x2x1)k, i = 1, 2

(3.2)

Remark 3.1 Note that relations in (3.1) and (3.2) involving only xi ’s correspond with the
local braid-monodromy relations described in Remark 2.3.

The remaining relations describe meridians on one side of the singularity in terms of
meridians on the other side as elements of the local fundamental group of the singular point,
whenever there are real branches on both sides of the singular point. For a A4k−1-singularity,
the local braid monodromy is given by σ 4k

1 , hence the relation yi = (x2x1)−k xi (x2x1)k ,

i = 1, 2 in (3.2) is nothing but yi = x
σ−2k
1

i as described in (2.1). For an ordinary singular
point of multiplicity m, the local braid monodromy is given by Δ2

m (where Δm represents a

half-full twist in m strands); the second line of (3.1) is nothing but yi = xΔm
−1

i .
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Remark 3.2 Note that the case m = 1 is in both the family of ordinary points and double
points. One can check that relations (3.1) become

[x2x1, x1] = 1, y1 = x1, y2 = x−1
1 x2x1 = x2.

whereas relations (3.2) become

x1x2 = x2x1, y1 = x1, y2 = x2.

Therefore both sets of relations are trivially equivalent to

[x1, x2] = 1, y1 = x1, y2 = x2.

In certain cases, GC is a presentation of π1(C
2\C), but not necessarily.

Example 3.3 For any real smooth curve C of Wirtinger type, note that GC is a presentation
of the free group of rank r , where r is the number of connected components of CR, however
π1(C

2\C) = Z. It applies to C : y2 − x(x2 − 1) = 0 (r = 2).

Example 3.4 Let C be a strongly real line arrangement (with no vertical lines), that is, a finite
union of lines where each line has a real equation. In particular C = {�1 · . . . · �r = 0} where
�i ∈ R[x, y], i = 1, . . . , r are pairwise non-proportional linear forms. Note that in this case
GC gives the Salvetti presentation [14] of π1(C

2\C) and it can be reduced to the Zariski–van
Kampen presentation associated with the vertical projection, with Tietze transformations of
type I and IIa see [7].

Example 3.5 Consider the affine tricuspidal quartic whose line at infinity is bitangent (the
deltoid). This curve has a real equation

C := {(x, y) ∈ C
2 | 3(x2 + y2)2 + 24x(x2 + y2) + 6(x2 + y2) − 32x3 − 1 = 0}.

Its diagram is a triangle whose vertices are the three cusps. Therefore GC = 〈x1, x2, x3 :
x1x2x1 = x2x1x2, x2x3x2 = x3x2x3, x3x1x3 = x1x3x1〉 is the standard presentation of the
Artin group of the triangle, which coincides with π1(C

2\C)—see [3,13].

The following result offers a wide collection of examples of curves of Wirtinger type
whose Wirtinger presentation is a presentation of the fundamental group π1(C

2\C). In order
to state the conditions one needs to introduce the simple concept of real branches facing a
vertical line. Consider a vertical real line LR and a singular point of the vertical projection
P /∈ LR. The vertical line through P separates the real plane in two half-planes, one of them
say H+ containing LR. If H+ contains real branches at P , then these branches at P are said
to face LR.

Theorem 3.6 LetC be a curve of Wirtinger type and such that the real part of each irreducible
component is connected. Let L = p−1(x0) be a line satisfying (W3) and let B ⊂ R

2 be a
closed topological disk (with piecewise smooth boundary) such that:

(1) B ∪ CR ∪ LR is simply connected.
(2) There is a parallel real plane Hε = R × (R + ε

√−1) to R
2 with ε �= 0 such that

Bε ∩ C = ∅, where Bε = {(x, y + ε
√−1) ∈ Hε | (x, y) ∈ B} ⊂ Hε. (3.3)

(3) All singularities of the vertical projection face LR.

Then GC is a presentation of π1(C
2\C).
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P
PP P

Fig. 1 Obstruction points at vertical tangencies and A2k -singular points

Remark 3.7 Given a curve of Wirtinger type, the set of points Hε ∩ C ⊂ Hε projected onto
R
2 via the real-part map will be referred to as obstruction points. Before we prove this result,

we will describe strategies to determine the position of the obstruction points based on the
real picture CR in order to check property (3.3) without actual computations. First note that
a smooth branch transversal to the vertical line can be locally parametrized by y = 0 after
a real change of coordinates. Therefore a parallel plane Hε near P = (0, 0) will be locally
disjoint to C, since y = v + ε

√−1 = 0 has no solution for v ∈ R. Since the ordinary
singularities as well as A2k+1 are a product of smooth branches, this forces the same local
property Hε ∩ C = ∅ near P . The remaining two cases are either simple vertical tangencies
or A2k . In the simple tangency case y2 = x , note that locally in a ball BP around P ,

(Hε ∩ C)P = {(u, v + ε
√−1) ∈ BP | u, v ∈ R, (v + ε

√−1)2 = v2 − ε2 + 2vε
√−1 = u}

= {(−ε2, ε
√−1)}.

Analogously, if y2 = −x , then (Hε ∩ C)P = {(ε2, ε√−1)}. The position of this obstruction
point relative to the curve is depicted in Fig. 1.

Finally, at an irreducible double singularity of type A2k of local equation y2 = x2k+1

one can check that (Hε ∩ C)P = {(−ε
2

2k+1 , ε
√−1)}, where ε

2
2k+1 represents the only real

2k + 1 root of ε2. The position of this obstruction point relative to the curve is also depicted
in Fig. 1.

Remark 3.8 The compactness of B makes condition (2) in Theorem 3.6 of a combinatorial
nature because of the discussion in Remark 3.7.

Example 3.9 It is straightforward to check that the curves C : y2−xm+1 = 0 are ofWirtinger
type. We apply Theorem 3.6 by choosing B as in Fig. 1.

Example 3.10 As a simple application of Theorem 3.6 and Remark 3.7, note that the affine
nodal cubic C = {y2 = x2(x + 1)} is a curve of Wirtinger type. According to the discussion
above, there is only an obstruction point (see Fig. 2a) and the given B and L satisfy the
conditions of Theorem 3.6. Since the diagram CR contains three edges and only one vertex
(associated with the nodal point P), GC has three generators x1, x2, x3 and only one set of
relations as given in (3.1):

x22 = x3x1, [x22 , x1] = [x22 , x2] = 1, x3 = x2, x1 = x2,

and hence π1(C
2\C) = Z.

Example 3.11 Consider the parabola y = x2 together with two parallel lines as in Fig. 2b.
The union of these irreducible components is an affine curve C of Wirtinger type. Choosing
as B a big enough rectangle centered at the origin containing all singularities and a vertical
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P
B

x2 x1

x3

L

z3z1

x1y1

z2
x2y2

x3 y3

(a) (b)

Fig. 2 a Nodal cubic, b parabola and tangent lines

line L placed at the left-most edge of B, one can trivially check they satisfy the hypotheses
of Theorem 3.6.

The following is a complete set of relations obtained from the diagram CR, namely,

⎧⎨
⎩

(z1y1)2 = (y1z1)2

z2 = (y1z1)−1z1(y1z1)
y2 = z−1

1 y1z1

⎧⎪⎪⎨
⎪⎪⎩

x3y2 = y3x2
y2 = y3
[y2, x3] = 1
x2 = y−1

2 x3y2 = x3

⎧⎨
⎩

(z2x2)2 = (x2z2)2

z3 = (x2z2)−1z2(x2z2)
x1 = z−1

2 x2z2

Using the relations x = x2 = x3, y = y2 = y3, x1 = z−1
2 xz2, z1 = yz2y−1 y1 = z1yz−1

1 =
yz2yz−1

2 y−1, z3 = xz2x−1 the presentation GC can be reduced to

π1(C
2\C) = 〈x, y, z2 : xy = yx, (yz2)

2 = (z2y)2, (xz2)
2 = (z2x)2〉

which is the presentation of the Euclidean Artin group (4, 4, 2).

4 Proof of Theorem 3.6

Proof of Theorem 3.6 Let us consider a curve of Wirtinger type C, a topological disk B and
a vertical line L = p−1(t0) satisfying the hypotheses. For simplicity, we assume ε > 0.
The strategy of the proof is to inductively transform a Zariski–van Kampen presentation of
π1(C

2\C; P0) into the Wirtinger presentation GC .
Before we start, a general method to construct loops is described as follows. Let � ∈ EC ,

p� ∈ EC a smooth point, and Δ� a disk of radius ε centered at p� and transversal to C. Let q�

be the unique point in Δ� ∩ Bε . The meridian μ� is defined taking a path ρ� in Bε from P0

to q�, running ∂Δ� counterclockwise and coming back to P0 via ρ−1
� . A key remark is that

this construction defines a unique meridian μ� independently of the choice of ρ� and p� by
condition (3.3).

We will start with an appropriate Zariski–van Kampen presentation for a suitable base
point P0 on L . Let us write L ∩ C = LR ∩ CR = {p�1 = (t0, y1), . . . , p�d = (t0, yd)} where
p�i is a smooth point in �i ∈ EC with y1 > · · · > yd and choose y0 ∈ R, y0 ≥ y1 such that
(t0, y0) ∈ B ∩ LR. This is possible since LR ∩ B is an interval, LR ∩ CR is a finite set of
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q1q2qd−1qd

P0μ 1p1
μ 2 p2

. . .μ
d−1pd−1

μ
d pd

Fig. 3 Generators in the fiber

points, B ∪ LR ∪ CR is simply connected, by condition (1), and hence LR ∩ CR ⊂ B. The
point P0 = (t0, y0 + ε

√−1) ∈ Bε ∩ L will be taken as a base point.
As was mentioned above, the idea of the proof is to transform the Zariski–van Kampen

presentation of π1(C
2\C) into theWirtinger presentation GC . To simplify this procedure one

can transform slightly the Wirtinger presentation by considering an extended diagram where
the vertices in ṼC contain VC and the vertical tangencies of C and considering such points
as A0-singular points. The resulting relation is provided in (3.2) for m = 0, i.e. the two
generators coincide. The set of resulting edges will be denoted by ẼC .

Let us start from the Zariski–van Kampen presentation G0 of Corollary 2.2 generated by
the meridians μ�1 , . . . , μ�d as in Fig. 3, where � j is the edge containing p j . Recall that the
relators in G0 correspond to the singular points of the projection p|C , i.e. with the vertices of
the modified Wirtinger presentation G̃C . Let us order the set ṼC = {P1, . . . , Pr } of singular
points of the projection p|C by its distance to LR. Denote by L j , j = 1, . . . , r (resp. L0) the
vertical line containing Pj (resp. LR). An inductive procedure will be presented to transform
G0 into Gr = G̃C using only Tietze transformations of type I and IIa (without IIb [7], i.e. the
homotopy type is preserved). At each step j ∈ {0, . . . , r}, a presentation will be given whose
generators are associatedwith the edges in ẼC∩(L0∪· · ·∪L j ) andwhose relations associated
with P1, . . . , Pj coincide with those of G̃C while the ones associated with Pj+1, . . . , Pr are
still those of Zariski–van Kampen presentation.

For j = 0, the result is trivial using G0. Assume G j is constructed and consider the
point Pj+1 and its associated relations. The only new edges in ẼC ∩ L j+1 might come
from adjacent edges to Pj+1. If Pj+1 is of type A2k and since Pj+1 faces LR (by condition
(3)), no new edges arise. Let x�′ be any generator associated with an edge �′ adjacent to
Pj+1, then x�′ = x

η j
� for some generator x� in G0, see Corollary 2.2. The local braid δ j

described before Corollary 2.2 is σ 2k+1
1 . Hence relation (R2) produces x�′ = x

δ j

�′ , which

becomes x
η j
� = x

δ j η j
� , that is, the Zariski–van Kampen relation associated with Pj+1, which

is replaced by the Wirtinger relation (R2) in G j+1.
For the remaining cases (A2k+1 and ordinary), there are new edges in ẼC adjacent to

L j+1 and the local braids δ j are squares, say δ j = δ̃2j . As above, the relations involving the
Zariski–van Kampen relation can be analogously replaced in G j by those in (R1) and (R2)
involving only the old edges (denoted by x’s). As above let x be any generator associated
with an edge adjacent to Pj+1 and facing LR and let y be the corresponding new edge on the
same irreducible component. We will further transform G j by adding a new generator y and

a relation y = x δ̃ j (see Remark 3.1). This process is continued until Gr = G̃C is obtained. ��
Remark 4.1 As a consequence of the beginning of the proof, a homomorphism h : GC →
π1(C

2\C) can be defined as follows. Given x� the generator of GC corresponding to � ∈ EC
as in §3, then h(x�) := μ�. The rest of the proof shows that h is in fact an isomorphism.

Corollary 4.2 The Wirtinger presentation of a curve of Wirtinger type satisfying the condi-
tions of Theorem 3.6 has the homotopy type of its associated CW-complex.
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x2
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Fig. 4 a Cuspidal cubic generic at infinity, b cardioid

Proof Since Tietze transformations of type I and IIa are used in the proof of Theorem 3.6,
this corollary is a consequence of the proof of the main result in [9], where the transversality
with the line at infinity is not needed in his own proof. Incidentally, despite all the strong
genericity conditions stated in his result, only the non-existence of vertical asymptotes is
actually required. ��

The conditions of Theorem 3.6 are sufficient, but not necessary. The following examples
illustrate that the conditions in the statement of this theorem are not only technical.

Example 4.3 Let C be the curve defined by f (x, y) = y3 − y2 + 10x2y + x3. A sketch
of its real picture is in Fig. 4. Note that condition (3) in Theorem 3.6 is not fulfilled. It is
straightforward to see that GC = 〈x1, x2 | x1 · x2 · x1 = x2 · x1 · x2〉 while π1(C

2\C) ∼= Z

and hence π1(C
2\C) and GC are not isomorphic.

Example 4.4 Let C be the cardioid curve C defined by f (x, y) = (y2+x2−2x)2−4(x2+y2),
see Fig. 4b. It is not possible to find a simply connected region B satisfying the hypotheses
of Theorem 3.6 (because of the obstruction point close to the cusp). It is straightforward to
see that GC ∼= Z. The projective curve is the tricuspidal quartic curve (with two cusps at
infinity), which has a non-abelian fundamental group (as proved in [17]).

5 Artin groups and hypocycloids

In this section Artin groups and basic properties of hypocycloids will be recalled in order to
state and prove the main Theorem on the fundamental group of hypocycloid Ck,k−1 curves.
There are many conventions to define Artin groups, but for our purpose the Dynkin-diagram
convention will be more suitable.

Definition 5.1 Let Γ be a graph, the Artin group associated to Γ = (V, E) is defined as
group GΓ generated by the vertices v ∈ V of Γ with the following relations:

v · w · v = w · v · w if {v,w} ∈ E, and [v,w] = 1 otherwise. (5.1)

Example 5.2 Let G N := G ÃN
be the Artin group of an N -gon (an affine Dynkin diagram

ÃN ). According to (5.1) a presentation of G N can be written as〈
x j , j ∈ ZN | xi · xi+1 · xi = xi+1 · xi · xi+1, xi · x j = x j · xi for |i − j | �= 1

〉
,

where the subindices are considered in ZN and |i − j | �= 1 means i − j �≡ ±1 mod N .
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Consider Z/2 = 〈t | t2 = 1〉 acting on G N as xt
j := x− j . In the special case N = 2k − 1,

it is straightforward to check that the semidirect product G N � Z/2 admits a presentation
generated by t , x0, . . . , xk−1 and whose relations are:

(SD1) t2 = 1;
(SD2) x j ·x j+1 ·x j = x j+1 ·x j ·x j+1 for 0 ≤ j < k − 1;
(SD3) (xk−1 ·t)3=(t ·xk−1)

3;
(SD4) [x0, x j ] = 1 for 1 < j ≤ k − 1;
(SD5) [xi , x j ] = 1 for 0 < i, j ≤ k − 1 and j − i > 1;
(SD6) [xi , t · x j · t] = 1 for 0 < i ≤ j ≤ k − 1 and (i, j) �= (k − 1, k − 1).

Let us recall some of the main properties of the hypocycloids. We follow the notation
of [3]—see [12] for details too. A hypocycloid is a real curve associated with each pair
k, � ∈ Z such that 0 < � < k and gcd(k, �) = 1. Consider N = k +� and any pair of positive
integers r , R such that r

R = �
N (or k

N ), the hypocycloid is the real curve obtained as the trace of
a fixed point on a circumference of radius r when rolling inside a circumference of radius R.
This real curve admits an algebraic equation and thus one can consider its complexification
Ck,� as the complex curve in C

2 defined by this algebraic equation.
The complex curve Ck,� is rational and has degree 2k and its projective closure contains two

points at infinity—the so-called concyclic points. As a summary of its algebraic properties:

(C1) Ck,� has N ordinary cuspidal singular points.
(C2) Ck,� has N (k − 2) ordinary double points. In its classical presentation, N (� − 1) of

them are real points with real tangent lines while the other N (k −�−1) are complex.
(C3) The two points at infinity of C̄k,� have local equations topologically equivalent to

uk−� + vk = 0 (tangent to the line at infinity with contact order k).

These properties are classical and imply that the curve is rational, see e.g. [3] for a modern
description, precise formulæ, and parametrizations.

Let us consider equations such that a point in the real axis has a vertical tangency. Note
that p|Ck,�

: Ck,� → C is a proper 2k-fold branched covering, extending to p̄| : C̄k,� → P
1 ≡

C∪{∞}, where C̄k,� is the normalization of its projective closure. Since the curve is rational,
p̄| has 2(2k − 1) points of ramification, counted with multiplicity. Two of them lie at ∞,
each one with multiplicity k − 1. Since no tangent line to the cuspidal points is vertical, each
one of the N cusps contributes with multiplicity 1. The remaining multiplicity accounts for
the amount simple tangencies of the projection, namely,

2(2k − 1) − 2(k − 1) − (k + �) = k − �.

Whenever N (and hence k −�) is even only two of them are real, while in the odd case exactly
one is real, leaving k − �−1 of them in pairs of complex conjugated tangencies. Thus, in the
special case � = k − 1 there must be only one vertical non-transversal line, which has to be
real, N lines through the cusps, and the vertical lines passing through the nodes (all of them
real). Since the horizontal axis is a symmetry axis, it intersects the curve—tangentially—at
a cusp, at the k − 2 nodes, and at the point of vertical tangency. Hence the nodes are in
k − 2+ N−1

2 (k − 2) = (k − 2)k vertical lines. Despite the fact that the real picture of Ck,k−1

contains all the topological information of its embeddings in C
2 (see Fig. 5), Theorem 3.6

cannot be applied directly since it does not satisfy (3). However its quotient by the horizontal
reflection will.

The equation f (x, y) = 0 of Ck,k−1 satisfies f (x, y) = g(x, y2) for some g ∈ C[x, y].
The curve Dk,k−1 defined by h(x, y) := yg(x, y) will do the trick.
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Fig. 5 Curves Ck,k−1 for k = 2, 3, 4

Lemma 5.3 The curve Dk,k−1 satisfies the hypotheses of Theorem 3.6.

Proof Note that the projection change the local type of branches intersecting the horizon-
tal line, namely, it converts nodes into tangencies, branches with vertical tangencies into
transversal branches with respect to the vertical line, and cusps into inflection points, see
Fig. 6. A topological disk B can be chosen as in Fig. 6. The line L is close to the node in the
horizontal axis. Since there is no vertical tangency and all the cusps are facing outwards, the
result follows. ��

Let us label the edges of the non-linear componentD of the curveDk,k−1. Its real partDR

is the image of a map R → R
2, starting from the negative x-half plane (to the image of the

transversal intersection to the horizontal line) to the part after the inflection point.
In order to label the edges we follow some conventions. First, we do not change the

labels when passing through a node. We start with the label x0 for the edge transversal to the
horizontal line. We continue as follows:

1. If x j ends in a tangency in the horizontal line then the next edge is x− j .
2. If xε j , j ≥ 0, ε = ±1 (assume ε = (−1)k for j = 0), then the next edge is xε( j+1)

With these conventions, the inflection edge is xk−1. This procedure is illustrated in Fig. 6 for
k = 4.

Actually, we are not interested in the group π1(C
2\Dk,k−1) = GDk,k−1 but in its quotient

Gk obtained by killing the square of a meridian of the horizontal line. This is an orbifold
fundamental group. If we consider the double cover we obtain that π1(C

2\Ck,k−1) is the
kernel of the epimorphism Gk → Z/2 which sends the meridians of the line to 1 and the
meridians of the other component to 0.

Proposition 5.4 The group Gk is isomorphic to the semidirect product G N � Z/2, where
G N is the Artin group of the N-gon.

Proof Note that the group Gk is generated by x2−k, . . . , xk−1 (the edges of the quotient of the
hypocycloid) and t , which is the generator in the horizontal line corresponding to the edges
adjacent to the normal crossing of the hypocycloid (x0). Note that all the tacnodes to the left
of t correspond to (−1)k-labels, while the tacnodes located to the right of t correspond to
(−1)k+1-labels.

Let x j , j �= 0, k −1, be an edge of a tacnode in the side closer to t . Then, x− j = t ′ · x j · t ′,
and t ′ is obtained conjugating t by a product of xi ’s, where all the indices i are of the same
parity as j (and distinct form k − 1). As a consequence, x− j = t · x j · t and we can check
that we obtain the presentation of G N � Z/2 generated by t, x0, . . . , xk−1 with relations
(SD1)–(SD6). ��

Author's personal copy



Wirtinger curves, Artin groups, and hypocycloids

Fig. 6 Quotient curve of C4,3
x0

x1

x−1

x−2

x2
x3

t

Corollary 5.5 The fundamental group of the complement of hypocycloids Ck,k−1 is the Artin
group of the polygon in N = 2k−1 vertices. In particular, GCk,k−1 is a Wirtinger presentation
of π1(C

2\Ck,k−1).

6 Extending the method

There are several ways to improve this method to compute fundamental groups of comple-
ments of groups. The list of allowed singularities can be enlarged. Besides ordinary singular
points (without vertical tangencies), any singular point where all the branches are real and
smooth is allowed (as far as no branch has vertical tangency). As in (R1), we will add the
local relations induced by Corollary 2.2 and one relation for each branch in order to express
the generators of one side in terms of the generators of the other side.

There are other allowed singular points besides ordinary and double points. Namely sin-
gular points whose local irreducible components are all double (A2m), real and must be on
the same side with respect to the vertical line (and transversal to it). In fact, in this case, we
can admit smooth (real) branches with vertical tangency, such that the intersection number
with the vertical line is 2 (for each branch); note that we may allow larger intersection multi-
plicities between these smooth branches. If we want these curves to match with Theorem 3.6,
they must satisfy the facing condition (3).

Finally, even vertical lines can be admitted as far as the following condition is fulfilled.

1. The global intersection number of the vertical line and CR equals to degy C.
2. If one branch in L is smooth and transversal to the vertical line, then all branches are.
3. If one branch in L has intersection number 2with L , the same arises for the other branches

and all of them are in the same side. Moreover, they must satisfy condition (3) in order
to apply Theorem 3.6.

For the cases where Theorem 3.6 (3) cannot be avoided there are several ways to provide
a combinatorial (and correct) presentation of π1(C

2\C). One of them uses the real part of the
pairs of complex conjugate branches, but their computation may be involved, see [2].

If we use the ideas of the proof of Theorem 3.6, we can still recover a combinatorial
description of the fundamental group. In order to do this, if B ∩ C �= ∅, the construction of
the loops associated to each edge of CR must be done taking into account this intersection
points. Moreover, the relations must involved the right loops.

Remark 6.1 Let us describe the loops associatedwith one of these intersection points, namely
one close to a point of type A2m . Let us assume that in local coordinates it has local equation
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1

x = η

√−1R

−√−1ε

√−1ε

Hε

x = −η x = 0 x = η

√−1ε

Fig. 7 Meridian at Bε

y2 + αx2m+1 = 0, α2 = 1. Following the computations in Remark 3.7, its intersection with

Hε is (αη,
√−1ε)where η = ε

2
2m+1 . Let us check if the intersection is transversal and which

is the intersection number if the curve is naturally oriented as a complex curve and if Hε has
counterclockwise orientation.

An R-basis of the tangent plane for Hε is given by {(1, 0), (0,√−1)}. A C-basis for
the complex tangent line to the curve is given by {(2√−1ε),−(2m + 1)αη2m}. The natural
orientation of this plane is given by completing the basis with {(−2ε,−(2m+1)αη2m

√−1)}.
If η̃ = (2m + 1)η2m the orientation is given by the sign of

det

⎛
⎜⎜⎝
1 0 0 −2ε
0 0 2ε 0
0 1 −αη̃ 0
0 0 0 −αη̃

⎞
⎟⎟⎠ = − det

(
2ε 0
0 −αη̃

)
= 2εαη̃,

which is the sign of α. Hence, if the cusp if left-sided, the sign is positive, while right sided
is negative. What happens with the meridians of the intersections with Bε? In the situation

of Fig. 7, the local loop in Bε is y1 := x
(σ−m

1 )

1 ; this is related to the half-tour around the
singularity from x = −η to x = η (counterclockwise from −η to η and hence clockwise the
other way around). If the A2m-point is on the other side the loop is y−1

1 .

Instead of describing a general procedure to compute this group, let us apply it to a couple
of examples.

Example 6.2 Let us consider the curve of Example 4.4.We consider L to the right of the cusp
in Fig. 4b and we take the generators x1, x2 as in Fig. 3. The relation x1 · x2 · x1 = x2 · x1 · x2
holds. The bitangent vertical line provides no actual new relation, but the right-hand side
vertical tangency does. If we approach to it following the loop x1, in order to apply the
local relation, we have to consider the loop z · x2 · z−1, where z is a counterclockwise
loop around the obstruction point. Following the discussion in Remark 6.1, z = y−1

1 and

y1 = x
(σ−1

1 )

1 = x−1
1 · x2 · x1. Hence

x1 = x−1
1 · x−1

2 · x1 · x2 · x−1
1 · x2 · x1 �⇒ x2 · x1 · x−1

2 = x1 · x2 · x−1
1

Applying the two relations we obtain:

π1(C
2\C) = 〈x1, x2 | x1 · x2 · x1 = x2 · x1 · x2, [x21 , x2] = 1〉 ∼= Z � Z/3.
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Fig. 8 Concentric
circumferences with obstruction
points
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x3

x2

x1

z1 z2

Example 6.3 Let us consider the union of two concentric circumferences. This curve is of
Wirtinger type, see Fig. 8 for the vertical tangencies and note that they are tangent at the
concyclic points. It is clear that GC = Z ∗ Z. The curve does not satisfy the hypotheses of
Theorem 3.6. If we choose the generators as in the proof of Theorem 3.6, the tangencies of
the inner curve, provide the equality x2 = x3.

We denote by z1, z2 the counterclockwise loops around the inner �-points. From Fig. 8,
we deduce that x1 = z1 · x4 · z−1

1 = z−1
2 · x4 · z2. Using Remark 6.1, we have z1 = x−1

2
and z2 = x2. Hence, only the relation x1 = x−1

2 · x4 · z2 remains. As a consequence, GC is
isomorphic to π1(C

2\C).

Remark 6.4 Using the extendedWirtinger method one can prove that the CW-complex asso-
ciated with the Artin group G N of the N -gon has the homotopy type of C

2\Ck,k−1. By
simple Euler-characteristic calculations, the case � = k − 1 is the only one where this can be
expected.
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