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ABSTRACT 

Verification of workpieces is typically performed in the post-process with coordinate 
measuring machines, thereby increasing the manufacturing cycle time. However, 
machine tools presently can perform contact measuring operations by using a probe. 
Moreover, there is a growing need for in-process inspection of workpieces. 
Therefore, using the machine tool itself for the verification whilst the workpiece 
remains clamped to the machine can lead to an improvement in manufacturing 
efficiency, cost reduction, higher energy saving and better equipment productivity. 
However, the use of touch probes as a measurement tool in manufacturing requires 
some preparatory works. Firstly, the accuracy of the machine tool should be 
improved to reduce the influence of its geometric errors. Secondly, the uncertainties 
in calibration and measuring procedure should be determined to obtain the 
measurement uncertainty. This study presents a new tool that can analyse the effect 
of different verification parameters in calibration uncertainty based on Monte Carlo 
method. On the basis of the actual tests performed on a milling machine and its 
geometric errors, the effect of laser tracker measurement noise in calibration 
uncertainty is investigated. 

Keywords: Machine Tool; Measurement; Uncertainty; Monte Carlo; Volumetric Verification; 
Laser Tracker noise. 

  
 

 

1. Introduction 
Industrial sectors such as aeronautics, automotive, renewable energy and nuclear power, demand 
manufacturing of components with high accuracy but with minimum costs. The transportation of these 
components to an environmentally controlled metrological laboratory leads to an increase in 
manufacturing time, thereby increasing the manufacturing costs. The integration of the workpiece 
verification process into the machine tool (MT) can reduce the manufacturing time because 
transportation is not necessary. Moreover, whilst the workpiece remains clamped to the MT, the same 
coordinate system utilised during the manufacturing process can be used for the measurements and 
rework. Hence, manufacturing time and machining waste materials are significantly reduced, thereby 
minimising the costs without affecting the product quality. To reach this goal, traceable dimensional 
metrology techniques must be incorporated in the MT to ensure that the resultant manufacturing 
program can produce the required output within the specified tolerance [1]. 

Through MT calibration, the influence of MT’s combined geometric errors is determined. Thus, the MT 
accuracy is increased and the influence of these systematic errors is reduced through software 
compensation. The MT geometric error is the difference between the actual response of the MT to a 
command issued according to the accepted protocol of that machine’s operation and the response 
anticipated by that protocol [2]. Errors are broadly classified into the following two categories: quasi-
static and dynamic [3]. Quasi-static errors are those between the tool and workpiece and are related to 
the structure of the MT. These errors gradually vary with time, caused by sources such as geometric, 
kinematic and thermally induced errors. Meanwhile, dynamic errors are caused by sources such as 
spindle error motion, vibrations and controller errors [4]. Each axis of an MT movement can be 
described by six degrees of freedom, that is, three translations and three rotations. Thus, a three-axis 
MT has 21 components of geometric and kinematic errors, that is, six errors per axis plus a squareness 
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error between each pair of axes. The notation of the geometric errors is standardised in accordance 
with the International Organization for Standardization (ISO) 841 [5] and VDI 2617-3 [6]. 

Each geometric error can be measured individually via direct measurement techniques, or the combined 
errors can be determined using indirect measurements. UNE-ISO 230-1:2014 [7] is an international 
standard that specifies the methods for testing the accuracy of MTs by using direct measurements, 
operating under either no-load or quasi-static conditions. By using direct measurement, the influence of 
each error of each axis is determined in a particular position in the workspace of the MT [3]. By using 
indirect measurement methods, the combined influence of MT geometric errors is determined on the 
basis of the multi-axis movement and MT kinematic model [8,9]. Trapet et al. [10] proposed in 1991 a 
method for evaluating all error parameters for three-axis machines by using only a 2D reference object. 
Whilst direct measurement provides the actual physical behaviour of each error, indirect measurement 
provides an interrelated set of optimal values. However, with indirect measurements, the relationship 
between the geometric errors is not investigated, and the approximation functions obtained are directly 
extrapolated to the entire MT workspace. Similarly, each error needs its own assembly measurement 
procedure and data processing, hence substantially increasing the verification time. These are the main 
reasons why volumetric verification based on indirect measurements that use laser tracer [11-13], laser 
tracker (LT) [14-16], or ball bar [17] as measurement systems is more popular than geometric 
verification based on direct measurements that use laser interferometer, levels, etc., particularly for 
evaluating long-range MTs. 

MT verification process improves the measurement capability, as well as the associated verification 
uncertainty value. It characterises the dispersion of results in relation to the geometric errors obtained 
and the sources of errors that affect them. This verification process is considered particularly in different 
manufacturing and quality assurance processes [18, 19]. This process is also required when the MT is 
used as the first step in the measurement system to obtain a traceable measurement system. 

The ISO has developed and published various guidelines for the representation of measurement 
uncertainty, such as the UNE-ISO/TR 230-9 [20] standard for measurement uncertainty estimation for 
machine tool test and ISO/TS 14253-2 [21], which are widely accepted. These standards combine the 
estimation of different error sources and their associated typical uncertainties to determine the 
uncertainty associated with the overall process. Thus, the accuracy and metrological characteristics of 
an MT as a measurement system are related to the measurement system, MT and calibration conditions 
used. The “Guide to the expression of uncertainty in measurement” (GUM) [22] provides the basic 
framework for evaluating the uncertainty in measurement, but it is not suitable in nonlinear processes 
such as MT calibrations based on volumetric verification. The Monte Carlo method is recommended to 
obtain the uncertainty for each point of the MT workspace in the case of a 3D measurement system. 
The obtained shape is ellipsoid with axes ux(P), uy(P) and uz(P). The ellipsoid represents the volume in 
which determining the true value of the measured point is possible. 

In metrology, the value of a measurement must be given with its uncertainty value. The uncertainty 
value is a quantitative indication of the quality of the measurement result. Recent research has focused 
on the study of uncertainty of MTs and coordinate measuring machines (CMMs). Liebrich et al. [23] used 
a simulation to investigate the influence of geometric errors of the CMM on the calibration of a 3D ball 
plate. Jankowski and Woźniak [24] proposed the use of master artefacts in 2D and 3D for testing the 
performance of probes for MTs and CMMs. Radlovački et al. [25] used the Monte Carlo method to 
evaluate the uncertainty in measuring flatness based on the repeatability of sample coordinates of a 
point. 

This study uses a simulation software developed by the authors to verify how the different factors with 
influence on the volumetric verification affect the calibration uncertainty. The software allows the use 
of different probabilistic distribution functions (PDFs) to characterise the behaviour of each error 
source. Among the various uncertainty sources, this study focuses on the influence of LT measurement 
noise. Hence, actual tests are performed using a milling machine with the XFYZ configuration, an LT 
(Leica LTD 600) as the external measurement system, a touch probe as the onboard measurement 
system and the software developed by the authors. 
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2. Comparison of GUM and Monte Carlo methods to determine the uncertainty of MT 
volumetric verification process 

2.1 Volumetric verification and influencing factors 

Volumetric verification is based on an intensive process of identification of parameters by using a 
kinematic model of the MT. By minimising the difference between the theoretical and actual pairs of 
points by using the MT kinematic model, the combined influence of MT geometric errors is obtained. 
Their behaviours are modelled, and the mean square volumetric error of the machine (VeLT) is 
minimised using nonlinear optimisation techniques [8]. 

 

 
Figure 1. Volumetric verification scheme considering uncertainty sources 

 

As shown in Figure 1, the principal uncertainty sources that influence MT verification are divided into 
three groups, namely, MT, measurement and verification and measurement system uncertainties.  

 

2.2 Main differences between GUM and Monte Carlo methods 

The GUM provides a framework for evaluating and expressing measurement uncertainty. Supplement 1 
to the GUM describes the problem of uncertainty evaluation in terms of probability density functions. It 
provides the procedure to obtain the best estimate. 

Whilst the GUM focuses on evaluating Type A, Type B and combined uncertainties, the Monte Carlo 
method uses a large number of samples, with different probabilistic functions, to obtain the final 
uncertainty distribution through the measurement equation (Figure 2). The Monte Carlo method uses 
the computational capacity of modern computers to simulate a large number of pseudo random 
numbers. Thus, it allows simulation of complex systems from a probabilistic point of view [26].  
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Figure 2. Left: Propagation of uncertainties based on the GUM. Right: Propagation of distribution based 
on the Monte Carlo method. 

 

However, the estimation of uncertainties by using the GUM relies on assumptions that are not always 
fulfilled. The adequacy limitations of the GUM are as follows: 

• The mathematical model that describes the process is nonlinear. When the model presents 
strong elements of nonlinearity, the approximation made by the GUM approach may not be 
sufficient to estimate the uncertainty value correctly. 

• The central limit theorem states that, in most situations, the combination of a large number of 
distributions results in a normal distribution. However, the resultant distribution in various 
actual cases presents an asymmetric behaviour, thus invalidating the assumption used in the 
central limit theorem. 

• The expanded uncertainty calculated by the GUM does not always present an analytical 
solution. 

• The input quantities are not symmetrical, or some of the input sources are much larger than 
the others. 

• The order of magnitude of the estimated output variable and that of the associated standard 
uncertainty are approximately the same. 

 

Supplement 1 of the GUM provides the steps to be followed when the Monte Carlo method is used 
(Figure 3).  

 

Figure 3. Sequence of steps when Monte Carlo method is used 

 

1. Definition of the measurand and input quantities: Several sources of uncertainty affect the MT 
volumetric verification. The principal contributions are uncertainty associated with the MT (e.g. 
environmental conditions, MT characteristics, etc.), uncertainty related to the measurement 
system (e.g. measurement and components uncertainty, influence of environmental 
conditions, etc.) and uncertainty associated with the measurement technique and optimisation 
strategy (e.g. identification algorithm, sequence, etc.). 

2. Modelling: Volumetric verification identifies the influence of MT geometric errors through its 
movement equation, that is, the kinematic model of the MT. Therefore, the physical 
components, such as joints and guides, that generate the movement of the MT should be 
modelled. 

3. Estimation of PDFs for the input quantities: Once input quantities are defined (first step), based 
on state-of-the-art (the highest level of development) and empirical results, the PDF that 
estimate the input quantities should be defined. 

4. Setting up and running the Monte Carlo simulation: After completing the previous steps, the 
MT verification process is simulated using the software developed by the authors. The total 
number of simulations to be implemented is defined by the user, as well as the uncertainty 
related to the measurement technique and optimisation strategy. 

5. Summary and results: When all the MT simulation verification tests have been completed, the 
first parameter to be analysed is the probability distribution of the initial volumetric error. 
Later, the analysis is performed with the final volumetric error. Moreover, the uncertainty of 
each point and adequacy of the approximation functions obtained can also be observed and 
analysed. 
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3. Methodology 
The ISO/TS 15530-3:2011 standard [27] provides an experimental technique for the uncertainty 
evaluation of task-specific CMM measurements by using calibrated workpieces. It describes the 
uncertainty evaluation procedure for both parts, namely, experiment and calculation. Given that the 
main idea is to use the MT as a CMM, using this standard is appropriate. The equation used for the 
calculation of the expanded uncertainty is 

 𝑈𝑈 = 𝑘𝑘 ∙ �𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑢𝑢𝑝𝑝2 + 𝑢𝑢𝑏𝑏2 + 𝑢𝑢𝑤𝑤2 , (1) 

where 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 is the standard uncertainty associated with the calibrated workpiece, 𝑢𝑢𝑝𝑝 is the standard 
uncertainty resulting from the measurement procedure of that calibrated artefact in the MT, 𝑢𝑢𝑏𝑏 is the 
standard uncertainty associated with systematic errors, 𝑢𝑢𝑤𝑤 is the standard uncertainty resulting from 
material and manufacturing variations (owing to the variations in the expansion coefficient, form errors, 
roughness and elasticity) and 𝑘𝑘 is the coverage factor (typically for 𝑘𝑘 = 2, the level of confidence is 
95%). 

 

The first term, 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐, should be stated in the calibration certificate. Alternatively, it can be estimated 
from the maximum permissible error (MPE) of the CMM used for the calibration of the workpiece 
(𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀𝑀𝑀) [21]. The uncertainty caused by thermal drifts (𝑢𝑢𝑇𝑇), derived from the expansion of the 
reference artefact, is negligible in the present study because the calibration was performed under 
controlled environmental conditions.  

 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀𝑀𝑀2 + 𝑢𝑢𝑇𝑇2 , (2) 

where 

 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐,𝑀𝑀𝑀𝑀𝑀𝑀 = 1.45 + 𝐿𝐿
500

. (3) 

Here, L is expressed in millimetres and the final value is in micrometres.  

The value of 𝑢𝑢𝑝𝑝, the uncertainty related to the measurement procedure, can be calculated for each 
position of the workspace two times the standard deviation of the simulated mesh of points at that 
position. In the present case, this value will be calculated in Section 4 (“Experimental procedure and 
results”). 

According to the GUM [22], 𝑢𝑢𝑏𝑏 is calculated as type A uncertainty as expressed as follows: 

 𝑢𝑢𝑏𝑏 = 𝜎𝜎
√𝑛𝑛

, (4) 

where 𝜎𝜎 is the standard deviation of the systematic error 𝑏𝑏 and 𝑛𝑛 is the number of simulated values. 
The value of 𝑢𝑢𝑏𝑏 can be neglected because the value of 𝜎𝜎 is small and 𝑛𝑛 = 1000 (number of the 
simulated Monte Carlo data). 

 

The value of 𝑢𝑢𝑤𝑤 has to be estimated. To reduce this term, the thermal expansion must be compensated. 
Then, the uncertainty 𝑢𝑢𝑤𝑤 will be related to the accuracy of the sensor used for measuring the 
temperature of the plate with holes.  

 𝑢𝑢𝑤𝑤 = ∆𝐿𝐿
√3

= 𝛼𝛼·∆𝑇𝑇·𝐿𝐿
√3

 (5) 

If the MT user does not measure the temperature of the workpiece and compensate the effect of 
thermal expansion, then this lack of information should be added in this term for uncertainty.  

 

4. Experimental procedure and results 
The above methods and procedures are applied on a three-axis MT with the XFYZ configuration. The MT 
is an ANAYAK VH-1800 with computer numerical control (CNC) Fagor 8025, and a workspace with 
dimensions of 0 mm ≤ X ≤ 1500 mm, 0 mm ≤ Y ≤ 600 mm and 0 mm ≤ Z ≤ 500 mm. However, the 
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methods presented in this study can be used in different MT configurations regardless of the number 
and sequence of the MT axes. 

First, when the measurement capability of an MT is to be obtained, the following questions should be 
answered: whether the MT is verified and its geometric errors are compensated or not, how the MT 
compensates its geometric errors, and which control system is used in the MT. Therefore, the 
measurement uncertainty will be different depending on the starting point used. 

In the present case, the MT software has integrated an error compensation table that can only 
compensate the position errors to improve the accuracy. However, during the tests conducted in this 
study, the compensation matrix was disabled to identify the MT geometric errors accurately. 

 

 
Figure 4. Procedure to calculate the uncertainty 

 

Indirect measurements based on LT use automatic detection to determine the points to be captured in 
the workspace of the MT. The discretisation of the workspace is realised using a set of points, namely, 
trajectories, meshes, or a cloud of random points. Therefore, the MT workspace, to be identified as the 
measurement volume, is defined according to user specifications.  

Because of the characteristics of the parts frequently manufactured in this machine, the MT workspace 
used as a measurement area is defined approximately in the middle of the XY plane, with a translational 
vector between the MT and part origin and dimensions of -621.133 mm in the X-axis, 606.38 mm in the 
Y-axis and 387.249 mm in the Z-axis. The object to be measured as the workpiece is a calibrated plate 
with holes (Figure 5). It is made from aluminium and has external dimensions of 460 x 460 mm. The 
nominal distance between the centres of the rings is 50 mm. Hence, identifying the coefficient of the 
thermal expansion of the plate (𝛼𝛼𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 = 24 · 10−6 𝐾𝐾−1) and monitoring the plate temperature during 
the measurements are important to compensate possible errors owing to thermal expansion.  
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Figure 5. Measurement configuration and strategy 

 

Thermal influence may be one of the most relevant uncertainty sources in a shop floor. However, in the 
present case, the plate was clamped on to the MT the day before performing the measurement to 
ensure that it is thermally stabilised and the influence of thermal gradients between the MT structure 
and the plate is reduced. In the same way, the LT was switched on well before performing the 
measurements, because the LT has been verified to have a thermal stabilisation period of at least four 
and a half hours [28]. Thus, the effects of thermal gradients in the structure of the LT and consequently 
the influence on the measured points are avoided. Similarly, ASME B5.54-2005 [2] recommends that the 
machine should be switched on to reach the cold state of the machine. That is, the machine in this state 
is in a stable operating temperature in which in the last 2 h period, the hydraulic systems and servos 
have been switched on, the spindle has not been rotated at speeds more than 10% of the maximum 
permissible rotations per minute and the axes’ motions have been restricted to only those necessary to 
set up the measurement equipment. In the present case, this time was 2 hours before starting the 
measurements. 

The calibrated plate consists of 56 holes, although only 28 holes need be measured. Thus, enough 
information is available to obtain the MT volumetric error and simulate the measurement of different 
lengths in the XY measurement area. The centres of the holes are the calibration points; therefore, four 
points are measured for each hole to determine the best-fitted circle centre. Each point is measured at 
the same time by the MT using a touch probe and by the LT using a retro-reflector magnetically 
attached to the probe. When the probe makes contact with the plate at the point to be measured, the 
MT pauses to ensure that the LT can also measure the same point, but with an offset. Because this MT 
has been previously investigated with regard to depth, the influence of this offset between the probe 
and the retro-reflector on rotational errors can be neglected. Meanwhile, the offset in the Z-axis is 
absorbed in the translation matrix that relates the LT and the part coordinate system (Eq. 9). 

The origin of the part coordinate system is set at the centre of the first hole. The holes are measured in 
a spiral path, as shown in Figure 5, because it has been proven that the backlash effect on the centre of 
the coordinates is reduced using this method. 

With measurements of four points, the centre of the best-fitted circle is calculated for each hole. 
Because the plate is misaligned with respect to the axis of the MT, rotating the coordinates through a 
rotation matrix is necessary. 

 𝑅𝑅 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐 0
−𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

0 0 1
�, (6) 

where θ is the angle of misalignment between the measured and nominal coordinates. However, to 
compare the measurements with their nominal coordinates, which are referenced to the plate at 20 °C 
(293.15 K), compensating for the thermal expansion of the plate is necessary. For simplicity, a linear 
behaviour is considered, starting from the clamping point (which is located at the position X = 200 mm, Y 
= 250 mm). The corrected distance is calculated using the following equation. 
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 𝑑𝑑𝑓𝑓 = 𝑑𝑑0 · �1 + 𝛼𝛼𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 · �𝑇𝑇𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 − 293.15��, (7)  

where d0 and df are the distances between the clamping point and centre of the hole before and after 
applying the correction, respectively; αplate is the coefficient of the plate thermal expansion; and Tplate is 
the temperature of the plate in Kelvin during the measurement of the hole. 

 
Figure 6. Correction of the thermal expansion 

 

Because the misalignment and thermal expansion of the plate are not MT errors, they should be 
compensated to render the possibility of the comparison between the nominal and coordinates 
measured with the MT. Given that the measurements are performed under quasi-static conditions, the 
error obtained will be the result of the MT geometric, kinematic and thermally induced errors. 

As shown in Figure 4, the nominal points are obtained from the calibrated plate coordinates, and the 
measured points are used to calculate the centres of the holes (measurement values are obtained from 
the LT and touch-trigger probe system). However, to determine the actual influence of MT geometric 
errors, an equation of motion that links the geometric errors and movement of the MT is required. Thus, 
defining and obtaining the kinematic model of the MT are necessary for which the volumetric 
verification is to be conducted (Figure 1).  

As previously mentioned, the MT has the XFYZ configuration. The equation for the movement that 
relates the nominal coordinates of the MT with the measured coordinates of the LT through MT 
geometric errors and MT characteristics is presented in Eq. 8. 

  𝑋𝑋𝐿𝐿𝑇𝑇����� =  𝑅𝑅𝐿𝐿𝑇𝑇−1����� �𝑅𝑅𝑋𝑋−1 ������ �𝑅𝑅𝑦𝑦���� (𝑅𝑅𝑧𝑧��� 𝑇𝑇� + �̅�𝑍) + 𝑌𝑌� − �̅�𝑍� − 𝑇𝑇𝐿𝐿𝑇𝑇�����,  (8) 

where 𝑇𝑇𝐿𝐿𝑇𝑇���� represents the translation vector between the coordinate system of the machine and the 
coordinate system of the LT. 

  𝑇𝑇𝐿𝐿𝑇𝑇���� = �
𝑐𝑐𝑋𝑋𝐿𝐿𝑇𝑇
𝑐𝑐𝑌𝑌𝐿𝐿𝑇𝑇
𝑐𝑐𝑍𝑍𝐿𝐿𝑇𝑇

�,  (9) 

where 𝑅𝑅𝐿𝐿𝑇𝑇����� represents the Olinde Rodrigues matrix θ between the LT and MT coordinate systems around 
the unitary vector u = (ux, uy, uz), where 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2 = 1. 

𝑅𝑅𝐿𝐿𝑇𝑇�����  = �
cos(𝑐𝑐) +  𝑢𝑢𝑥𝑥2(1 − cos(𝑐𝑐)) 𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦(1 − cos(𝑐𝑐)) − 𝑢𝑢𝑧𝑧sin (𝑐𝑐) 𝑢𝑢𝑥𝑥𝑢𝑢𝑧𝑧(1 − cos(𝑐𝑐)) + 𝑢𝑢𝑦𝑦sin (𝑐𝑐)

𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦(1 − cos(𝑐𝑐)) + 𝑢𝑢𝑧𝑧sin (𝑐𝑐) cos(𝑐𝑐) +  𝑢𝑢𝑦𝑦2(1 − cos(𝑐𝑐)) 𝑢𝑢𝑦𝑦𝑢𝑢𝑧𝑧(1 − cos(𝑐𝑐)) − 𝑢𝑢𝑥𝑥sin (𝑐𝑐)
𝑢𝑢𝑥𝑥𝑢𝑢𝑧𝑧(1 − cos(𝑐𝑐)) − 𝑢𝑢𝑦𝑦sin (𝑐𝑐) 𝑢𝑢𝑦𝑦𝑢𝑢𝑧𝑧(1 − cos(𝑐𝑐)) + 𝑢𝑢𝑥𝑥sin (𝑐𝑐) cos(𝑐𝑐) +  𝑢𝑢𝑧𝑧2(1 − cos(𝑐𝑐))

�, (10) 

where 𝑋𝑋𝐿𝐿𝑇𝑇����� represents the coordinates of the machine point measured by using the LT.  

  𝑋𝑋𝐿𝐿𝑇𝑇����� = �
𝑋𝑋𝐿𝐿𝑇𝑇
𝑌𝑌𝐿𝐿𝑇𝑇
𝑍𝑍𝐿𝐿𝑇𝑇

�, (11) 
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where 𝑇𝑇�  is the offset of the tool. 

  𝑇𝑇� = �
𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝
𝑧𝑧𝑝𝑝
�,  (12) 

where 𝑅𝑅𝑘𝑘���� represents the rotational error matrix for axis 𝑘𝑘 of the MT with k = x, k = y and k = z. 

  𝑅𝑅𝑘𝑘����  = �
1 −ε𝑧𝑧,𝑘𝑘 ε𝑦𝑦,𝑘𝑘
ε𝑧𝑧,𝑘𝑘 1 −ε𝑥𝑥,𝑘𝑘
−ε𝑦𝑦,𝑘𝑘 ε𝑥𝑥,𝑘𝑘 1

� , (13) 

where 𝑋𝑋� represents the linear error vector for the X-axis of the milling machine. 

 𝑋𝑋� = �
−𝑥𝑥 + δ𝑥𝑥,𝑥𝑥

δ𝑦𝑦,𝑥𝑥
δ𝑧𝑧,𝑘𝑘

�,  (14) 

where 𝑌𝑌� represents the linear error vector for the Y-axis of the milling machine. 

  𝑌𝑌� = �
δ𝑥𝑥,𝑦𝑦 − 𝑦𝑦 · 𝑆𝑆𝑥𝑥𝑦𝑦
𝑦𝑦 + δ𝑦𝑦,𝑦𝑦
δ𝑧𝑧,𝑦𝑦

�,  (15) 

where �̅�𝑍 represents the linear error vector for the Z-axis of the milling machine. 

  �̅�𝑍 = �
δ𝑥𝑥,𝑧𝑧 − 𝑧𝑧 · 𝑆𝑆𝑥𝑥𝑧𝑧
δ𝑦𝑦,𝑧𝑧 − 𝑧𝑧 · 𝑆𝑆𝑦𝑦𝑧𝑧
𝑧𝑧 + δ𝑧𝑧,𝑧𝑧

�,  (16) 

where ε𝑥𝑥,𝑘𝑘, ε𝑦𝑦,𝑘𝑘and ε𝑧𝑧,𝑘𝑘 are the three rotational errors of axis k (k = x, k = y, k = z); δ𝑘𝑘,𝑘𝑘 is the position 
error of axis k (k = x, k = y, k = z); δ𝑘𝑘,𝑗𝑗 with k ≠ j is the straightness error in the k-direction; and 
𝑆𝑆𝑥𝑥𝑦𝑦, 𝑆𝑆𝑥𝑥𝑧𝑧 and 𝑆𝑆𝑦𝑦𝑧𝑧 are squareness errors. 

With the nominal coordinates of the calibrated plate, the measured coordinates are obtained by 
measuring 28 holes by using an LT (Leica LTD 600) and using the equations of the kinematic model. 
Hence, conducting a volumetric verification to determine the geometric errors of the system MT + LT is 
possible. These errors, which are mathematically modelled as second-order approximation functions, 
are used as generation functions on the simulation software used to determine the MT uncertainty by 
using the Monte Carlo method (owing to the size of the analysed MT working volume, using polynomials 
of higher order is unnecessary).  

LT measurement noise is modelled as a normal distribution with 0 µrad as the mean value and 24 µrad 
as the 2-sigma value for angular encoders and 4 µm ± 0.8 µm/m for radial error. These values are 
selected in accordance with the LT manufacturer’s documentation and several researcher’s 
contributions [29].  

The MT workspace to be verified is defined as a small area of the total MT workspace with dimensions 
of 0 mm ≤ X ≤ 400 mm, 0 mm ≤ Y ≤ 400 mm and Z = 0 mm (measurement area) based on the size of the 
plate. Considering these data and the approximation functions obtained previously, 1000 tests are 
performed. 

Figure 7 shows the histograms of initial errors of the X-, Y-, Z-axes, as well as distance (i.e. total) error for 
the MT without any error compensation. The analysis of these results provides an average initial 
volumetric error of 77.39 µm with a standard deviation of 40.91 µm.  
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Figure 7. Initial error distribution 

 

These simulations show that the influence of the LT noise in the measured points affects the MT 
volumetric error and approximation functions obtained. Therefore, the final error of each point varies in 
each simulated test. By using the Monte Carlo method, the uncertainty of each point after the 
verification process can be obtained. The number of tests performed (n = 1000) is sufficient to observe 
the uncertainty trend. 

 

 
Figure 8. Mesh of the simulated points 

 

Figure 8 shows the mesh of the simulated points obtained after applying nonlinear optimisation for each 
hole and trial generated. The points tend to form an ellipsoid characteristic of uncertainty, in which 
determining the true value of the measured point has high possibility. 
 

As shown in Figure 9, the MT volumetric error has reduced substantially (compared with the initial error 
shown in Figure 7). Nonlinear optimisation can be used to reduce the MT errors. After applying the 
optimisation and compensating the errors, the average residual error has a normal biased distribution, 
positively skewed with a mean value of 12.34 µm and a standard deviation of 7.06 µm. The average 
residual error of each hole is regarded as a systematic error in that position of the MT workspace, 
whereas the standard deviation is part of the uncertainty of the measurement procedure (𝑢𝑢𝑝𝑝). 

 

 
Figure 9. Final error distribution 

 

By using the GUM [22], the measurement result should be expressed as follows: 

 𝑌𝑌 = (𝑦𝑦 + 𝑏𝑏) ± 𝑈𝑈, (17) 
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where 𝑌𝑌 is the expression for the measurement, 𝑦𝑦 is the measured value, 𝑏𝑏 is the systematic error and 
𝑈𝑈 is the expanded uncertainty. Figure 9 shows the systematic error (𝑏𝑏) in every position of the MT 
workspace.  

 

 
Figure 10. Systematic error in the workspace 

 

Figure 10 shows the systematic error obtained in the simulation. The systematic error has values of 
approximately 2 µm, except along the X-axis, where the systematic error reaches a value of 14 µm. This 
result is caused by the squareness error and because the optimisation algorithm obtains the best global 
correction, but those points are absorbing the error. 

 

Assuming that the accuracy of the sensor is ± 0.2 °C with a rectangular distribution, 𝑢𝑢𝑤𝑤 can be calculated 
as follows: 

 𝑢𝑢𝑤𝑤 = 𝛼𝛼·∆𝑇𝑇·𝐿𝐿
√3

=  24·10−6·0.2·400
√3

= 0.00111 𝑚𝑚𝑚𝑚 = 1.11 µ𝑚𝑚.  (18) 

The value of 𝑢𝑢𝑝𝑝 for each position of the workspace is two times the standard deviation of the simulated 
mesh of points at that position (Figure 8). This is the most important source of uncertainty in this 
experiment. The expanded uncertainty can now be calculated for each workspace position. The results 
are shown in Figure 11.  

 

 

https://doi.org/10.1016/j.measurement.2018.10.012


https://doi.org/10.1016/j.measurement.2018.10.012  
  

Figure 11. Expanded uncertainty of the workspace 

 

These results show the expanded uncertainty of each position of the workspace. The peak at position X 
= 0 mm and Y = 0 mm is owing to its particular condition as the origin of the coordinates. That is, this 
position is the point of reference for all the geometric errors and its uncertainty is lower. Meanwhile, 
the uncertainty is higher and homogeneous in the rest of the workspace. Further, the MT user can use 
the value of MPE of the MT to have information on the error in the distance measurements and not only 
in the position. Setting an MPE on the measurement system is one way of ensuring that when 
measurements are actually performed, the requirements on maximum permissible measurement 
uncertainty (MPU) are likely to be satisfied. Whether the MPU will be satisfied or is not depended not 
only on the instrument specifications but also on the actual metrological performance whilst measuring 
[30]. 

To estimate the MPE value for the measurement at various distances, the errors previously simulated 
were used. Different pairs of points were chosen, and their nominal distances were compared with the 
measured distances to determine the error per distance of the measurement. Three cases were 
investigated, namely, using all the data (coverage factor of 100%), using the values within the three 
standard deviations (coverage factor of 99%) and using the values within two standard deviations 
(coverage factor of 95%). Figure 12 shows the results of the comparison of the 1000 points 
corresponding to 55 pairs of centre distances of the holes; thus, information is available on the errors of 
55000 distances. 

 

 
Figure 12. Maximum permissible error 

 

The MPE of the MT is given by 

�
𝑓𝑓𝑐𝑐𝑓𝑓 0 < 𝐿𝐿 < 200 𝑚𝑚𝑚𝑚  ;   𝑀𝑀𝑀𝑀𝑀𝑀 = (30 + 𝐿𝐿

10
)  µ𝑚𝑚

 
𝑓𝑓𝑐𝑐𝑓𝑓 𝐿𝐿 > 200 𝑚𝑚𝑚𝑚           ;   𝑀𝑀𝑀𝑀𝑀𝑀 = 50 µ𝑚𝑚                 

. 

 

Alternatively, the value with a coverage factor of 95% can be used. 

𝑈𝑈95 = 17.5 µ𝑚𝑚 

 

5. Conclusions 

The initial tests performed in this study show that the LT measurement noise has a significant influence 
on volumetric verification and provide calibration uncertainty related only to random errors introduced 
in the measured points. This source of uncertainty is normally neglected by a user, who assumes that 
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the errors provided by volumetric verification are perfectly accurate values. This source of uncertainty 
must be considered because of the increase in the uncertainty of the MT during the manufacturing and 
measuring processes. 

Thus, the measurement data can be presented as the measured value, as well as a correction known as 
a residual volumetric error, and the uncertainty value. In a particular case of the MT considered in this 
study, within the workspace of 460 mm x 460 mm, the systematic error has values of approximately 2 
µm. However, the uncertainty has an average value of approximately 30 µm in the entire workspace, 
except at the position where the origin of the coordinates has been set, where the expanded 
uncertainty has a minimum value of 12 µm. Apart from the information obtained for every point, the 
MT user may want to know the value of the MPE expected whilst measuring the distances. To estimate 
this value, several combinations of pairs of points are used. By comparing the measured distance with 
the nominal distance, the MPE value is estimated for three cases, that is, the absolute MPE and the MPE 
values with coverage factors of 99% and 95%. For a coverage factor of 95%, the MPE obtained is 17.5 
µm. The uncertainties and MPEs estimated on this study are the result of noise in the measurement 
system (LT), and these must be added to the other sources of uncertainty to have a global view of the 
traceability of the MT. 

When the MT is used as a measurement system, determining the measurement uncertainty is 
necessary. It is a quantitative indication of the quality of the measurement results, without which they 
cannot be compared between themselves, with specified reference values, or with the standard. In this 
paper, some of the sources with most influence over uncertainty have been studied, but in future work 
it would be interesting to study the influence of other factors such as temperature or the position of the 
laser tracker to have an overall vision of the measurement uncertainty. 
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