000131289 001__ 131289
000131289 005__ 20240207154753.0
000131289 0247_ $$2doi$$a10.1021/acs.jpcc.9b10879
000131289 0248_ $$2sideral$$a117302
000131289 037__ $$aART-2020-117302
000131289 041__ $$aeng
000131289 100__ $$aBartolomé, P.
000131289 245__ $$aUnveiling the Different Physical Origins of Magnetic Anisotropy and Magnetoelasticity in Ga-Rich FeGa Thin Films
000131289 260__ $$c2020
000131289 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131289 5203_ $$aThe aim of this work is to clarify how in-plane magnetic anisotropy and magnetoelasticity depend on the thickness of Ga-rich FeGa layers. Samples with an Fe72Ga28 composition were grown by sputtering in the ballistic regime in oblique incidence. Although for these growth conditions uniaxial magnetic anisotropy could be expected, in-plane anisotropy is only present when the sample thickness is above 100 nm. By means of differential X-ray absorption spectroscopy, we have determined the influence of both Ga pairs and tetragonal cell distortion on the evolution of the magnetic anisotropy with the increase of FeGa thickness. On the other hand, we have used the cantilever beam technique with capacitive detection to also determine the evolution of the magnetoelastic parameters with the thickness increase. In this case, experimental results can be understood considering the grain distribution. Therefore, the different physical origins for anisotropy and magnetoelasticity open up the possibility to independently tune these two characteristics in Ga-rich FeGa films.
000131289 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E10-17D$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2016-076482$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-66726-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-66888-C3-3R$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-097895-B-C43
000131289 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000131289 590__ $$a4.126$$b2020
000131289 591__ $$aCHEMISTRY, PHYSICAL$$b68 / 162 = 0.42$$c2020$$dQ2$$eT2
000131289 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b124 / 333 = 0.372$$c2020$$dQ2$$eT2
000131289 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b56 / 106 = 0.528$$c2020$$dQ3$$eT2
000131289 592__ $$a1.401$$b2020
000131289 593__ $$aElectronic, Optical and Magnetic Materials$$c2020$$dQ1
000131289 593__ $$aEnergy (miscellaneous)$$c2020$$dQ1
000131289 593__ $$aSurfaces, Coatings and Films$$c2020$$dQ1
000131289 593__ $$aPhysical and Theoretical Chemistry$$c2020$$dQ1
000131289 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000131289 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131289 700__ $$0(orcid)0000-0002-2642-5635$$aBegué, A.
000131289 700__ $$aMuñoz-Noval, A.
000131289 700__ $$0(orcid)0000-0003-1930-1455$$aCiria, M.$$uUniversidad de Zaragoza
000131289 700__ $$aRanchal, R.
000131289 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000131289 773__ $$g124, 8 (2020), 4717-4722$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000131289 8564_ $$s577938$$uhttps://zaguan.unizar.es/record/131289/files/texto_completo.pdf$$yPostprint
000131289 8564_ $$s1392080$$uhttps://zaguan.unizar.es/record/131289/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131289 909CO $$ooai:zaguan.unizar.es:131289$$particulos$$pdriver
000131289 951__ $$a2024-02-07-14:37:16
000131289 980__ $$aARTICLE